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ABSTRACT
The preparation of hierarchical zeolites with reduced diffusion limitation and enhanced catalyst efficiency
has become a vital focus in the field of zeolites and porous materials chemistry within the past decades.This
review will focus on the diffusion and catalyst efficiency of hierarchical zeolites and industrial catalysts.The
benefits of diffusion and catalyst efficiency at two levels of hierarchies (zeolitic component level and
industrial catalyst level) from a chemical reaction engineering point of view will be analysed. At zeolitic
component level, three types of mesopores based on the strategies applied toward enhancing the catalyst
effectiveness factor are presented: (i) ‘functional mesopores’ (raising effective diffusivity); (ii) ‘auxiliary
mesopores’ (decreasing diffusion length); and (iii) ‘integrated mesopores’ (a combination thereof). At
industrial catalyst level, location and interconnectivity among the constitutive components are revealed.
The hierarchical pore interconnectivity in multi-component zeolite based industrial catalysts is exemplified
by fluid catalytic cracking and bi-functional hydroisomerization catalysts.The rational design of industrial
zeolite catalysts at both hierarchical zeolitic component and catalyst body levels can be fully comprehended
using the advanced in situ and/or operando spectroscopic, microscopic and diffraction techniques.

Keywords: diffusion, effectiveness factor, pore connectivity, hierarchical zeolite, industrial catalyst,
advanced characterization

INTRODUCTION
Zeolites are crystalline porous materials consisting
of tetrahedrally coordinated elements (Si, Al, P, Ti,
etc.) connected by oxygen bridge bonds [1]. Owing
to the unique crystalline structure, variable chemi-
cal composition, high thermal stability and surface
acidity, zeolites are widely used in petroleum refin-
ing, petrochemical, fine chemical and environmental
catalysis [2,3]. However, for reactions where bulky
molecules with diameters greater than the microp-
ores of zeolites are involved, the mass transport of
reactants from the outer surface to the acidic active
sites experiences strong diffusion resistance, lead-
ing to reduced catalyst efficiency (vide infra). Fur-
thermore, even if the reactants are small enough to
enter the internal volume of zeolites, diffusion re-
sistance may also extend the contact time with the
acidic active sites within the crystals [4,5], which

can lead to side reactions and deactivation [6–8].
Therefore, enhancing the efficiency and improving
the catalytic cracking conversion of zeolites is one
of the most urgent issues for both academia and
industry [7,9].

A theoretical analysis from a chemical reaction
engineering aspect can bring some solutions for the
above-mentioned issue. Based on the law ofmass ac-
tion, the rate of reaction is proportional to the con-
centration of reactants. However, due to the diffu-
sion resistance, the concentration near the surface
of the catalyst usually deviates from the concentra-
tion at the acidic active sites.Therefore, two descrip-
tors are proposed for quantitative measurement of
catalyst efficiency in chemical reaction engineering
[10–15].

The first descriptor isThiele modulus (ϕ), which
is a dimensionless number defined according to
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Figure 1. Pore size distribution of mesoporous (solid circle and hollow diamond) and
conventional ZSM-5 zeolite (solid line) contained industrial catalyst bodies. Re-drawn
and adapted with permission from [19].

Equation (1):

ϕ = L

√
kc n−1

As

Deff
, (1)

where L, Deff, n, cAs and k are diffusion length (m),
effective diffusivity (m2 s−1), order of the reaction
(dimensionless), concentration at the acidic active
sites (mol m−3) and intrinsic reaction rate constant
based on catalyst volume (unit of k depends on n),
respectively. Here, L and Deff indicate the contribu-
tion of diffusion rate, while k, cAs and n describe the
reaction rate at the active sites. In this sense, ϕ is a
quantitative index used to evaluate the relative mag-
nitude between reaction rate at the active sites and
the diffusion rate within the catalyst.

For a pseudo-first order reaction (e.g. catalytic
cracking), the expression of ϕ can be simplified ac-
cording to Equation (2):

ϕ = L

√
k
Deff

. (2)

The second descriptor, the catalyst effectiveness fac-
tor (η), is expressed according to Equation (3)
below:

η = ro
r i

, (3)

where ro (mol m−3 s−1) and ri (mol m−3 s−1) rep-
resent observed and intrinsic reaction rates, respec-
tively. Because themutual exchange rate between in-
fluent and effluent reaction species on the surface
of catalysts is not infinite [16,17], ro is always lower
than ri, leading to η of <1.0, but the closer ro is to

ri, the highest the η is.Therefore, introducing meso-
pores into parent zeolites (microporous structures)
to prepare hierarchical porous materials with im-
proved accessibility of active sites is a feasible way to
enhance η.

In real industrial catalytic processes, the zeolitic
component alone (even with hierarchical structure)
cannot satisfy all the requirements [18]. As shown
in Fig. 1 [19], the multi-component zeolite based
catalyst intrinsically has amicro-/macroporous hier-
archical structure consisting of both zeolitic micro-
porosity and non-zeolitic macroporosity. If the ze-
olitic component is a hierarchical zeolite, additional
mesopores will be integrated and form a micro-/
meso-/macroporous tri-modal hierarchical catalyst
body. Obviously, there are two levels of hierarchies
for a zeolite multi-component catalyst body, i.e.
(i) the hierarchy at zeolitic level, and (ii) the hi-
erarchy at industrial catalyst level. In the following
section of this review, we will reveal the synthesis,
characterization and diffusion aspects of industrially
used multi-component hierarchical zeolite catalysts
at both levels.

RATIONAL DESIGN OF HIERARCHY AT
ZEOLITIC LEVEL: FUNCTIONAL VS.
AUXILIARY MESOPORES
The preparation of hierarchical zeolites has become
a focus in the field of zeolite and porousmaterial sci-
encewithin the past decades. In light of the improve-
ment on catalyst efficiency for diffusion-controlled
catalytic reaction, the classification of themesopores
is of vital importance.

The relationship between η and ϕ is expressed as
follows:

η = tanhϕ
ϕ

. (4)

For catalysts bearing strong diffusion resistance
(η < 0.25), ϕ is reciprocal of η, i.e.:

η = 1
ϕ

. (5)

Combining Equation (2) and Equation (5), Thiele
modulus can be calculated using the following equa-
tion:

1
η

= ϕ = L

√
k
Deff

. (6)

If the number of acidic active sites and other param-
eters are not changing, k can be regarded as a con-
stant. In order to decreaseϕ for improvingη, the two



1728 Natl Sci Rev, 2020, Vol. 7, No. 11 REVIEW

Synthesis routes towards zeolite-based hierarchical materials 
(reducing Thiele modulus, )

Raising both effective diffusion coefficient  (Deff) and reducing diffusion length (L)

Integrated mesopores

Raising effective diffusion coefficient  (Deff) Reducing diffusion length (L)

Auxiliary mesopores

Post-treatment
De

alu
mi

na
tio

n

Ha
rd

 te
mp

lat
ing

So
ft t

em
pla

tin
g

No
n-

tem
pla

tin
g

(n
an

os
ize

d)

De
sil

ica
tio

n

Flu
or

ide
-m

ed
iat

ed
 

po
st-

tre
atm

en
t

In-situ

Or
de

re
d m

es
op

or
es

Ex
tra

-la
rg

e-
po

re
 ze

oli
te

Ul
tra

thi
n o

r s
ing

le-
un

it-c
ell

 
na

no
sh

ee
ts 

of 
ze

oli
te

Functional mesopores

v

eff

=
kL
D

Figure 2.Overview of the synthesis routes toward zeolite-based hierarchical materials.

strategies proposed are: (i) enhancing effective Deff
or (ii) decreasing L [20]. Three types of hierarchi-
cal zeolite structures with the following mesopores
(i) ‘functional mesopores’, (ii) ‘auxiliarymesopores’
and (iii) ‘integrated mesopores’ will be described
(Fig. 2).

Functional mesopores
If the thickness ofmesoporewall is at the scale of sev-
eral unit cells, the diffusion constrain within micro-
porous structures is negligible. For these type of hi-
erarchical zeolitic materials, the zeolitic layers are so
thin that they can be directly regarded as mesopore
walls that include acid active sites on their surface.
In this regard, the mesopores are called functional
mesopores. Owing to the wide mesopore walls, the
diffusion type changes from configurational diffu-
sion to surface or Knudsen diffusion [21], and the
Deff increases by several orders of magnitude, lead-
ing to a great enhancement of catalyst effectiveness.
The mesopores in: (i) ordered mesoporous materi-
als; (ii) extra-large-pore zeolites; and (iii) ultra-thin
or single-unit-cell zeolite nanosheets are typical ex-
amples of functional mesopores (Fig. 3).

Ordered mesoporous materials like M41S [22]
and SBA-x [23] contain functional mesopores.
Due to their arranged mesoporous arrays, defined
pore size distributions and tuneable surface prop-
erties, these materials have been used in reactions

where bulky molecules are involved [24–26].
However, there are distinct differences between
the ordered mesoporous materials and zeolites.
The silica/alumina species are lacking long-range
order in the mesopore walls, making them similar
to ordinary amorphous silica/alumina. Due to the
amorphous nature of the mesopore walls, these
materials have low hydrothermal stability, which
is a drawback for catalytic applications. Aiming at
modifying the amorphous nature of the mesopore
walls and improving their hydrothermal stability,
researchers have proposed several methods to alter
ordered mesoporous materials. Zeolitization of
the mesopore walls is a typical example (Fig. 3a)
[27]. During zeolitization of the mesopore walls, a
template-like cetyl trimethyl ammonium bromide
(CTAB) was added to a traditional zeolite synthesis
precursor mixture containing tetra propyl ammo-
nium bromide (TPABr) as structure directing agent
[28]. Under hydrothermal treatment, some of the
amorphous silica-alumina species in the mesopores
can be transformed into primary and secondary
building units of zeolite, leading to enhanced
hydrothermal stability of the final material.

The components responsible for cracking and
maximizing low-carbon olefins are due to the
presence of FAU type zeolite (pore diameter and
framework density (FD) of 0.74 nm and 13.3
T-atom/nm3, respectively) and MFI type zeolite
(pore diameter and FD of 0.54 nm and 18.4 T-
atom/nm3, respectively). If the pore diameter of
the zeolites can reach the mesoporous scale (greater
than 2 nm), the gap between micro- and mesopores
can be sealed. In such cases, the mesoporous struc-
ture will exhibit better mass transfer performances
andmaintain acidity and hydrothermal stability sim-
ilar to zeolites. The connections of extra-large-pores
via four-membered rings and even three-membered
rings result in structures with higher distortion
tension. Si-O-Si or Si-O-Al bonds cannot withstand
large distortion tension, which decreases the overall
stability of the zeolite framework. The synthesis of
extra-large-pore zeolites was successfully performed
using germanium (Ge) with an atomic diameter
higher than silicon, so Ge atoms can resist the
distortion tensions [29,30]. Following this line of
thought, Corma et al. reported the synthesis of a
series of new type Ge-contained zeolites [31–34].
The ITQ-43 consists of a 28-member ring structure
with FD of 11.4 T-atom/nm3. The largest pore
aperture of ITQ-43 reached 2.19 nm, making it
the first micro-/mesoporous hierarchical zeolite
with long-range ordering at atomic scale (Fig. 3b)
[33]. Although ITQ-37 has a slightly lower pore
aperture (1.93 nm) than ITQ-43, its FD was further
reduced to 10.3 T-atom/nm3, making it one of
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the zeolite frameworks with the lowest FD to date
(Fig. 3c) [34]. The important role of pre-designed
organic structure directing agent (OSDA) for
synthesizing extra-large-pore zeolites has to be
elaborated carefully. Recently, Zhang et al. reported
an extra-large-pore germanosilicate zeolite SYSU-3
with novel SYT-type framework using a new type
of OSDA via modifying alkaloids extracted from
traditional Chinese herbal medicine [35].

Applications of ordered mesoporous mate-
rials in reactions involving bulky molecules are
limited due to their low hydrothermal stability
originating from the amorphous mesopore walls
[24,36]. In order to cope with these problems,
more targeted synthesis toward preparation of
single-unit-cell [37–39], hierarchical pentasil
zeolite nanosheets [40,41] and delamination of
zeolites [42] were developed. The single-unit-cell
ZSM-5 nanosheets, which were firstly reported
by Ryoo’s group are typical cases [37–39]. They
designed an amphiphilic surfactant with two qua-
ternary ammonium nitrogen atoms (C22H45-N+

(CH3)2-C6H12-N+(CH3)2-C6H13, C22-6-6). In
the C22-6-6 molecule, the hydrophilic N+(CH3)2-
C6H12-N+(CH3)2-C6H13 head is served as OSDA
for forming the MFI framework, while the hy-
drophobic C22H45- tail is used for separating the
above single-unit-cell crystals. Due to the limited
length of hydrophilic head (∼2nm), theMFI frame-
work structure can only be confined within a single-
unit-cell scale, forming ultra-thin layered structures
(Fig. 3d). The direct interconnection between
hydrophilic head and hydrophobic tail via covalent
C-C bond guarantees alternately arranged MFI
layer and template chain layer of a size of 2.8 nm.
Compared with the traditional ZSM-5, the
single-unit-cell ZSM-5 nanosheets showed higher
conversion in the cracking reaction of high density
polyethylene. In methanol-to-gasoline reaction, the
sample also showed better coking resistance than
the traditional ZSM-5. Further, the Ryoo group in-
vestigated different surfactant with three quaternary
ammonium nitrogen atoms (C18H37-N+(CH3)2-
C6H12-N+(CH3)2-C6H12-N+(CH3)2-C18H37,
C18-6-6-18) [39]. When C18-6-6-18 is used as a
template, an MCM-41 like hexagonally ordered
mesoporous material was prepared. Transmission
electron microscopy (TEM) results indicated
that the mesopore wall of the sample is fully
crystalline with an MFI framework structure. Two-
dimensional hetero-nuclear correlation nuclear
magnetic resonance spectroscopy (2D HETCOR
NMR) further verified the role of N-contained
amphiphilic quaternary ammonium surfactants for
the preparation of these hierarchical zeolites. On
one hand, strong interactions between quaternary

ammonium nitrogen and framework silicon infer
that hydrophilic head of molecule promotes the
crystallization of a zeolite framework. On the
other hand, the lack of correlated signal intensity
between 29Si from MFI framework and 1H from
hydrophobic C18H37 tail indicates that the alkyl
tail is not molecularly proximate in the framework.
By modifying the molecular structure of the am-
phiphilic surfactants, the properties of the zeolite
framework or ordered mesoporous structures were
modified [43]. For example, by inserting phenyl
into hydrophilic head, a BEA type framework was
formed. For MCM-41 like mesostructure with fully
crystalline pore wall, the thickness of mesopore wall
and mesopore diameter can be adjusted by chang-
ing the number of quaternary ammonium nitrogen
atoms and the length of alkyl group length, respec-
tively. Compared with conventional MCM-41, the
sample templated by C18-6-6-18 exhibited superior
performances in alkylation and acylation of bulky
reactants.

In the discussion above, the recruited am-
phiphilic surfactants are multi-head quaternary
ammonium molecules due to unfavourable ther-
modynamics. Che et al. introduced bi-phenyl or
naphthyl groups into the hydrophobic moieties
of single-head quaternary ammonium surfactant
to guide the synthesis of house-of-cards-like ar-
rangements with perpendicularly interconnected
single-crystalline mesostructured MFI nanosheets
[44]. The hydrophilic quaternary ammonium heads
are located at straight channels and promote the
formation of aMFI framework, while the hydropho-
bic tails separate the neighbouring zeolite sheets.
Further characterizations confirmed that the struc-
tures are stabilized via the π -π stacking interactions
between the adjacent molecules (Fig. 3e).

Auxiliary mesopores
Differently to functional mesopores, introducing
auxiliary mesopores cannot prevent intracrystalline
microporous diffusion, or in other words, the acid
sites are still locatedwithin the traditional crystalline
microporous frameworks. As shown in Fig. 4, aux-
iliary mesopores provide shortcuts to diffuse from
the outer surface of zeolite crystals to the surface of
mesopore walls [45]. Therefore, for such hierarchi-
cal zeolites, the improvement of the catalyst effec-
tiveness factormainly comes from shortening the in-
tracrystalline microporous L.

The synthesis methods applied toward prepara-
tion of materials with auxiliary mesopores are di-
vided into two categories based on the stages of
forming micro- and mesopores: (i) post-treatment
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Figure 3. Representative functional mesopores. (a) Zeolitized ordered mesoporous ma-
terial. Adapted with permission from [27]. (b) Framework of ITQ-43. Adapted with
permission from [33]. (c) Framework of ITQ-37. Adapted with permission from [34].
(d) Crystallization of hierarchical single-unit-cell nanosheets of zeolite MFI. Adapted
with permission from [37]. (e) Single quaternary ammoniums in the template molecules
are located in the straight channel and serve as a template to direct the formation of
hierarchical single-crystalline mesostructured zeolite nanosheets. Adapted with per-
mission from [44].

methods, in which the micro- and mesoporous
structures are formed separately; and (ii) in situ
methods, inwhich the two types of porous structures
are formed simultaneously.

Post-treatment methods: distinct
formation of micro- and mesoporous
structures
The post-treatment strategy involves selective re-
moval of atoms from the zeolite framework via acid
or base treatments. Basedon the typeof the removed
atoms, the strategy can be described as dealumina-
tion (Fig. 5a), desilication (Fig. 5b) and fluoride-
mediated post-treatment (Fig. 5c). The mechanism
of dealumination is shown in Fig. 5a [46].Thedealu-
mination process causes breaking of Si-O-Al bonds
and expulsion of aluminium species and formation
of vacancies that may cause partial amorphization of
the zeolite structure.The local amorphous structure
is a medium with high migration properties, causing
someof thedefect sites of the aluminiumatoms tobe
re-filledwhile others continue to grow to formmeso-
porous holes. In some places where the dealumina-
tion is more intense, or where there are many de-
fects, a part of the sphericalmesoporous holes can be
further aggregated to form larger mesoporous chan-
nels. However, the mesopores generated via dealu-
minationmethods aremainly closedmesopores sur-
rounded by amicroporous zeolite framework, which
cannot efficiently interconnect with the external sur-
face of zeolites [47].

Desilication is the method where silicon atoms
from a zeolite framework are selectively removed
and thereby auxiliary mesoporous structures are
introduced [48] (Fig. 5b). Desilication agents are
usually alkaline agents capable of preferentially
breaking Si-O-Si bonds [49]. Compared to dea-
lumination, the desilication approach generates a
more easily interconnected mesopore network that
is directly linked to the outer surface of zeolites.
Groen et al. reported two orders of magnitude of
improvement in the average characteristic diffusion
time of a controlled desilicated ZSM-5 sample [50].
Early studies revealed that the optimal Si/Al ratio
of the parent zeolite is 25–50 due to the re-insertion
(re-alumination) of extra-framework Al species

(a) (b)

Figure 4. Decreased diffusion length (shown as double-
headed arrows in the figure) in the micropores within zeo-
lite crystals via auxiliary mesopores: (a) without mesopores
and (b) with auxiliary mesopore inside the zeolite crystal. Re-
drawn and adapted with permission from [45].
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Figure 5. Representative auxiliary mesopores formed via post-treatment strategies.
(a) Mechanism of formation of secondary mesopores via dealumination. Adapted with
permission from [46]. (b) Properties of desilication method. Adapted with permission
from [48]. (c) Opening the cages of FAU zeolite via fluoride-mediated post-treatment.
Adapted with permission from [55].

accompanied with desilication [51]. Further, Pérez-
Ramı́rez et al. [48] extended Si/Al ratio range to
all Si/Al ranges via either co-incorporating metal
salts or organic alkylammonium salts (Si/Al > 50),
or adopting acid washing prior to desilication
(Si/Al< 25).

Fluoride-mediated post-treatment is based on
a simultaneous removal of Si- and Al-containing
species. Valtchev et al. first proposed a generalized
strategy to prepare hierarchical zeolite with auxiliary
mesopores, using HF-NH4F buffer solution as post-
treatment agent [52,53].NH4F inhibits thedissocia-
tionofHF to formH+ andF− ions andpromotes the
combination of HF and F− ions concurrently. The
overall result is the formation of HF2− ions, which
can hydrolyse indiscriminately both Si-O-Si and Si-
O-Al bonds [54], therefore keeping a constant Si/Ai
ratio of the samples during thewhole post-treatment
process. Qin et al. applied the fluoride-mediated
post-treatment method in FAU zeolite and found
that the process can selectively open the sodalite
cages of FAU zeolite without causing the collapse of
the supercage [55] (Fig. 5c), indicating that theHF-
NH4F buffer solution enables zeolite framework
post-treatment with atomic-level accuracy.

In situ strategy: simultaneous formation
of two types of porous structures
Using the in situ strategy, the crystalline zeolite
framework and the auxiliary mesoporous structures
are simultaneously generated. Based on the tem-

plates used for auxiliary mesopore formation, the in
situ strategy can be divided into hard-template pro-
cess (Fig. 6a), soft-template process (Fig. 6b) and
template-free process, i.e. direct synthesis of nano-
sized zeolites (Fig. 6c).

Hard-templates only act as mesopore filler
during the crystallization of zeolites. Typical
hard-templates are carbon materials [56], which
have versatility to be applied for a variety of
frameworks (Fig. 6a) [57–60]. The soft-templates
like polymers or supramolecular micelles usu-
ally interact with Si- and Al-species via covalent,
hydrogen bonds or Coulomb forces. In compar-
ison to hard-templates, soft-templates are more
flexible in controlling the mesopores formation.
A typical example of soft-template is an am-
phiphilic organosilane ([3-(trimethoxysilyl)propyl]
hexadecyl dimethylammonium chloride
([(CH3O)3SiC3H6N(CH3)2C16H33]Cl,
TPHAC)) designed by Ryoo et al. (Fig. 6b)
[43,61]. TPHAC consists of a surfactant-like long-
chain alkylammonium moiety and a hydrolysable
methoxysilyl moiety. Because the two parts are con-
nected by Si-C bonds, the chemical stability of the
template is preserved under zeolite synthesis con-
ditions, and the separation of zeolite and mesopore
phases is avoided. The mesoporous zeolites showed
low coke deposition rate andmore extended lifespan
in the methanol-to-hydrocarbon reaction [62].

Adopting a template-free process is based on the
direct preparation of zeolite crystals with nanoscale
size and shape (Fig. 6c). The particle sizes of
zeolite crystals are reduced to nano-dimensions by
controlling the nucleation and growth conditions
of the zeolite [63,64]. With a decrease of the zeolite
crystal size, the ratio of external to total specific
surface area is significantly increased, which allows
more active sites to be accessible. In addition to
the increased accessibility of the acid sites, the
diffusion length of reactive species is shortened.The
nanosized zeolites exhibit excellent performances
in reactions such as liquid phase synthesis of ethyl-
benzene [65,66] and hydroisomerization of linear
alkanes [67]. Mintova et al. have been committed
to the fabrication of zeolite materials with different
frameworks structures with and without an organic
template [63,64,68–72]. Nanosized FAU zeolite
with uniform crystal size (10–15 nm), and variable
Si/Al ratios (1.1–2.6), high micropore pore volume
and specific surface area over 800 m2/g showed
great performance in tri-iso-propylbenzene cracking
reaction [72].

Integrated mesopores
Hierarchical zeolite with integrated mesopores is a
porous system where both functional and auxiliary
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Figure 6. Representative auxiliary mesopores formed via in situ strategies. (a) Mesopores formed in ZSM-5 zeolite via carbon
template. Adapted with permission from [57]. (b) Formation of mesopores via organosilane surfactant template. Adapted
with permission from [43]. (c) Nanosized zeolite crystals with a diverse morphology and size, synthesized from colloidal
suspensions, self-supported shapes, porous membranes and optical quality films. Adapted with permission from [63].

mesopores are present. The basic idea of introduc-
ing an integrated mesopore is to sequentially couple
the alkali dissolution with self-assembly of ordered
mesoporous structures. The initial synthesis step
of preparing integratedmesopore-containing hierar-
chical materials is the alkali dissolution of conven-
tional microporous zeolite, which can generate the
auxiliary mesopores in the zeolite framework. At the
same time, desilication of the zeolite framework is
accompanied by the loss of silica-aluminium species.
These aluminosilicate species are usually amorphous
nanoparticles that still maintain the primary and
secondary building units of zeolite [73]. Using a
template-like CTAB, they can further form ordered
mesoporous structures and overgrow on the surface
of the retained mesoporous zeolite crystals. Due to
the coupling of functional mesopores and auxiliary
mesopores, the integrated mesopore-containing hi-
erarchical zeolite can simultaneously shorten the dif-
fusion path of reactive species and increase the ef-
fective diffusion coefficient [74]. Alkali dissolution
level is the most important factor tuning the textu-
ral and acid properties of the hierarchical zeolites
[75–77]. Ivanova et al. classified thehierarchical zeo-

ZEO

RZEO-1 RZEO-2 RZEO-3

Dissolution

Re-assembling

Figure 7. Schematic representation of synthesis procedure
leading to different types of integrated mesopores. Adapted
with permission from [78].

liteswith integratedmesopores into three distinctive
types [78] (Fig. 7). Peng et al. further showed that
the decrease of the zeolitic microporous structure
and the increase of the ordered mesoporous struc-
ture do not change linearly with the increase of alka-
linity of treating solutions [79]. The transition from
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one to another structure only occurs if critical alkali
concentration is achieved. Alkalinity less than this
critical concentration does not cause collapse of the
framework, but only leads to partial damage of the
zeolite framework. Recently, by making full use of
the knowledge on the process control of the sequen-
tial alkali dissolution andmesopore reassembly, a pi-
lot scale-up synthesis of hierarchical zeolites (50 L)
with high stability, reproducibility and similar fluid
catalytic cracking (FCC) performance was realized
by Yan et al. [80].

Influence of hierarchy at zeolitic level
on catalyst effectiveness
As one of the core aims of constructing a hierarchi-
cal structure in zeolitic components, enhancement
of the catalyst effectiveness always goes hand in hand
with the development of synthesis strategies. For
example, Tsapatsis et al. reported self-pillared pen-
tasil (SPP) zeolites via repetitive branching [40,41].
Experimental and simulated X-ray diffraction pat-
terns showed that the 90o rotationally arranged
single-unit-cell MFI nanosheets are the main build-
ing blocks to form a house-of-cards arrangement of
the sample, while needles of MEL serve as conjunc-
tions to connect the rotated nanosheets (Fig. 8a).
Compared with conventional microporous ZSM-5,
the hierarchical material had more Brønsted acid
sites exposed on the external surface of SPP zeo-
lite. Due to the increased accessibility of acid sites,
both the pseudo-first-order rate constant and the ef-
fectiveness factor of SPP zeolite are much higher
than that of traditional ZSM-5 (Fig. 8a). However,
the rate constant normalized per external acid site
for either SPP zeolite or conventional ZSM-5 sam-
ple is nearly the same, and the catalytic properties
(Brønsted acid sites) in these two samples are com-
parable. It means that the intrinsic reaction rate is
almost constant.

Since the improvement in catalyst effectiveness
can be attributed to raised effective diffusivity
and/or reduced diffusion length, it is necessary
to unveil the origin of enhancement. Xie et al.
proposed a facile method to differentiate the
above-mentioned two distinctive origins [81]. The
pre-synthesized Na+-type hierarchical zeolites were
ion-exchanged with NH4

+ and/or tetra propyl
ammonium cation (TPA+). TPA+ can only ex-
change with the Na+ cation located on the surface
of external (mesoporous) active sites due to steric
effect on the inherited MFI microporous frame-
work, while the size of NH4

+ is small enough to
guarantee the ion-exchange with all the Na+ cations
wherever they are located (Fig. 8b). The kinetic

analysis showed that the activation energy of both
TPA+ exchanged hierarchical and conventional
MFI zeolite are nearly the same, but activation
energy of the samples after ion-exchange with NH4
is different. This phenomenon elucidates that the
enhancement of catalyst effectiveness originates
from the shortened diffusion length, rather than
raised effective diffusivity. Farrusseng et al. reported
the hierarchical Pt/Na FAU zeolite with meso-
porous hollow morphology, which does not alter
the external surface of the crystals [82]. In this sense,
this material can be regarded as a model catalyst
where the increased catalyst effectiveness solely
comes from reduced diffusion length (Fig. 8c). The
catalytic performance and catalyst effectiveness
of the cyclohexene hydrogenation reaction were
compared with its microporous counterpart. The
result demonstrates that the Thiele modulus is
descended from 1.41 for microporous Pt/Na FAU
zeolite to 0.28 for the hierarchical sample, indicating
an improved catalyst effectiveness from 63% to 97%.

Except for the direct impact on catalyst effec-
tiveness, the selectivity of targeted reaction can also
be controlled via hierarchization of structures due
to the different diffusion behaviour of reagents and
products. For example, in toluene-methanol para-
methylation reaction, another two main side reac-
tions, i.e. methanol-to-hydrocarbons (MTH) and
isomerization, mightily undermine the selectivity of
the targeted para-methylation reaction (Fig. 8d).
Although the diffusion limitations in the reactions
within the network are all influenced by hierarchi-
cal structure, themethylation reaction ismore prone
to diffusion property change (Fig. 8d). Besides, the
modification of the micropore mouth and external
surface coverage brought byMgOaddition aremore
influential to methylation andMTH rather than iso-
merization. By making full use of the above effects,
MgO-modifiedhierarchical FAUzeolite catalystwas
designed by Zhou et al., avoiding the occurrence
of MTH and isomerization reactions thus ensuring
high selectivity of the targeted para-methylation re-
action (from 34.9% to 86.2%) [83].

Pore interconnectivity at hierarchical
zeolitic constituent level
Although the enhanced catalyst effectiveness of
hierarchical zeolite comes from the increase of
Deff and/or the reduction of L, introducing
functional and/or auxiliary mesopores into ze-
olitic constituent cannot always lead to the
reduced diffusion resistance and subsequent
enhanced catalytic conversion and selectivity.
The work reported by Pérez-Ramı́rez et al. is
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Figure 8. Examples demonstrating the influence of hierarchy at zeolitic level on catalyst effectiveness. (a) Experimental and
simulated X-ray diffraction patterns for zeolite framework structures and comparison of benzyl alcohol alkylation performance
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a typical example [84]. N2 physisorption and
in situ Fourier transform infrared spectroscopy
(FTIR) using pyridine indicate that two hierarchical
zeolites prepared with a shorter stronger and a
longer milder treatment recipe only have negligible
differences on their textural and acidic properties.
Hence, these two samples showed distinctive
lifetimes during the methanol-to-hydrocarbon re-
actions. An advanced positron annihilation lifetime
spectroscopy (PALS, vide infra) confirmed that
compared with the shorter stronger treated sample,
the longer and milder treatment can ensure better
micro- and mesopore interconnectivity. Good
pore interconnectivity assures the fast desorption
and diffusion of products generated on the mi-
croporous active sites and avoids the deposition
and deactivation [62,85]. For the reactions like
FCC, which always occur in a cascade manner,
an ideally interconnected hierarchical porous
material, that supports the concept of ‘hierarchical

catalysis’ [86,87], is also highly appreciated. When
a bulky feedstock diffuses into such hierarchical
porous structure, it first contacts with the large
pores and ‘pre-cracks’ by mild acid sites. Then
the intermediates further diffuse into small pore
structures and are cracked by strong acid sites.
However, such hierarchical zeolitic pore engi-
neering needs elaborate design of pore sizes and
interconnections. Inspired by natural biological
systems, Su et al. recently prepared porous materials
with connected pores of multi-scale diameters
from macro to micro levels based on ‘generalized
Murray’s Law’, which describes that the porous
network in nature always tends to form the structure
with minimum transport resistance within finite
volume [88]. These materials showed improved
performances in many realms where hierarchy is
required.

The analysis of hierarchical porous structures
acquires quantitative understanding of improved
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accessibility and correlation with their catalytic
performances. Hitherto, many spectroscopic and
microscopic techniques have been applied to unveil
the connectivity between microporous and meso-
porous structures.

Gas adsorption-desorption characterization is
a standard technique for investigation of porous
materials. Architecture and interconnectivity of
hierarchical zeolites was quantitatively measured
via hysteresis scanning measurements coupled with
advanced simulation models for calculating pore
size distribution [89–92]. A sorption isotherm
was acquired routinely as ‘boundary adsorp-
tion/desorption isotherm’. Then the isothermal
adsorption is re-conducted at a relative pressure
where pores are partially filled (at the hysteresis
loop). If the shape of the desorption scanning curve
coincides with that of the boundary desorption
branch, this means that the measured mesopores
are occluded. On the contrary, the deviation of
the desorption scanning curve from the bound-
ary desorption branch infers the onset of pore
block/percolation, which is a sign that the tested
porous structures are interconnected. Via differen-
tial hysteresis scanning, Kenvin et al. quantitatively
calculated the relative amount and size of pyramidal
(dmeso > 2 nm, dwin > dmeso), constricted (dwin >

2 nm, dwin < dmeso) and occluded (dwin < 1 nm,
dwin << dmeso) mesopores in hierarchical FAU
zeolites [92]. The results showed that 90% of the
generatedmesopores in FAU zeolites after steaming
are occluded or constricted. Mild acid treatment
promoted the formation of pyramidal structures
because aluminium-rich debris are washed away
by acid, but more severe acid treating led to more
extensive dealumination resulting in an enhanced
portion of occluded mesopores. In terms of the
subsequent desilication, the fraction of pyramidal
mesopores increases with the increased alkalinity.

Accessibility measurements were performed via
in situ FTIR using a series of probe molecules with
varied kinetic diameters [93]. The adsorption be-
haviour of several (alkyl)pyridinemolecules on con-
ventional and hierarchical ZSM-5 via in situ FTIR
spectroscopy was described in detail [94]. The pyri-
dine (Py) with a kinetic diameter of c.a. 0.57 nm,
which is close to the size of micropores of ZSM-5
zeolite was used to study the acid sites. In con-
trast, bulky probe molecules, 2,6-lutidine (Lu) and
2,4,6-collidine (Coll), with larger kinetic diameters
of 0.67 and0.74 nm, respectively, were used as probe
molecules to study the acid sites accessible via the
mesopores. The results revealed the increased ad-
sorption of Lu and Coll in desilicated hierarchical
zeolites. Based on these results, an accessibility in-
dex (ACI), a descriptor standardized for illustrat-

ing acid site accessibility in ZSM-5 with mesopores,
was derived [48,94]. Since both zeolitic Brønsted
and Lewis acid sites are detectable by pyridine,
the ACI of pyridine can be calculated using the
following equation:

ACIPy = (CB + CL)
nAl

, (7)

where ACIPy is the accessibility derived from pyri-
dine; CB and CL are the amount of Brønsted and
Lewis acid sites from pyridine, respectively; and nAl
is the total amount of acid sites in the zeolite based
on the measured aluminium content.

In the case of 2,6-lutidine and 2,4,6-collidine
that only detect Brønsted acid sites, the equation is
modified as follows:

ACILu or Coll = CB

nAl
. (8)

In addition to in situ FTIR, pulsed field gradient
NMR (PFG-NMR) was used to calculate the self-
diffusivity in hierarchicalmaterials [95]. In the PFG-
NMRexperiment, sequences of strong field gradient
pulse were required. Since the diffusivity is directly
obtained from the square root of displacement of the
probe molecule, this method is particularly suitable
for determination of the diffusion coefficient in fast
diffusion systems. Kärger et al. investigated the in-
tracrystallinediffusion inultra stable zeoliteY(USY)
[96]. Their results showed that the disconnected
secondary mesopore network cannot efficiently en-
hance the diffusion properties of USY zeolite. In
contrast, Galarneau et al. showed a great increase
in diffusivity in hierarchical FAU by post-treatment
method compared with the parent zeolite [97].

Electron tomography (ET) is used to reconstruct
themicro-/mesoporosity of hierarchical zeolites and
visually showed the connectivity and accessibility of
pores [98,99]. De Jong et al. used three-dimensional
transmission electron microscopy to study the ac-
cessibility of mesopores in USY samples.The results
showed that the mesopores generated via steaming
were mainly closed cavity surrounded by a micro-
porous zeolite framework, which cannot efficiently
connect with the external surface of USY zeolite
[47,100].

Positron annihilation lifetime spectroscopy
(PALS) recently developed, was used for quantita-
tive evaluation of mesopore connectivity [101,102].
The positron is the anti-particle of the electron, and
when a targeted material is bombarded by positron
beam, most of the positrons are directly annihilated
and form gamma rays. A small portion of positrons
can have an extended lifetime by binding with
electrons and forming positronium. There are two
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Figure 9. Schematic presentation of positron annihilation
lifetime spectroscopy (PALS). Adapted with permission from
[105].

types of positronium: para-positronium (p-Ps)
with a lifetime of ∼0.125 ns and ortho-positronium
(o-Ps) with a lifetime up to 142 ns. o-Ps can diffuse
into the porous structure of zeolite and its lifetime
is dependent on atoms and electrons passing by.
The decay time of o-Ps is proportional to the pore
diameter of the tested sample; by measuring the
fraction of o-Ps with different decay time, the
amount of micro- and mesopores were estimated
(Fig. 9) [103,104]. Milina et al. applied PALS to in-
vestigate conventional and hierarchical ZSM-5 with
open or closed mesopores [105]. They found that
the trend observed for the relative fraction of o-Ps
in vacuum (i.e. free o-Ps detected outside zeolite
crystals) was consistent with the lifetime trend of
the catalysts in methanol-to-hydrocarbon (MTH)
test reaction. Considering that only the o-Ps diffuses
from intrinsic micropores via auxiliary mesopores
then from the outer surface of hierarchical zeolite
to the vacuum, the o-Ps was used to measure the
interconnectivity between micro- and mesopores.
The fraction of the o-Ps formed, which is emitted
into vacuum, is defined as a descriptor called global
pore connectivity (Cpore); the Cpore descriptor is
consistent with theMTH lifetime of the hierarchical
zeolites [84].

HIERARCHICAL PORE CONNECTIVITY
IN MULTI-COMPONENT ZEOLITE
BASED CATALYSTS
The hierarchical porous structures described above
are confined within single-component powder ze-
olite material. However, in real industrial catalytic
processes, some additional requirements that are
much more rigid than those at laboratory test-
scales should be satisfied to endow the industrial
catalysts with high mechanical strength, hydrother-

mal stability and resistance to poisoning and cok-
ing [106–110]. Apparently, the above-mentioned
requirements cannot be solely fulfilled by single-
component zeolite catalyst powder. Although the
inter-component interactions within the industrial
catalyst body is still not fully undetrstood, the in-
teractions between zeolitic and non-zeolitic compo-
nents can result in: (i) a change of the hierarchical
pore structure; (ii) framework atoms transfer; and
(iii) balancing cations transfer [18]. In this review,
we only focus on the first type of interaction, while
for the other two types, please refer to some other
references such as [18] and [111].

Importance of different components’
locations and interconnectivity
for their catalytic performance
The multi-component zeolite based catalyst is in
essence different from a mechanical mixture of in-
dividual ingredients [97,112]. Therefore, the phys-
ical and chemical properties of a multi-component
zeolite based catalyst not only depend on the rel-
ative amounts of constituent porous components,
but also on the location and connectivity between
them [19]. Below, the focus will be on the ef-
fects of location and interconnectivity of porous
components.

The influence of the location of the porous com-
ponents on the catalytic performance is a conse-
quence of the distance between the different active
sites located on different matters. The bi-functional
hydrocracking catalyst is a typical example. In or-
der to suppress the fast deactivation, enhance the se-
lectivity, and operate the process under mild con-
dition, metal active sites are often combined with
Brønsted acid sites in the bi-functional catalyst.
When n-alkane is adopted as feedstock (Fig. 10),
the feed n-alkanes are first dehydrogenated on the
metal surface to form n-alkene intermediates. Then
the n-alkene intermediates diffuse from the metal
sites to Brønsted acid sites where these n-alkene in-
termediates are either skeletally isomerized or fur-
ther cracked. Then these isomerized or cracked
n-alkene intermediates diffuse to metal sites and hy-
drogenate into isomerizedor crackedproducts.Typ-
ically,metal nanoparticles are locatedon the surfaces
of zeolitic and/or non-zeolitic supports [67,113],
while the Brønsted acid sites are usually originated
from zeolites (e.g. USY andβ zeolites), and alumina
acts as binder. An ideal bi-functional catalyst should
show a balance between the (de)hydrogenating and
acid functions. The intimacy between metal and
acid sites affects the conversion and selectivity of
the feedstock since it dominates the diffusion of
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olefinic intermediates between the two types of ac-
tive sites [114]. For a long time, in terms of the
intimacy of metal and acidic active sites, the cri-
terion ‘the closer the better’ was regarded as the
rule of thumb [115]. However, recent research pro-
posed by de Jong et al. violated the above golden
rule. In their research, Pt nanoparticles were im-
pregnated on the surface of a support in which
Y zeolite and alumina were intimately mixed at a
nanoscale level [116]. By using Pt(NH3)4(NO3)2
and H2PtCl6·6H2O as precursors, Pt nanoparticles
were deposited exclusively either on the zeolite (de-
noted as Pt-Y/A) or alumina (denoted as Pt-A/Y),
respectively. In this way, Pt nanoparticles were pur-
posely located either in the closest proximity to the
zeolite acid sites or apart from the zeolitic acid sites
at a nanoscale distance. Surprisingly, when n-decane
and n-nonadecane were chosen as model hydroc-
racking feedstock, the Pt-A/Y sample outperforms
Pt-Y/A sample in terms of high isomerization yield
and limited secondary cracking products. A plau-
sible explanation provided is the diffusion limita-
tion of the olefinic intermediates. Due to the low
diffusivity inside the micropores, olefinic interme-
diates generated via the encapsulated Pt are largely
trapped within the zeolite framework of Pt-Y/A and
undergo successive secondary cracking. In contrast,
the olefinic intermediates in Pt-A/Y freely desorb
from the surfaceofPt nanoparticles, diffuse to the ze-
olitic acid sites, and only interact with the acid sites
located at the external surface of zeolites. In this re-
gard, design of the zeolitic acid sites location and
metal sites to guarantee an appropriate distance be-
tween them is a key issue to be considered in future
research.

Another classical case to show the importance of
different components’ locations and interconnectiv-
ity for their catalytic performance is FCC catalyst.
Since the traditional FCC catalyst shaping process
chiefly consists of pre-synthesized zeolitic and non-

Metal

Metal

MetalAcid Acid

Acid
Bifunctional

catalyst

Figure 10. Scheme of hydrocracking reactions that use a bi-
functional catalyst. Re-drawn and adapted with permission
from [116].

Figure 11. The non-ideal matching of the hierarchical pore
structure between the zeolite and non-zeolite components
leads to a decrease in the catalyst effectiveness factor.
Adapted with permission from [120].

zeolitic components, their proportions can be finely
controlled, making the whole process flexible. The
contemporary suppliers of FCC catalysts can even
customize materials according to the specific con-
ditions of different refineries. However, FCC cat-
alysts made by traditional shaping process are still
mechanical mixtures of components due to non-
homogeneous mixing [117]. A newly developed in
situ crystallization shaping method, where the ze-
olitic component is in situ crystallized on the sur-
face of the pre-treated matrix component, can en-
sure strong connection and interaction between the
components at nanoscale [118,119]. However, the
intimate connection of zeolite and non-zeolite com-
ponents at nanoscale does not guarantee the ideally
coordinated connection of the hierarchical porous
structures from different catalyst components. Peng
et al. recently used isooctane as a probe molecule
combined with gravimetric analysis and FTIR spec-
troscopy (AGIR) to measure the enhancement of
catalyst effectiveness brought by introducing inte-
grated mesopores to form amodel multicomponent
zeolite based catalyst via sequential alkali dissolu-
tion of a commercial ZSM-5 followed by Al-MCM-
41 mesostructure reassembly. The results show that
due to the non-ideal arrangement of mesoporous
ZSM-5 component (representative of zeolite com-
ponents) and Al-MCM-41 component (representa-
tive of non-zeolite components), the promotion ef-
fect of the catalytic efficiency factor of zeolite com-
ponents is greatly reduced (Fig. 11) [120].

Visualizing the locations and pore
interconnectivity of components within
an individual zeolite based catalyst body
As discussed above, the relative positions of the
different types of active sites on components may
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Figure 12. Schematic of the research approach. (a) Confocal fluorescence microscopy
is used to visualize distinct components of fluid catalytic cracking (FCC) catalyst parti-
cles after staining with thiophene (green) and Nile Blue A (red); confocal fluorescence
microscopy image of the stained FCC industrial catalyst bodies with (b and c) and with-
out (d and e) zeolite Y. Adapted with permission from [127].

have positive or negative effects on the performance
of the catalysts [116,121–123]. There has always
been strong motivation to explore and visualize the
relative positions of active site distributions. Ni-
trogen (or argon for more precise measurements)
adsorption-desorption isotherms and mercury
porosimetry are the most applied characterization
techniques for pore size distribution and textural
properties assessment of heterogeneous catalysts.
However, as macroscopic tools, the data derived
from these two methods only reflect the average of
massive catalyst particles [117]. Considering that
the catalyst behaviour at single-particle level shows
many similarities with the life activities within a
single cell [124], some bio-microscopic methods
were adopted to locate different components within
a single catalyst body. Besides, thanks to the rapid
advancements in the field ofmicroscopic techniques
where optical light, X-rays and electrons are used as
probes based on synchrotron radiation techniques,
the (operando) exploration and analysis of catalyst
particles at individual particle scale has become
available [125,126]. In this section, two typical
cases will be presented as examples for showing the
state-of-the-art on visualizing the locations and pore
connectivity of components within an individual
zeolite based catalyst body.

Buurmans et al. developed a selective stain-
ing methodology for determining the position
of zeolitic and non-zeolitic components of FCC
catalyst (Fig. 12) [127]. In this research, two probe
molecules, thiophene and Nile Blue A, were used.
Thiophene can be oligomerized by the Brønsted
acid sites on zeolitic component at a suitable tem-
perature, and the formed oligomer can be excited
by a 488 nm laser to generate green fluorescence.
On the other hand, Nile Blue A, which is inert
to Brønsted acid site catalysed reaction, can emit

red fluorescence under excitement of a 638 nm
laser. Because the kinetic diameter of Nile Blue A
is larger than the micropore of zeolite, they can be
only adsorbed on the external surface of zeolite
crystals. The locations of zeolitic and non-zeolitic
components in FCC catalyst can be identified by
simultaneous stain of thiophene and Nile Blue A
and image by confocal fluorescence microscopy.
Based on the selective staining method, three
additional samples treated by three simulated
deactivation methods (steam (ST), two-step cycle
deactivation (CD), and Mitchell impregnation-
steam deactivation (MI)) were characterized.
The fluorescence intensity related to thiophene
derivative decreased in the following order: fresh
catalyst> ST>CD>MI.

Each spectroscopic or microscopic method
brings important information and has certain limi-
tations. As a complex system involving multi-scale
physical and chemical problems, it is necessary
to understand simultaneously the pore structure
connectivity within a catalyst at different scales.
Pérez-Ramı́rez et al. combined a series of advanced
optical, X-ray and electron-based microscopic and
tomographic techniques to visualize the amount,
location and connectivity of mesoporous ZSM-5
catalysts from millimetre-size granules to nanosized
zeolite crystals (Fig. 13) [19]. At macroscale, digital
optical microscopy was used to detect the morphol-
ogy and surface roughness of the shaped catalyst
body. Profilometry and Confocal Laser Scanning
Microscopy (CLSM), together with appropriate
staining, was used to study the external surface of
the catalyst. Micro-Tomography (micro-CT) and
Synchrotron Radiation X-ray Tomographic Mi-
croscopy (SRXTM) were applied to investigate the
location and distribution of zeolitic and non-zeolitic
components in the interior of the catalyst. More
precise discrimination between zeolitic and non-
zeolite components in the catalyst required the use
of both the Focused Ion Beam Scanning Electron
Microscopy (FIB-SEM) and the Energy Dispersive
X-ray spectroscopy (EDX). Then detailed infor-
mation on the connection and interaction at the
interface of zeolitic and non-zeolite components
was unveiled via high-resolution scanning electron
microscopy (SEM). Finally, TEM was used to
image the nanostructural information of zeolitic
component.

CONCLUSION
The preparation, characterization and effectiveness
of hierarchical zeolites are revealed. Introduction
of mesoporosity in zeolites accelerates diffusion
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Figure 13. Integrated approaches for visualization of an industrial zeolite catalyst from
macro- to nano-length scales. (a) Optical microscopy: macroscopic structure of a hier-
archical zeolite catalyst granule; (b) X-ray micro-tomography (micro-CT): the internal
structure; (c) profilometry and (d) confocal laser scanning microscopy (CLSM): external
surface; (e) synchrotron radiation X-ray tomographic microscopy (SRXTM) and (f) fo-
cused ion beam scanning electron microscopy (FIB-SEM): homogeneous internal distri-
bution of zeolite and binder phases; (g) visualized and calculated macro- and mesopore
structures based on SRXTM and FIB-SEM; (h) SEM: arrangement of binder particles at
the external surface of zeolite particles; (i) energy dispersive X-ray spectroscopy (EDX):
elemental maps of silicon (green) and aluminium (red); (j) high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM): uniform distribution of in-
tracrystalline mesopores within individual zeolite aggregates; (k) transmission electron
microscopy (TEM) and (l) high resolution transmission electron microscopy (HRTEM):
nanostructural insights of microtome cross-sections. Adapted with permission from
[19].

of bulky molecules to acidic active sites originally
confined within the microporous frameworks.
Therefore, in terms of the synthesis and application
of hierarchical zeolites, it is not only necessary to bal-
ance between improvement of mass transport and
retention of acidic active sites in zeolites to preserve
the advantages of both micro- and mesoporous
structures, but also to consider the connectivity
between the porous structures. As a consequence,
three types of hierarchical zeolite structures with
‘functional mesopores’, ‘auxiliary mesopores’ and
‘integratedmesopores’ are described.Asdescriptors,
ϕ and η for the performance of hierarchical zeolites
are used.

The distinctive differences of diffusion mecha-
nism within ‘functional’ and ‘auxiliary’ mesopores
and their connectivity within porous structures are
revealed. Since the active sites are located on the sur-
face of the mesoporous structure, the strategies that

guarantee pore connectivity of ‘functional’ meso-
pores should ensure that the acidic active sites are
exposed predominantly on the external surface of
mesopores. In contrast, the ‘auxiliary’ mesopores
should be the bridge between the zeolite frame-
work structures and the external surface of the
catalysts.

The ultimate purpose of preparing hierarchical
zeolite materials is to promote their use at indus-
trial scale. The amount, location and connectivity of
pores in hierarchical zeolites plays an essential role
in their catalytic performance, therefore the proper-
ties of each constituent porous component should
be separately taken into consideration. The pore ar-
rangement of the FCC catalyst is presented as an ex-
ample of hierarchical material that ensures the diffu-
sion of bulky molecules in heavy oil feedstock and
also the cracking with weak acid sites inmacropores,
via medium acid sites in mesopores to the strong
acid sites in the micropores. The rational design of
industrial multi-component catalysts at both hier-
archical zeolitic component and catalyst body lev-
els significantly effects the catalyst efficiency. The
advanced combined spectroscopic, microscopic and
diffraction techniques toward characterization of hi-
erarchical materials provide better understanding of
the structure–property–catalysis interplay of indus-
trially used hierarchical zeolites.
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113. Chavarrı́a JC, Ramı́rez J and González H et al. Modelling of n-hexadecane
hydroisomerization and hydrocracking reactions on a Mo/Hβ-alumina bi-
functional catalyst, using the single event concept. Catal Today 2004; 98:
235–42.

114. Guisnet M. ‘Ideal’ bifunctional catalysis over Pt-acid zeolites. Catal Today
2013; 218–219: 123–34.

115. Weisz PB. Polyfunctional heterogeneous catalysis. In: Eley DD, Selwood PW
and Weisz PB (eds.). Advances in Catalysis (Volume 13). New York: Academic
Press Inc., 1962, 137–90.
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