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Abstract: Background: Recent studies have demonstrated the utility of cell-free tumor DNA (ctDNA)
from plasma as an alternative source of genomic material for detection of sensitizing and resistance
mutations in NSCLC. We hypothesized that the plasma level of ctDNA is an effective biomarker to
provide a non-invasive and thus a less risky method to determine new resistance mutations and
to monitor response to treatment and tumor progression in lung cancer patients. Methods: This
prospective cohort study was approved and conducted at the Peter Brojde Lung Cancer Centre,
Montreal. Blood was collected in STRECK tubes at four time points. DNA was extracted from plasma,
and ctDNA was analyzed for the presence of mutations in the EGFR gene using the COBAS® EGFR v2
qPCR (Roche) test. Results: Overall, 75 pts were enrolled in the study. In total, 23 pts were TKI-naïve,
and 52 were already receiving first-line TKI treatment. ctDNA detected the original mutations (OM)
in 35/75 (48%) patients. Significantly higher detection rates were observed in TKI-naïve patients
compared to the TKI-treated group, 70% versus 37%, respectively (p = 0.012). The detection of the
original mutation at the study baseline was a negative predictor of progression-free survival (PFS)
and overall survival (OS). The resistance mutation (T790M) was detected in 32/74 (43%) patients.
In 27/32 (84%), the T790M was detected during treatment with TKI: in 25/27 patients, T790M was
detected at the time of radiologic progression, in one patient, T790M was detected before radiologic
progression, and in one patient, T790M was detected four weeks after starting systemic chemotherapy
post progression on TKI. At the time of progression, the detection of T790M significantly correlates
with the re-appearance of OM (p = 0.001). Conclusion: Plasma ctDNA is a noninvasive patient-
friendly test that can be used to monitor response to treatment, early progression, and detection of
acquired resistant mutations. Monitoring of clearance and re-emergence of driver mutations during
TKI treatment effectively identifies progression of the disease. As larger NGS panels are available
for ctDNA testing, these findings may also have implications for other biomarkers. The results from
ongoing and prospective studies will further determine the utility of plasma testing to diagnose,
monitor for disease progression, and guide treatment decisions in NSCLC.
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1. Introduction

One of the most exciting breakthroughs in cancer treatment is the application of
personalized therapies tailored to the individual’s cancer genetic makeup. A large number
of cancer genome sequencing studies collectively identified etiologic genetic changes that
drive human tumor growth and progression [1–3]. The development of highly specific
small molecules targeting these mutated proteins has provided new opportunities to tailor-
fit treatments to the molecular features of the patients’ disease. These advancements of the
tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, which target the epidermal
growth factor receptor (EGFR), have led us to personalize the treatment of EGFR-mutant
(EGFRm) advanced non-small cell lung cancer (NSCLC) [4,5].

Currently, the gold standard for biomarker analysis, including EGFR mutations, is
the sequencing of DNA obtained from tissue biopsy. In an era of personalized medicine,
the need for repeat biopsies to monitor the response to treatment and tumor progression
has increased tremendously. In lung cancer patients, a repeat biopsy is very challenging
and incurs major clinical risks. Recent studies have demonstrated the utility of circulating
tumor DNA (ctDNA) from plasma as an alternative source of genomic material to detect
sensitizing and acquired resistance mutations in NSCLC [6–11]. The ability to detect the
T790M resistance mutation is of particular interest, since third-generation TKIs have shown
favorable results in patients with this mutation [12–14].

In addition to its potential role as a detection method, ctDNA has demonstrated utility
in the surveillance of progression-free survival (PFS) and overall survival (OS) in several
cancers as well as in monitoring the response to treatments [15–17].

We hypothesized that liquid biopsies using ctDNA isolated from plasma are effective
to provide an alternative method to repeating tumor tissue biopsies, to monitor response
to treatment by detecting the original (activating and sensitizing) mutations (OM), and
to monitor tumor progression in lung cancer patients by detecting the T790M acquired
resistance mutation.

2. Materials and Methods

This prospective cohort study was conducted between 7 July 2017 and 10 January
2021 at the Peter Brojde Lung Cancer Centre, Montreal, Canada. The study protocol was
reviewed and approved by the Institutional Review Board at the Jewish General Hospital.
Patients with advanced/metastatic NSCLC who were found to have an EGFR mutation
on tissue biopsy were enrolled for EGFR ctDNA mutation testing utilizing the COBAS®

EGFR v2 qPCR (Roche) test. Plasma was prepared from blood collected in STRECK™ blood
collection tubes; 8 mL of whole blood. DNA was extracted from 2 mL plasma using the
Cobas ctDNA Sample Preparation Kit and then analyzed for the presence of mutations
in the EGFR (NM_005228.4) gene according to the manufacturers’ specifications (Roche
Molecular Systems, Pleasanton, CA, USA). All patients provided informed consent. The
study population included 2 cohorts:

• The 1st cohort participants were TKI-treated patients. These patients were currently
on EGFR-TKI therapy for EGFRm metastatic NSCLC and had not yet experienced
disease progression on first-line treatment. The mean time of enrollment from the
start of EGFR-TKI in this cohort was 10.5 (range 3–44) months. Four longitudinal
blood samples were obtained throughout the course of treatment: at the time of
enrollment (baseline), at the time of 1st follow up CT scan, at the time of progression,
and 1–3 months after starting second-line therapy (Table 1).

• The 2nd cohort participants were TKI-naive newly diagnosed EGFRm metastatic
NSCLC. The same 4 longitudinal blood samples were obtained throughout the course
of treatment, with the exception of the 1st sample, which was drawn prior to TKI
treatment (baseline) (Table 1).
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Table 1. Timing of ctDNA sampling.

Visits Cohort 1 Cohort 2

Visit 1 Time of enrollment 1 Prior to any TKI treatment
Visit 2 Time of 1st follow up CT scan 2 Time of 1st follow up CT scan 2

Visit 3 Time of progression Time of progression
Visit 4 1–3 months after starting second line therapy 1–3 months after starting second line therapy

1 Mean time of enrollment was 10.5 (range 3–44) months from the time of start of EGFR TKI. 2 Mean time if 1st CT
scan was 12 (range 4–15) weeks.

The results of ctDNA testing, anonymized patient information, tumor characteristics,
treatment history, and outcomes were collected.

Means with standard deviation or medians with the associated 95% confidence interval
(CI) for numeric data are utilized to describe demographic and clinical characteristics of
the cohort. Categorical data, such as treatment patterns, are described using frequencies
and proportions. Time variables (OS, PFS) are reported as medians with 95% CI using
Kaplan–Meier statistics. A p value of 0.05 is considered significant.

IBM SPSS 20 software for Windows was used for statistical analysis.

3. Results
3.1. Patient Characteristics

From January 2017 to January 2021, 75 pts were enrolled in the study. These include
fifty-two patients that were receiving first-line TKI treatment (cohort 1) and twenty-three
patients that were TKI naïve (cohort 2). The flowchart tracks the patient status over the
four visits (Figure 1).
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Table 2 summarizes the patient characteristics and response to treatment. The majority
of patients were female (65%), Caucasian (63%), and non-smokers (73%). The most common
EGFR mutation detected in tissue was exon 19 deletion. In context of EGFR-TKIs, the
majority of patients received gefitinib. Adequate ctDNA was extracted and detected in 97%
of the cases.

Table 2. Patient characteristics.

Characteristics TKI-Treated n (%)
n = 52

TKI-Naïve n (%)
n = 23 p Value Total n (%)

n = 75

Gender:
Male 17 (33) 8 (35) 0.86 26 (35)
Female 35 (67) 15 (65) 49 (65)

Ethnicity:
Caucasian 34 (65) 13 (56) 0.68 47 (63)
Asian 19 (35) 9 (44) 28 (37)

Smoking history:
Ex/current smokers 14 (27) 6 (26) 0.94 20 (27)
Non-smokers 38 (73) 17 (74) 55 (73)

EGFR alterations:
Exon 19 deletion 31 (60) 15 (65) 46 (62)
Exon 21 (L858R) 19 (36) 8 (35) 0.64 27 (36)
Exon 21 (L681Q) 1 (2) 0 (0) 1 (1)
Exon 18 1 (2) 0 (0) 1 (1)

First line TKI:
gefitinib 43 (82) 16 (70) 59 (80)
afatinib 6 (12) 3 (13) 0.78 9 (12)
erlotinib 3 (6) 0 (0) 3 (4)
osimertinib 0 3 (13) 3 (4)
unknown (lost to follow up) 0 1 (4) 1

Best response to 1st line treatment:
Complete response (CR) 4 (8) 2 (9) 6 (8)
Partial response (PR) 29 (56) 13 (57) 42 (56)
Stable disease (SD) 12 (23) 6 (26) 0.75 18 (24)
Mixed response 1 (2) 1 (4) 2 (3)
Progressive disease (PD) 6 (11) 0 (0) 6 (8)
Unknown (lost to follow up) 0 1 (4) 1 (1)

Adequacy of DNA in plasma
Adequate quantity 51 (98) 22 (96) 0.99 73 (97)
Undetectable quantity: 1 (2) 1 (4) 2 (3)

3.2. Original Mutation (OM) Detection

ctDNA detected the OM in 35/75 (48%) patients. Significantly higher (p = 0.012)
detection rates were observed in TKI-naïve patients compared to the TKI-treated group,
70% versus 37%, respectively (Table 3 and Figure 2). The OM detection in the TKI treated
group peaked at the time of progression (Figure 2).

Table 3. ctDNA detection of OM in TKI-treated and TKI-naive patients at visit 1.

Variable TKI-Treated
n = 50 *

TKI-Naïve
n = 23

Total
n = 73

Pearson
Chi-Square

OM ** detected n(%) 19 (38) 16 (70) 35 (48)
0.012OM not detected n(%) 31 (62) 7 (30) 38 (52)

Total 50 (100) 23 (100) 73 (100)
* In 2 cases of the TKI-treated cohort the DNA was undetectable. ** Original mutation.
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Figure 2. Trajectory of blood-based detection of original mutation.

3.3. Resistant Mutation (T790M) Detection

The resistance mutation (T790M) was detected in 32/74 (43%) patients. A de novo
T790M was detected in five TKI-naïve patients: one only on ctDNA and four on both:
ctDNA and diagnostic tissue sample. In 27/32 (84%) the T790M was detected during
treatment with TKI: in 25/27 patients, T790M was detected at the time of radiologic
progression; in one patient, T790M was detected before radiologic progression; and in
one patient, T790M was detected four weeks after starting systemic chemotherapy post-
progression on TKI (Figure 3). At the time of progression (visit 3), the re-appearance of OM
significantly (p = 0.001) correlates with detection of T790M (Table 4).
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Table 4. Correlation of detection of OM and T790M mutation.

Time OM Detection
T790M Detection Total

p Value
Detected Not Detected

Visit1 a Detected 5 30
73 n/aNot detected 0 38

Visit 2
Detected 1 23

57 n/aNot detected 0 33

Visit 3
Detected 24 12

50 0.001Not detected 1 13

Visit 4
Detected 8 7

31 n/aNot detected 0 16
a—In 2 cases the DNA was undetectable.

3.4. Treatment Outcomes

Median follow-up was 32 (range 3–98) months. At the end of the study, 51 patients
were deceased. Of the 23 surviving patients: 4 continued on first line treatment, 10
continued on second line osimertinib, 5 were started on systemic therapy, and 4 were on
BSC. In context of responses, 48/74 (65%) had an objective response (CR/PR) with first
line TKI therapy. Disease control rate (CR/PR/SD) was 89% (66/74). The PFS on 1st line
of EGFR-TKI was 18.7 (95% CI: 10.2–27.2) months, with a significantly prolonged PFS in
patients with undetectable OM at the baseline (Figure 4a). Overall survival was 42.0 (95%
CI: 34.4–49.5) months and was also significantly better in patients without OM at baseline
(Figure 4b).
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4. Discussion

In this prospective trial of ctDNA testing in advanced EGFRm NSCLC lung cancer,
we examined the clinical utility of liquid biopsies to meet the challenges of monitoring
response to targeted therapy and detection of disease progression. We found that 97% of
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blood samples had adequate ctDNA in plasma for testing at baseline. In comparison, it has
been reported that only 80% of standard of care tissue biopsies samples had a sufficient
quantity of tumor cells for genetic testing [18,19]. Agulnik et al. reported in another study
that over 86% of advanced NSCLC patients enrolled had detectable cell-free DNA [12].

Our results showed that the use of serial liquid biopsies for monitoring of clearance
and reemergence of EGFR activating/sensitizing mutations during TKI treatment can
effectively identify the response to treatment and progression of the disease. In our study,
the OM was detected in only 38% of patients being treated with EGFR-TKIs, compared
to 70% in TKI-naïve patients at the baseline. This is consistent with the notion that OM
is likely cleared upon TKI treatment. We have also demonstrated that the clearance of
the EGFR OM at the baseline is a positive prognostic factor of response and is associated
with longer PFS and OS. Patients with undetectable OM had a prolonged PFS on first-line
EGFR-TKI compared to those with detected OM (26 vs. 15 months) and a better survival
(48 vs. 34 months). Several other reports have demonstrated a good correlation between
the detection of a driver mutation on ctDNA and treatment outcomes [13,14,20]. It has been
reported that complete or partial clearance of the driver mutation was strongly predictive of
a prolonged PFS and OS [13,21]. Mok et al. reported that the median PFS for patients who
continued to have detectable mutant EGFR at cycle 3 was 7.2 months versus 12.0 months
for patients with undetectable mutant EGFR. Similarly, median OS was also longer in
patients with undetectable mutant EGFR at cycle 3 (31.9 versus 18.2 months) [21]. Other
researchers measured the concentration of circulating tumor DNA and reported that rapid
clearance of circulating tumor DNA concentration (ctDNA) allows us to identify patients’
therapeutic response, regardless of the type of treatment used in the first line setting [20,22].
Our results highlight the notion of Rosell et al. that “surveillance of mutations using genetic
analysis of ctDNA become mandatory in the management of patients with EGFR-mutant
NSCLC” [23].

Until recently, the detection of the T790M resistant mutation on a repeat tissue biopsy
at the time of progression is considered standard of care testing. In our study, the T790M
mutation detection rate in plasma was 43%. Our results are well aligned with the literature.
Detection of the T790M resistance mutation ranges from 20% in REMEDY study to 63%
in AURA extension and AURA2 trials [24–26]. It has been reported that T790M mutation
detection in plasma could precede radiological progression and could potentially be used to
monitor the response to first- and second-generation EGFR TKIs [24]. We demonstrate that
the rate of the T790M resistance mutation detection had significantly increased compared
to baseline at the time of radiological progression. The de novo T790M mutation was
detected in five newly diagnosed (TKI naïve) metastatic NSCLC cases. Increasing evidence
suggests that de novo T790M mutation in NSCLC patients might co-exists with EGFR
activating mutations [19]. Due to the differences in detection methods and samples, the
occurrence probability of de novo T790M mutation varies from 0.1% to 27% [19,27,28].
Clinical implication of this co-existing combination is yet to be investigated. In the present
study, we found that, in 38% of patients failing first-line of targeted therapy, the acquired
resistance T790M mutation was not detected. This is likely due to a limitation of the single-
gene PCR-based testing used in this study. The investigation on the population of VALUE
study by Leighl et al. showed that Guardant-360 (comprehensive NGS plasma-based
test) can yield actionable or potentially actionable mutations beyond EGFR T790M in an
additional 20% of patients at time of progression [29]. Detection of T790M mutation after
switching to systemic treatment is likely due to tumor cells release into blood stream as an
effect of chemotherapy. This event needs to be investigated further.

Taken together, liquid biopsies show promise toward personalized medicine. Despite
these encouraging results, ctDNA testing has some potential pitfalls and needs to be
further investigated [18,26,30]. False negative results are the first limitation of ctDNA
genotyping. It was reported that ctDNA detect T790M mutation in only 61% of positive
tissue samples cases [18,19]. This might be associated with pathological tumor stage, low
tumor volume, low disease burden, or clinicopathological properties that affect low ctDNA
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shedding [19,31,32]. The consensus is that negative results should be confirmed by a tissue
biopsy [31]. To date, ctDNA is routinely analyzed by the Cobas PCR-based single gene
EGFR diagnostic test. FDA approval of plasma-based NGS diagnostic panels such as
Gaurdant360 and FoundationOne Liquid CDx allows us to broaden the coverage of tested
genomic alteration (EGFR C797S and rare mutations, ALK, ROS1, BRAF, RET, MET, ERBB2,
and PIK3CA). This initiative will lead to increased ctDNA testing as well as the availability
of commercial ctDNA NGS panels for in-house testing and will provide additional evidence
of the benefit of ctDNA testing. In time, these investigations, cost analysis, and real-world
data will foster the foundation for ctDNA in routine clinical settings.

Participants of our study have been enrolled before approval of osimertinib, and the
majority of them received the first or second generation of EGFR-TKI. With the approval
of osimertinib as a first line treatment for EGFR-mutant NSCLC, the treatment guidelines
have changed accordingly.

5. Conclusions

Plasma ctDNA is a noninvasive patient-friendly test that can be used to monitor
response to treatment, early progression, and detection of acquired resistant mutations.
Monitoring of clearance and re-emergence of driver mutations during TKI treatment
effectively identifies progression of the disease. As larger NGS panels are available for
ctDNA testing, these findings may also have implications for other biomarkers. Results
from ongoing and prospective studies will further determine the utility of plasma testing
to diagnose, monitor for disease progression, and guide treatment decisions in NSCLC.
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