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Abstract

In internally fertilizing species male genitalia often show a higher degree of elaboration than required for simply transferring
sperm to females. Among the hypotheses proposed to explain such diversity, sexual selection has received the most empirical
support, with studies revealing that genital morphology can be targeted by both pre-and postcopulatory sexual selection.
Until now, most studies have focused on these two episodes of selection independently. Here, we take an alternative approach
by considering both components simultaneously in the livebearing fish, Poecilia reticulata. We allowed females to mate
successively (and cooperatively) with two males and determined whether male genital length influenced the female’s
propensity to mate with a male (precopulatory selection, via female choice) and whether male genital size and shape
predicted the relative paternity share of subsequent broods (postcopulatory selection, via sperm competition/cryptic female
choice). We found no evidence that either episode of sexual selection targets male genital size or shape. These findings, in
conjunction with our recent work exposing a role of genital morphology in mediating unsolicited (forced) matings in guppies,
further supports our prior speculation that sexual conflict may be an important broker of genital evolution in this species.
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Introduction

In animals with internal fertilization, male genitalia typically

exhibit extreme morphological divergence, even among closely

related species. Understanding the evolutionary basis for this

variation has been a key goal in evolutionary biology [1–3].

Among the hypotheses proposed to explain such extraordinary

patterns of divergence, the sexual selection hypothesis has gained

the most empirical support (see [1,3–4]). However, the mecha-

nisms of sexual selection responsible for this diversity remain

largely unclear.

The sexual selection hypothesis predicts that the size and shape

of genital traits evolve in response to selection for increased

reproductive success via several non-mutually exclusive mecha-

nisms [1,5]. Although the majority of studies examining genital

evolution via sexual selection emphasise the role of postmating

mechanisms, such as sperm competition and cryptic female choice

(e.g. see [1,3,6]), other studies have revealed a role for premating

mechanisms of sexual selection, and in particular for female choice

favouring longer external genitalia [7–10]. Surprisingly, however,

these two components of pre- and postcopulatory sexual selection

have rarely been incorporated within a single study.

The guppy, Poecilia reticulata, is a freshwater fish with internal

fertilization and a promiscuous mating system in which males

alternate between courtship and forced matings to achieve

copulation. Males inseminate females using a modified anal fin

that functions as an intromittent organ (the gonopodium), a

structure that exhibits considerable variability in size and shape

both within and among populations [11–12]. Indirect evidence

from guppies and other poeciliid fishes suggest the length of the

male’s gonopodium is subject to sexual selection through pre-

copulatory female choice [7,9,13], although a recent study has also

revealed that gonopodial traits are associated with the success of

forced matings [12]. However, despite indirect evidence that male

genital size and shape differs among populations according to the

level of sperm competition [11–12], we have yet to determine

whether postcopulatory sexual selection explicitly targets these

traits, and the extent to which pre- and postcopulatory sexual

selection work together to favour specific genital traits.

In this study, we test whether the size and shape of the male’s

gonopodium is associated with precopulatory (i.e. mating success) and

postcopulatory success (i.e. paternity success) following two successive

solicited copulations in guppies. We conducted mating trials in which

females were allowed to mate successively with two males. During

these trials we used latency to mate as a proxy for female mating

preferences (precopulatory success) and paternity analyses to estimate

relative fertilization rates (postcopulatory success). We then used

geometric morphometric analyses to describe male genital morphol-

ogy, and linear measurements of the gonopodium to estimate genital

length. Our subsequent analyses related male genital shape and

length to mating preferences and fertilization success.

Materials and Methods

Ethics statement
This study was approved by the University of Western

Australia’s Animal Ethics Committee (Research Integrity Office,

permit number 05/100/513).
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Study population and its maintenance
All animals used in this experiment were laboratory born

descendents of wild-caught fish collected from Alligator Creek

(30 km south of Townsville) in Queensland, Australia. Fish were

maintained at a constant temperature of 2661uC under a 12 h:

12 h day-night cycle and fed live brine shrimp and commercial

flake twice daily. Virgin females were used for the experiments to

ensure that females were sexually receptive during the mating

trials [14] and to ensure that sperm stored from prior males did

not contribute towards the broods genotyped for paternity analyses

(see below). To raise virgins, juvenile females were separated from

their male brood mates as soon as their sex could be determined

(ca. 4 weeks-old) and then reared in single-sex tanks until used in

the mating trials.

Mating trials
Experimental males were taken from stock aquaria and isolated

from females for at least 3 days to ensure that they entered the

mating trials with fully replenished sperm stores [15]. On the

evening before each mating trial, a sexually mature virgin female

(approx. 18 month-old) was placed individually into the mating

tank (43623625 high, filled to a depth of 21 cm) and left to settle

overnight. On the following morning, an experimental male was

placed in the mating arena and allowed to copulate once with the

female. We measured ‘copulation latency’ (time to mate) in these

‘no-choice’ trials as an estimate of female preferences [16]. We also

counted the total number of courtship displays (termed sigmoid

displays) performed by the male, as this trait has been found to be

correlated with both pre- and postmating success in this species

[14,17]. As soon as the focal pair successfully copulated, we

removed the first male for subsequent morphological analyses (see

below) and left the female alone for 5 minutes before introducing

the second male to the tank. We then scored copulation latency

and courtship displays as before. As soon as the second male had

successfully mated with the female, we removed the male for

morphological analyses. If a male did not copulate or exhibit any

sexual behaviour within 10 minutes, we removed it from the

experimental tank and replaced him with a different male. In total,

we carried out 41 successful double-mating trials (n males = 82).

After each trial had finished, the female was placed individually

into a 2 L container until she gave birth. At this point, fin clips

taken from the mother and whole bodies of the offspring were

preserved in absolute ethanol for subsequent paternity analysis.

Twenty of the 41 double-mated females gave birth to broods.

Male genital morphology
After successfully copulating with the female, males were

euthanized and immediately photographed using a digital camera

(Nikon CoolPix 5400). A ruler was included in each photograph to

calibrate the subsequent measurements. Digital photos were

analysed using image analysis software (UTHSCSA Image Tool

v3.0, http://ddsdx.uthsca.edu/dig/download.html). For each

male, we estimated standard length (SL), gonopodium length,

and the area of the male’s body covered by orange spots. A fin clip

was taken at this point and preserved in absolute ethanol for

subsequent DNA extraction. The remainder of each male’s body

was then preserved in Dietrich’s fixative (30% pure ethanol, 10%

formalin, 2% glacial acetic acid, 58% H2O). A digital image of

each male’s gonopodium was subsequently captured using a

Leica DFC320 fitted to a Leica MZ75 stereomicroscope under

transmitted light and dark field illumination. The image was

captured at 650 magnification and focused on the distal tip of the

gonopodium, which is the portion of the intromittent organ that

physically contacts the female genital tract during copulation (see

also [12,18–19]).

We estimated variation in the shape of gonopodium’s distal tip

using geometric morphometric analyses (reviewed in [20])

following methods described in Evans et al. [12]. Eight fixed

landmarks were superimposed at homologous points on each

image (see fig. 1). Landmarks were digitized using tpsDig2 software

[21], and for each male, landmark data were analysed using

tpsRelw v1.42 software [22]. This generated relative warp scores,

which describe shape variation as deviations from a consensus

shape. Relative warp scores were subject to relative warp analysis,

which corresponds to a principal components analysis and serves

to reduce multivariate shape data to relative warps (RWS) that

describe most of the variation in shape. The relative warp analyses

returned 4 relative warps, explaining .80% of the variance in

gonopodia’s tip shape (hereafter referred to as RWS-1–4).

Paternity analysis
Genomic DNA was extracted from newborn offspring using

the Chelex protocol [23] and from adults using a standard salting

out protocol [24]. We then used up to five microsatellite mar-

kers to assign paternity, including TTA, Pr39, Pr67, KonD15,

KonD21 (Genbank accession numbers: AF164205, AF467903,

AF533589, AF368429, AF368430). PCR amplifications were per-

formed following the methods outlined in Gasparini et al. [25] on

a GeneAmp PCR System 2700 Thermocycler (Applied Biosys-

tems, CA, USA). Amplified fragments were separated by electro-

phoresis on an ABI 3100 sequencer (ABI PRISM, Applied Bio-

systems), using 400 HD ROX (Perkin-Elmer, Applied Biosystems)

as a size standard (http://www.bmr-genomics.com). PCR prod-

ucts were visualized using GeneMarker V. 1.91 (http://www.

softgenetics.com) and paternity was assigned to offspring according

to allele sharing between putative sires, mother and offspring.

Statistical analyses
Data were checked for normality before analyses, and data for

copulation latency (our estimate of female mating preferences) were

square root transformed to achieve normality. All means are

reported with their standard errors. We ran separate models to test

influences of gonopodial traits on latency (precopulatory success)

Figure 1. Photograph of the distal tip of the gonopodium of
Poecilia reticulata in lateral view. Eight landmarks (yellow dots) were
superimposed on each image using geometric morphometric software
(see text for details).
doi:10.1371/journal.pone.0022329.g001
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and on paternity share (postcopulatory success). For copulation

latency (latency to mate with the second male was the dependent

variable) we ran two models, one including only gonopodium length

as a predictor and the second including both gonopodium length and

the other precopulatory variables (see below). To analyse paternity

data, we ran one model including gonopodium length and shape as

predictors, and one including both gonopodial traits and precop-

ulatory traits. The rationale for this choice is that we wanted to see

first whether gonopodium size and shape affected precopulatory

preference and paternity success, and then to control for the

confounding effects of other precopulatory male traits. For copu-

lation latency, we included only genital length as a predictor, as there

was no a priori reason to expect the shape of gonopodium’s tip to

affect attractiveness. Predictor variables for both latency (pre-

mating success) and paternity analysis (postmating success) consisted

of differences in trait values between the two males (2nd male trait–1st

male trait) in gonopodium length and shape, body length (SL),

courtship rate and orange coloration. Courtship rate refers to the

number of displays per minute. We used G-Power [26] to determine

the statistical power of our tests on paternity share (simplified to

paired t-tests). We calculated the power to detect a significant effect

at a= 0.05 (two tailed) given a medium effect (sensu Cohen [27]).

Statistical analyses were performed using SPSS v. 18.0 (SPSS Inc,

Chicago, IL, USA) and GenStat v. 12 (VSN International Ltd,

Hemel Hempstead, UK). Postcopulatory success was examined

using paternity share of the second male to mate (PB) and showed a

binomial distribution and overdispersion (overdispersion parameters

for model c and d were Q= 0.991 and Q= 1.049, respectively),

similar to previous studies (see [17]). Overdispersion was corrected

using the Williams procedure [28], implemented in GenStat

(EXTRABIN command). All probabilities are two-tailed.

Results

Mating success
Descriptive statistics for male traits are reported in table 1 (a, b).

In our mating trials females mated more quickly with the second

male in 28 cases out of 41 (68.3%, sign test, P = 0.028). Copulation

latency was not related to differences in gonopodial length

between the two males (see table 2a). When we included the

other precopulatory variables in the model, the only significant

predictor was the differences in courtship rate performed by the

males, with mating success favouring males with relatively high

courtship rates (P = 0.001, see table 2b).

Postcopulatory success
We obtained 390 offspring from 20 double mated females

(mean brood size = 19.562.2 SE; range = 4–35) and genotyped a

total of 450 individuals (60 adults and 390 offspring). Given our

sample size of 40 males (20 pairs) our statistical power to detect a

significant effect is ,0.87. Out of 390 newborns genotyped, we

were able to unambiguously assign parentage to 346 individuals

(.88%). Paternity share was biased towards the second male (in

15 out of 20 families the second male sired a larger proportion of

offspring, binomial test P = 0.032), with a mean paternity of the

second male of 0.7360.09 (range = 0–1). Descriptive statistics for

male traits are reported in table 1 (c,d). As reported in table 2,

none of gonopodial traits or other precopulatory variables

significantly predicted competitive fertilization rates (see table 2c–d).

Discussion

The aim of this paper was to determine whether male genital

traits influence pre- and postcopulatory success during consensual

matings in guppies. Unlike previous work, we found no evidence

that male genital size influences mating success. For example,

Brooks and Caithness [7] showed that gonopodium length

positively influenced the female’s ‘orient response’ – which was

used as a measure of male sexual attractiveness (see also [16]).

There are several possible reasons that may account for the

discrepancy in results between the two studies. The populations

used were different, and in P. reticulata it is known that the target of

female preference varies among different populations [29], and

therefore preference for gonopodium size could vary as well. In

Table 1. Descriptive statistics for male traits used.

Precopulatory success (copulation latency) Postcopulatory success (paternity share)

Mean first
male (SD)

Mean
second
male (SD)

Mean differences
(min–max)

Mean first
male (SD)

Mean
second
male (SD)

Mean differences
(min–max)

(a) (c)

gonopodium length (mm) 3.46 (0.30) 3.50 (0.39) 0.04 (20.64–0.87) gonopodium length (mm) 3.43 (0.29) 3.46 (0.38) 0.03 (20.49–0.82)

RWS1 20.001 (0.05) 20.01 (0.05) 0.00 (20.11–0.12)

RWS2 0.00 (0.03) 0.00 (0.03) 0.00 (20.07–0.08)

RWS3 20.01 (0.02) 0.00 (0.03) 0.01 (20.07–0.07)

RWS4 20.01 (0.02) 0.00 (0.02) 0.01 (20.06–0.10)

(b) (d)

gonopodium length (mm) 3.46 (0.30) 3.50 (0.39) 0.04 (20.64–0.87) gonopodium length (mm) 3.43 (0.29) 3.46 (0.38) 0.03 (20.49–0.82)

body size (mm) 17.40 (0.85) 17.64 (1.13) 0.24 (22.68–4.59) body size (mm) 17.13 (0.59) 17.51 (0.89) 0.38 (21.44–2.39)

courtship rate 2.77 (6.33) 4.56 (8.66) 1.79 (229.25–28.70) courtship rate 3.04 (6.48) 4.83 (8.96) 0.25 (26.00–9.83)

orange coloration (mm2) 8.32 (4.35) 7.88 (4.25) 20.44 (210.22–15.01) orange coloration (mm2) 7.37 (3.33) 6.76 (3.59) 20.61 (28.17–15.01)

Descriptive statistics for male traits considered in the experiment, including means and their standard deviations (in parentheses) for the first and the second male, and
the means of the differences and their ranges between the two competitor males (see ‘Statistical analyses’ section for details). (a) and (b) refer to the precopulatory
success (n = 41 pairs, n = 82 males in total); (c) and (d) refer to the paternity share (n = 20 pairs, n = 40 males).
doi:10.1371/journal.pone.0022329.t001
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addition, the two studies differ in the experimental set up (males

encountered sequentially by a single female vs. several males and

females freely interacting at the same time). Importantly, we used

virgin females (which can be less choosy than experienced

females [14]), which differs from Brooks and Caithness’s study

and two others on Gambusia that used non-virgin females and

reported precopulatory preferences for longer gonopodia [9,13].

Nevertheless, further studies are needed to clarify the role of

genital morphology on premating success, using non virgin

females and ideally using playback experiments in which males

presented to the female differ only in genital length (see for

example [9]). Although we were interested in examining the role

of male genitalia on mating success, we also considered

precopulatory traits in our analysis, including the area of orange

coloration and courtship rate – two traits that are known to

influence mating success in other guppy populations ([14] and

references therein). We found that latency to mate (inversely

correlated with female preference) was negatively associated with

courtship rate (see also [30–31]), but surprisingly not with orange

colouration [32].

Our molecular analysis revealed that paternity was biased

towards the second of two males to mate with a female, which has

also been observed in other studies of P. reticulata that employed

similar double-mating designs [17,32]. However, our data did not

reveal any association between gonopodium traits (both length and

shape of the distal tip) and postcopulatory success. Significant

associations between male genital morphology and paternity

success have been reported in insects, but to our knowledge the

present study is the first to test for this association in vertebrates.

For example, in praying mantids, Ciulfina klassi, genital shape is

correlated to sperm transfer [33], and in the dung beetle

Onthophagus taurus genital morphology predicted relative paternity

share when two males competed to fertilize the eggs from a single

female [34].

Our data therefore lend no support for the idea that

postcopulatory sexual selection shapes male genital morphology,

at least when considering solicited copulations. However, our

recent intraspecific comparative work on natural guppy popula-

tions suggests that male genital morphology may play a role in

mediating the success of unsolicited copulations [12]. In that study

we found that the size and shape of the distal tip of the

gonopodium (as measured in the present study) were significant

predictors of genital contacts and sperm transferred during forced

copulations [12], leading us to speculate that postcopulatory sexual

selection, mediated by sexual conflict, may explain differences in

male genital shape in populations that differ in the level of forced

matings. Indeed, these previous findings support a general pattern

reported among poeciliid fishes in which males in species that

possess relatively longer gonopodia tend to rely more (or

exclusively) on forced copulations [35–36]. Thus, postcopulatory

sexual selection may yet explain variation in male genital traits

(both intra- and interspecific variation), but these effects may be

manifested through the influence of male genital shape on the

success of forced matings, not consensual matings as measured

here. We have yet to determine whether male genital morphology

predicts paternity success following successive forced matings to

test this idea vigorously, although we note that obtaining such data

presents a special challenge as ‘successful’ forced copulations are

hard to obtain.

In summary, our findings provide no evidence that either pre-

or postcopulatory sexual selection shape male genital morphology

in the population used in this study. Taken in conjunction with our

recent work [12], however, we suggest that sexual conflict may be

a more potent broker of sexual selection on genital morphology in

this species. Further studies, ideally manipulative (e.g. [37]), are

needed to understand how variation in male genital shape

mediates sperm transfer during forced copulations, and to confirm

the lack of influence on gonopodium size on female premating

choice during consensual matings.
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Table 2. Results of regression analysis of pre- and postcopulatory success.

Precopulatory success (copulation latency) Postcopulatory success (paternity share)

F P b ± SE F P b ± SE

(a) (c)

gonopodium length 0.216 0.645 21.44863.11 gonopodium length 0.52 0.604 1.1262.16

RWS1 1.01 0.313 211.6611.5

RWS2 1.11 0.267 222.0619.8

RWS3 1.06 0.288 226.1624.5

RWS4 1.78 0.076 244.0624.8

(b) (d)

gonopodium length 0.016 0.901 20.36862.95 gonopodium length 0.43 0.670 20.8662.01

body size 0.984 0.328 20.82560.83 body size 0.82 0.413 0.61160.746

courtship rate 12.72 0.001 20.34560.97 courtship rate 0.64 0.525 20.13760.216

orange coloration 2.116 0.154 20.25460.17 orange coloration 1.28 0.201 0.15960.124

Results of linear regression analysis (copulation latency, n = 41, model a,b) and logistic regression analysis (paternity share, n = 20, model c,d). Independent variables
(predictors) were differences in traits between the two competing males (see ‘Statistical analyses’ section for details).
doi:10.1371/journal.pone.0022329.t002
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