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The multitude of multi-omics data generated cost-effectively using advanced high-
throughput technologies has imposed challenging domain for research in Artificial
Intelligence (AI). Data curation poses a significant challenge as different parameters,
instruments, and sample preparations approaches are employed for generating these big
data sets. AI could reduce the fuzziness and randomness in data handling and build a
platform for the data ecosystem, and thus serve as the primary choice for data mining and
big data analysis to make informed decisions. However, AI implication remains intricate for
researchers/clinicians lacking specific training in computational tools and informatics.
Cancer is a major cause of death worldwide, accounting for an estimated 9.6 million
deaths in 2018. Certain cancers, such as pancreatic and gastric cancers, are detected
only after they have reached their advanced stages with frequent relapses. Cancer is one
of the most complex diseases affecting a range of organs with diverse disease
progression mechanisms and the effectors ranging from gene-epigenetics to a wide
array of metabolites. Hence a comprehensive study, including genomics, epi-genomics,
transcriptomics, proteomics, and metabolomics, along with the medical/mass-
spectrometry imaging, patient clinical history, treatments provided, genetics, and
disease endemicity, is essential. Cancer Moonshot℠ Research Initiatives by NIH
National Cancer Institute aims to collect as much information as possible from different
regions of the world and make a cancer data repository. AI could play an immense role in
(a) analysis of complex and heterogeneous data sets (multi-omics and/or inter-omics), (b)
data integration to provide a holistic disease molecular mechanism, (c) identification of
diagnostic and prognostic markers, and (d) monitor patient’s response to drugs/
treatments and recovery. AI enables precision disease management well beyond the
prevalent disease stratification patterns, such as differential expression and supervised
classification. This review highlights critical advances and challenges in omics data
analysis, dealing with data variability from lab-to-lab, and data integration. We also
describe methods used in data mining and AI methods to obtain robust results for
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precision medicine from “big” data. In the future, AI could be expanded to achieve ground-
breaking progress in disease management.
Keywords: multi-omics, artificial intelligence (AI), data integration, cancer biomarkers, patient stratification
INTRODUCTION

Artificial intelligence (AI) is a branch of computer science with
enhanced analytical or predictive capabilities to perform
interdisciplinary tasks that otherwise require human intellect.
AI has intensive problem-solving capabilities including
prediction, data scalability, dimensionality, and integration,
reasoning about their underlying phenomena and/or big data
transformation into clinically actionable knowledge, based on
the learning from model data sets. The learning capacity is
maximized by improving the prediction task based on
problem-specific measurements of performance. Particularly,
machine learning (ML) and deep learning (DL)-based
approaches were gaining recognition and emerged as key
components in biomedical data analysis, driven by health care
data availability and rapid progress of analytics techniques (Jiang
et al., 2017; Saltz et al., 2018; Huang et al., 2020; Ibrahim et al.,
2020). AI is currently used to automate the information
extraction, summarize the electronic medical records or
hand-written doctor notes, integrate health records, and store
information in cloud scaling (big data storage) (Bedi et al., 2015;
Chang et al., 2016; Miotto et al., 2016; Osborne et al., 2016;
Garvin et al., 2018; Syrjala, 2018) AI has immense potentials to
contribute significantly at every stage of cancer management
ranging from reliable early detection, stratification,
determination of infiltrative tumor margins during surgical
treatment, response to drugs/therapy, tracking tumor evolution
and potential acquired resistance to treatments over time,
prediction of tumor aggressiveness, metastasis pattern, and
recurrence (Bi et al., 2019).

Cancer is a major cause of death worldwide, accounting for an
estimated 9.6 million deaths in 2018. Cancers can originate from
various organs viz. lung, breast, kidney, represent phenotypic
diversity like cell surface markers, molecular mutations (p53,
PTEN, ER), demonstrate varied growth rate and apoptosis based
on the cancer microenvironment and status of blood supply,
and its aggressive nature. Also, cancer has a diverse disease
progression mechanism and the effectors ranging from gene-
epigenetics to a wide array of metabolites. Cancer/tumor being
highly heterogeneous in terms of inter-tumor heterogeneity
(cancers from different patients) and intra-tumor heterogeneity
(within a single tumor) impose challenges for both detection,
treatments, and recurrence. Medical decisions for cancer
treatment should consider not only its variegated forms with
the evolution of disease but also the individual patient’s
condition and their ability to receive and respond to treatment.
Certain cancers, such as pancreatic and gastric cancers, are
detected only after they have reached their advanced stages
with frequent relapses. Integration of “multi-omics” (genomics,
in.org 2
epi-genomics, transcriptomics, proteomics, and metabolomics),
and “non-omics” (medical/mass-spectrometry imaging, patient
clinical history, treatments, and disease endemicity) data could
help overcome the challenges in the accurate detection,
characterization, and monitoring of cancers. AI could play an
immense role in the analysis of complex and heterogeneous data
sets, particularly from multi-omics and inter-omics approaches
and data integration to provide a holistic disease molecular
mechanism, identification of novel dynamic diagnostic and
prognostic markers and enable precision cancer management,
well beyond the prevalent disease stratification patterns such as
differential expression, and supervised classification (Figure 1).
Advanced computational analyses could also augment a global
interpretation and automation of the cancer patient radiographs
that most commonly relies upon visual evaluations and hence
differ in disease assessments. Cancer Moonsho℠ Research
Initiatives by NIH National Cancer Institute aims to collect as
many omics and non-omics information as possible from
different regions of the world to create a national ecosystem
for sharing and analyzing cancer data (Cancer Moonshot -
National Cancer Institute, 2016). The project will help develop
human tumor atlas, predict response to standard treatments,
optimize guidelines for systematic cancer prediction and
treatments, and identify ways to overcome drug resistance to
improve (i) current understanding of cancer, (ii) enable new
strategies/technologies for cancer characterization, (iii) early
detection of tumors/cancer, and (iv) extend therapies to more
patients in a personalized manner (Cancer Moonshot - National
Cancer Institute, 2016). The large multidimensional biological
data sets (including individual variability in genes, function, and
environment) generated, and/or compiled for the fulfillment of
this cross-border project require advanced computational
analysis, and AI certainly could be one of the key plays.

Recently AI is successfully applied to tumor image
segmentation, identify, and quantify the rate and amount of
mitosis (Romo-Bucheli et al., 2017), screening mutations
(Coudray et al., 2018), auto-detect and classify benign nuclei
from cancer cells (Sirinukunwattana et al., 2016; Xu et al., 2016),
protein alignments and spatial localization (Saltz et al., 2018),
predicting unknown metabolites, precision medicine matching
trials (Korbar et al., 2017; Coudray et al., 2018), drug repurposing
(Aliper et al., 2016), liquid biopsies and pharmacogenomics
based cancer screening/monitoring and predicting the patient
outcomes (Cohen et al., 2018; Low et al., 2018), drug discovery
(Abadi et al., 2017; Yu P. et al., 2017) and so on. AI has
outperformed pathologists and dermatologists in diagnosing
metastatic breast cancer (Low et al., 2018) and melanoma
(Bejnordi et al., 2017). Conversely, multi-omics data has
immense potentials to identify the caveat in the current
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AI-based cancer diagnostics, stratification, mutant identification,
treatment, and drug repurposing approaches, which could
advance precision oncology research (Li et al., 2018). However,
we have limited knowledge in the multi-omics and inter-omics
data analysis and availability of algorithms (Buchhalter et al.,
2014). This review highlights the current AI application in data
integration, advancement, scope, and challenges in oncology
research and clinical use. The reports mostly cover the articles
published in the last two decades (2000–2020).
IMPLICATIONS OF ARTIFICIAL
INTELLIGENCE IN CANCER
MULTI-OMICS

Advancements inmultidimensional “omics” technologies ranging
from next-generation sequencing to the mass spectrometry have
led to a plethora of information. AI mediated data integration
obtained from different “-omics” platforms such as genomics,
epigenomics, transcriptomics, proteomics, and metabolomics
enables the understanding of complex biological systems by
describing nearly all biomolecules ranging from DNA to
metabolites. Multi-omics researches have diverse applications in
veterinarymedicine (LiQ. et al., 2015),microbiology (Zhang et al.,
2010), agriculture science (Van Emon, 2016), biofuel (Rai et al.,
2016), and biomedical sciences (More et al., 2015; Hasin et al.,
2017; Awasthi et al., 2018; Patel et al., 2019) including oncology
(see Table 1).

Genomics
Genomics data analysis relies on the nucleotide sequences,
including expressed sequence tags (ESTs), cDNAs, and gene
arrangements on the respective chromosomes. Rapid advances
in the next‐generation sequencer (NGS) (Paolillo et al., 2016) and
in silico computational algorithms have led to high-throughput
data generation for whole genomes sequencing (WGS) and
Frontiers in Pharmacology | www.frontiersin.org 3
epigenomes. WGS comprehensively explores all types of
genomic alterations in cancer and provides information on the
repertoire of driver mutations and mutational signatures
(including non‐coding regions) in cancer genomes, which
remain widely unexplored. Ley et al. reported the first-ever
WGS analysis of cancer (cytogenetically normal acute myeloid
leukemia, AML) (Ley et al., 2008), merely 6 months post-
publication of the first human whole-genome sequence
(Wheeler et al., 2008). Since then several cancer genomics
databases and projects including The Cancer Genome Atlas
(TCGA) (Wang Z. et al., 2016), the International Cancer
Genome Consortium (ICGC) (Zhang J. et al., 2019), Catalog of
Somatic Mutations in Cancer (COSMIC) (Forbes et al.,
2015), Cancer Genomic Hub (CGHub) (Wilks et al., 2014),
Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) (Therapeutically Applicable Research to
Generate Effective Treatments (TARGET)), cBioPortal (Gao et al.,
2013), MethyCancer (He et al., 2008), UCSC Cancer Genomics
Browser (Goldman et al., 2013) and moonshot project (Cancer
Moonshot - National Cancer Institute, 2016) have surfaced (also
see Table 2). Data accessibility has further led to the development
of tools and resources to facilitate the rapid detection and analysis
of biologically relevant genomic outcomes (Cerami et al., 2012;
Gao et al., 2013; Gonzalez-Perez et al., 2013; Rubio-Perez et al.,
2015; Chakraborty et al., 2018). WGS is thus a powerful tool to
understand cancer genomics that typically contains unpredictable
numbers of point mutations, fusions, and other aberrations. In
contrast, targeted approaches like whole-exome sequencing
(WES) are easier to analyze but miss out information of
untranslated, intronic, and intergenic regions, which might have
an impact on the molecular pathogenesis of cancer (Nik-Zainal
et al., 2016). However, there are several associated limitations: (i) a
vast majority of cancer genomics efforts remain focused around
targeted approaches viz. WES (Morris et al., 2017) (ii) many of the
genomics data reported lacks a comprehensive clinical annotation
required for linking genomic events to specific cancer types,
prognoses, and treatment responses (Robinson et al., 2017) (iii)
most of the preliminary studies are performed on untreated
cancers, and thus do not provide insight into the response to
treatment regimens (Robinson et al., 2017). Integrating the cancer
genomics data with clinical physiology data could, therefore, be
expected to better define cancer biology and responses to
treatments. Several studies have integrated genomics and non-
omics cancer data (see Table 1). Histopathological images
integration with genomics helps retrieves better information on
cancer tissue architecture, which is generally compromised in
molecular assays, rendering this rich information underused
(López de Maturana et al., 2019). AI algorithms classify breast
cancers using prognostic factors to quantitative image (Yuan et al.,
2012) and the public data set (TCGA) (Yuan et al., 2012). AI
algorithms to integrate (multi-) omics data with the pathology
images has been successfully extended to develop predictive
models for prostate cancer (Robinson et al., 2015), renal cell
carcinoma (Schoof et al., 2019), low-grade glioma (Brat et al.,
2015), and non-small cell lung cancer (Yu et al., 2016). Alongside
integrating the multi-omics data from different platforms,
FIGURE 1 | Components of omics data analytics.
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TABLE 1 | Comprehensive list of Artificial Intelligence-based omics and non-omics investigations in oncology.

# Type of
omics

Data type AI Tools/analysis Type of cancer References

1 Non-omics Clinicopathological DL Genetic algorithm and Pearson’s correlation coefficient Oral (Chang et al., 2011)
2 Clinicopathological DL Neural network Colorectal (Bottaci et al., 1997)
3 Clinicopathological DL Decision tree, artificial neural network (ANN), support vector machine (SVM)

and logistic regression
Colorectal (Wang et al., 2019)

4 Clinicopathological DL ANN and Cox regression Gastric (Zhu et al., 2013)
5 Clinicopathological DL Cox proportional hazard and ANN Gastric (Biglarian et al., 2011)
6 Sonographic

images
DL Deep convolutional neural network (DCNN) Thyroid (Li X. et al., 2019)

7 MR images DL Faster region-based convolutional neural networks (Faster R-CNN) Metastatic
lymph nodes

(Lu Y. et al., 2018)

8 Dermoscopic
images

DL Convolutional neural networks (CNN) Melanoma (Haenssle et al., 2018)

9 Digital
Mammography
DREAM

DL Faster region-based convolutional neural networks (Faster R-CNN) Breast (Ribli et al., 2018)

10 Clinicopathological ML Neural networks, decision trees, and logistic regression Breast (Delen et al., 2005)
11 Clinicopathological ML ANN, SVM, and semi-supervised learning Breast (Park et al., 2013)
12 Clinicopathological ML Extreme Learning Machine (ELM), Neural networks and Genetic algorithm Prostate (Jović et al., 2017)
13 Clinicopathological ML Two-stage fuzzy neural network Prostate (Kuo et al., 2015)
14 Clinicopathological ML Linear regression, Decision Trees, Gradient Boosting Machines, and Support

Vector Machines
Lung (Lynch et al., 2017)

15 Radiomics ML Decision tree, AdaBoost, algorithm, RUSBoost algorithm, matthews
correlation coefficient (MCC)

Gliomas (Lu C. F. et al., 2018)

16 MR images &
Clinicopathological

ML SVM, bagged SVM, K-nearest neighbor (KNN), adaptive boosted trees
(AdaBoost), random forest (RF), and gradient boosted trees (GBT)

Bladder (Hasnain et al., 2019)

17 Single omics Genomics DL Prognosis-enhanced neural networks (ENN), SVM, and probabilistic-
enhanced NN (PENN)

Pan Cancer (Vasudevan and
Murugesan, 2018)

18 Proteomics DL SVM and C4.5 Breast (Karsan et al., 2005)
19 Proteomics DL Deep Learning neural network (DLNN) Myeloid

Leukemia
(Liang et al., 2019)

20 Metabolomics DL multiple logistic regression (MLR) and alternative decision tree (ADTree) Breast (Murata et al., 2019)
21 Genomics ML SVM, genetic algorithm, log-rank test, and Cox hazard regression model Ovarian (Lu et al., 2019)
22 Genomics ML Restricted Boltzmann Machine (RBM), Deep Belief Network (DBN), and

Pathway based Deep Clustering model (PACL)
GBM and
ovarian cancer

(Mallavarapu et al.,
2019)

23 Metabolomics ML SVM, Naive Bayes, Partial Least Square Discriminant Analysis (PLS-DA),
LASSO, RF, KNN, and C4.5

Colonic (Eisner et al., 2013)

24 Metabolomics ML RF, SVM, recursive partitioning and regression trees (RPART), linear
discriminant analysis (LDA), prediction analysis for microarrays (PAM), and
generalized boosted models (GBM)

Breast (Alakwaa et al., 2018)

25 Non-omics
and single
omics

MR images and
genomics

DL Residual convolutional neural network (RCNN) Gliomas (Chang et al., 2018)

26 Clinicopathological
and genomics

DL DNN, Multi modal Deep Neural Network by integrating Multiulti-dimensional
Data (MDNNMD) and receiver operating characteristic (ROC)

Breast (Sun et al., 2018)

27 Clinicopathological
and genomics

ML Ensemble models-SVM, ANN, KNN, ROC, and calibration slope (CS). Breast (Zhao et al., 2018)

28 Clinicopathological
and genomics

ML SVM, and ROC Prostate (Zhang et al., 2017)

29 Histopathology
images and
proteomics

ML RF and CNN Kidney (Azuaje et al., 2019)

30 Multi-omics Epigenetics,
genomics, and
transcriptomics

DL Hierarchical integration deep flexible neural forest framework (HI-
DFNForest), KNN, SVM, RF, and multi-grained cascade forest (gcForest)

BRCA, GBM,
and OV

(Xu et al., 2019)

31 Epigenetics and
transcriptomics

DL Unsupervised feed-forward, nonrecurrent neural network, Cox proportional
hazards (Cox-PH) model, K-means clustering, SVM algorithm, concordance
index, Log-rank P-value of Cox-PH regression, Brier score, and ANOVA test
F values

Liver (Chaudhary et al.,
2018)

32 Epigenetics and
transcriptomics

DL OmiVAE, k-means clustering, support vector machine, Variational
autoencoder (VAE), PCA, t-SNE, KPCA, and UMAP

Pan cancer (Zhang X. et al., 2019)

33 Epigenetics and
transcriptomics

DL DeepProg, Autoencoder, Cox-PH model, Gaussian mixture model,
concordance index, and Wilcoxon rank-sum test

Pan cancer (Poirion et al., 2019)

34 Genomics,
transcriptomics,
and proteomics

ML Generic model, gene-specific model, RF, Random Forest Regressor, and
trans-tissue model, Wilcoxon signed-rank test

Breast and
ovarian

(Li H. et al., 2019)
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transcriptomics, proteomics, and metabolomics with genomics
could consolidate molecular information. Wu P. et al., 2019
integrated the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) mass spectrometry-based proteomics data for selected
breast, colon, and ovarian tumors with TCGA into the cBioPortal
(cBioPortal for Cancer Genomics) to support easy exploration and
integrative analysis of the proteomic data sets in the context of the
clinical and genomics data from the same tumors (Wu P. et al.,
2019). Considering the diversity of cancer genomes and
phenotypes, cataloging and interpretation of the abundant
mutation, particularly non‐coding and structure variants, could
be performed with confidence via integrating clinicopathological
information along with transcriptomics, and epigenomics to
decide the precise treatments that will produce the best results
for the cancer patients.

Transcriptomics
Transcriptome denotes the active genes as well as long-
noncoding RNA, short RNAs such as microRNAs, small nuclear
RNAs in a defined physiological condition. The system-
wide transcriptomic analysis evaluates overall transcripts in
a metabolic process, while the targeted approach provides
information regarding known genes. Differential expression of
protein-coding RNA could provide insight into the disease
mechanism, as well as integrated with genomics and proteomics
to discover novel genes and their functional relevance.While non-
coding RNAs have regulatory functions in several metabolic
diseases, neurological disorders, and cancer. Transcriptome
is directly co-related to any epigenomic change that
manifests cancer, hence the integration of epigenomics and
transcriptomics data could extend our understanding of cancer
biology such studies are reported in breast (Robinson et al., 2015),
prostate cancer (Varambally et al., 2002; Bhasin et al., 2015), head
and neck squamous cell carcinoma (HNSCC) (Kelley et al., 2017).
Also, the transcriptomics and epigenomics data integration
approach opens-up avenues to know more about the promoter
crosstalk through a shared enhancer (Eun et al., 2013) and
dynamic switching of promoter and enhancer domains (Sohni
et al., 2015).Moarii et al. used a large data set of 672 cancerous and
healthy methylomes gene expression and copy number profiles
from TCGA and performed a meta-analysis to clarify the
interplay between promoter methylat ion and gene
expression in normal and cancer samples (Moarii et al., 2015).
Vantaku et al. demonstrated a novel approach for the unbiased
integration of transcriptomics, metabolomics, lipidomics, and
data to robustly predict high-grade patient survival and
discovery of novel therapeutic targets in bladder cancer
(Vantaku et al., 2019).

Proteomics
Proteomic profiles reveal cellular/molecular responses to
(epi-) genomics, and environmental alterations, and their
feedback responses. Post-translation modifications, including
phosphorylation, glycosylation, ubiquitination, nitrosylation,
enrich the protein repertoire (protein isoforms), and impacts
protein functions like transport, enzymatic activity, and
Frontiers in Pharmacology | www.frontiersin.org 5
intracellular signaling pathways in cancer. Classifying specific
protein isoforms provide unmatched clinical sensitivity and
specificity. Various tissue and plasma proteomics studies are
performed (Peng et al., 2018) to screen and diagnose cancers
including colorectal (Tsai et al., 2012; Fayazfar et al., 2019;
Thorsen et al., 2019), breast(Mishra et al., 2015), liver (Yang
et al., 2013), oral (Lai et al., 2010) and so on. MS has applications
beyond disease diagnostics and could be extended to monitor the
feedback responses towards therapy, identify drug toxicity, and
discovering new biomarkers. High-quality data sets are obligatory
for clinical MS. Hence improvements in MS-instrument quality
and robustness, automated sample processing, robust data
analysis pipelines, and online automation (cloud computing) to
synchronize results, data sets, and data portability have
contributed to expanding the use and impact of MS in cancer
research. Also, to deal with the variations in the proteomics data
sets across the globe, Proteomics Standards Initiative (PSI) from
theHuman ProteomeOrganization (HUPO) has setup guidelines
for sample collection viz. selecting appropriate disease controls,
categorizing disease and sub-disease status (Maes et al., 2015),
storage to rule-out pre-analytical variables (including patient and
instrumental factors) that contribute to a large extent of variation,
calibrating MS instrument for data-quality assurance, data
reporting for untargeted (Martıńez-Bartolomé et al., 2014) and
targeted (Abbatiello et al., 2017) analysis. An amalgamation of
proteomics data with (epi-)genomics, transcriptomics,
metabolomics, and cancer histopathological images using
AI gives confidence in the data or metabolic pathways
identification. Proteomics investigation of breast cancer
contoured more than 12,000 proteins and 33,000 phospho-sites.
Proteogenomic analysis associated DNA mutations (data
obtained from TCGA) to protein signaling to pinpoint the
genetic drives of cancer, and revealed new signaling pathways
for the breast cancer subtypes with specific mutations (PIK3CA
and TP53) and identified two candidate markers (SKP1 and
CETN3) in basal-like breast cancer (Mertins et al., 2016). Liu
et al., integrated transcriptome (RNA-seq) and proteome (data-
independent acquisition, DIA) data to co-relating RNA splicing
links isoformexpressionwithproteomediversity thatmayhelp for
studying the perturbations associated with cancer (Liu et al.,
2017). MS imaging (MSI) is yet another advancement in MS
that enables visualization of tumor microenvironmental
biochemistry and empowers tumor biology investigation to an
entirely novel biochemical perspective, thereby potentially leading
to the identification of a new pool of cancer biomarkers (Bi et al.,
2019). High-throughput MSI analysis is a powerful tool for
biomarker identification in a spatial manner, tracking drugs and
its metabolites, imaging drug-response at cellular-level. MSI tool
was used to identify unique region-of-interest–specific
biomarkers (lipid signature) and therapeutic targets to classify
colorectal cancer and subtyping in non-small cell lung cancer
(Kriegsmann et al., 2016). MSI also finds application in the
identification of prognostic signatures beyond classical
histology. Proteins and protein isoforms associated with patient
survival in four different high-grade sarcoma subtypes (Lou et al.,
2017) and colorectal adenocarcinoma (Hinsch et al., 2017) were
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identified. In gastric adenocarcinoma, native glycan fragments
detected by MALDI-FT-ICR mass spectrometry imaging were
linked to patient prognosis (Kunzke et al., 2017). CombiningMSI
with histology enables the extraction of molecular profiles from
specific regions of tissue or histopathological entities, implying
MSI can facilitate intelligent knife (iKnife) in sorting tumors
during surgery with high sensitivity and specificity (Balog et al.,
2013). Certainly, MS-based analysis, along with histopathological
diagnosis, can show a stronger association with the clinical
outcome (Huber et al., 2014). Recently MSI data is combined
with other imaging data like fluorescence in situ hybridization,
tissue microarrays, confocal Raman spectroscopy, and MRI, for
example, MRI and MSI imaging data were collated to analyze
brain pathophysiology (Porta Siegel et al., 2018). Combing
vasculature staining (using an anti-CD31 antibody) and MSI
could help attain a better picture of vascularization as well as
vessel characteristics. However, with emerging MS technologies,
there are still challenges in its clinical application including
nonoptimized raw data preprocessing, imprecise image co-
registration, and limited pattern recognition capabilities due
to lack of reference spectra database (Addie et al., 2015).
Nevertheless, efforts/measures are taken towards the successful
implementation of MS technology for diagnosis of cancer
biomarkers translatable to clinical setting. Additionally, the
imaging data could be integrated with LC/GC-MS, the
workhorse technique of proteomics workflow that includes the
extraction of total proteins/peptides, fractionation, and deep
proteomic analysis. Delcourt et al., combined MSI and top-
down microproteomics to detect potential protein markers in
serous ovarian cancer (Delcourt et al., 2017). Using LC-MS and
peptide fractionation Kulak et al. achieved deep coverage of
cellular proteomes with sub-microgram sample input (Liebl,
1967). Further the cancer signature biomarkers could be used to
stratify patients according to subtype,metastatic risk, progression,
recurrence, and treatment response. Lately single-cell proteomics
is gaining importance to bring comprehensive insights into the
cancer heterogeneity, clonality to metastasis or to capture
Frontiers in Pharmacology | www.frontiersin.org 6
information from rare/mutated cells (Doerr, 2019). Using a
quantitative single-cell proteomics approach Schoof et al.,
characterized an acute myeloid leukemia hierarchy (Schoof
et al., 2019).

Metabolomics
Metabolomics is a systematic analysis of small molecules (<1kD)
within cells, biofluids, tissues, or organisms involved in primary
or secondary metabolic processes. Metabolites (small molecules)
are highly diverse classified into multiple categories: amino acids,
lipids, nucleotides, carbohydrates, and organic acids. Metabolite
repertoire changes significantly during the process of normal
growth and development and/or exposure to stress, allergens,
and disease conditions (Bertini et al., 2009; Lin et al., 2011;
Veselkov et al., 2011), which relates strongly to the final clinical
phenotype. Metabolomics thus enhances our molecular
understanding of disease mechanisms, progression, response
to drugs/treatments, and recurrence probability. Typical
metabolomics analysis workflow comprises of metabolite
extractions, separation by liquid/gas chromatography, capillary
electrophoresis and ion mobility, detection by mass spectrometry
(MS), or nuclear magnetic resonance (NMR) spectroscopy and
data analysis. MS applications in metabolomics have increased
exponentially since the discovery and development of soft
ionization tools like electrospray ionization (ESI) and matrix-
assisted laser desorption ionization (MALDI). Several
separation-free MS techniques including direct infusion-MS,
MALDI-MS, mass spectrometry imaging (MSI), and direct
analysis in real-time mass spectrometry are gaining popularity.
The advantages of separation-free mass spectrometry are
reduced sample volume requirements and minimization of the
analytical variation. Untargeted metabolomics approaches are
ideally used for hypothesis development, as it simultaneously
identifies several unknown/known metabolites and quantifies.
However, diverse physical and chemical properties and wide
concentration ranges of the metabolites, biological variations
(Heinemann et al., 2014), and identification of the unknown
TABLE 2 | List of cancer genomics databases.

# Cancer genomic database name Cancer alteration types Organisms Public data

1 The Cancer Genome Atlas (TCGA) Copy number, mutation, methylation, gene expression, miRNA expression Human Yes
2 The International Cancer Genome

Consortium (ICGC)
Mutation Human Yes

3 Catalog of Somatic Mutations in Cancer
(COSMIC)

Mutation Human No

4 cBio Cancer Genomics Portal Copy number, mutation, methylation, gene expression, miRNA
expression, protein, phosphorylation

Human Yes

5 MethyCancer Methylation Human Yes
6 MutaGene Mutation Human Yes
7 Moonshot project Copy number, gene expression Human Yes
8 Integrative Oncogenomics Cancer Browser

(IntOGen)
Copy number, mutation, gene expression Human Yes

9 Mouse Retrovirus Tagged Cancer Gene
Database

Mutation Mouse Yes

10 Mouse Tumor Biology Database Copy number, mutation, methylation, gene expression Mouse No
11 OncoDB.HCC Copy number, gene expression, QTL Human, mouse, rat No
12 UCSC Cancer Genomics Browser Copy number, mutation, gene expression, miRNA Human, mouse, rat Yes
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compounds based on the MS/MS fragmentation patterns impose
challenges for untargeted metabolomics. For a long time,
researchers have identified the unknows in the biological
samples by complementing the MS/MS fragmentation with
public repository or standards, which leads to the identification
of a very limited number of metabolites, while a majority of the
potentially useful information in MS/MS data sets remains
uncurated. Molecular networking like GNPS has proved to be
very useful in cataloging the uncurated MS/MS data sets via a
spectral correlation and visualization approach that can detect
sets of spectra from related molecules even when the spectra
themselves are not matched to any known compounds (Wang
M. et al., 2016). ML in combination with data mining algorithms
(supervised and unsupervised) like principal component analysis
or hierarchical clustering has transformed metabolomics studies
like analyzing several variables/treatments simultaneously
(Duan et al., 2005; Bertini et al., 2009; Guan et al., 2009).
Particularly unsupervised data mining allows extracting
meaningful relationships between samples with less risk
of human bias. Metabolomics is applied in biomarker
identification for diagnosis, monitoring, and prognosis of
several diseases(Alvarez et al., 2017; Chorell et al., 2017; Perng
et al., 2017; Patel et al., 2019), particularly those impacting
metabolic functions, such as cancer. Metabolomic biomarkers
for several cancers including colorectal (Ma et al., 2012; Nishiumi
et al., 2012; Manna et al., 2014; Yamazaki, 2015) pancreatic
(Zhang et al., 2012), lungs (Koutros et al., 2013; Li et al., 2014;
Zhuang et al., 2016), breast (Cui et al., 2016; Li et al., 2020),
gastric (Ikeda et al., 2012), ovarian (Zhang et al., 2013), and
prostate (Koutros et al., 2013; Mondul et al., 2014; Kelly et al.,
2016) have been reported. Despite numerous ongoing studies,
limited metabolomics biomarkers reach clinical trials,
implying improvements in experimental designs, data analysis
with reduced false discovery rates, pinpointing molecules
accountable for metabolic aberrations, and data interpretation
is needed. Besides, we also must overcome interlaboratory
variability by generalizing the protocols that are robust and
adaptable to enhance reproducibility. Indeed, MS-based
metabolomics biomarker discoveries have entered the new
realms of MSI that present intuitive metabolites distribution in
tissues or cells. MSI is performed in two modes, namely, imaging
(Stoeckli et al., 2001) to correlate with histology and profiling, to
know the overall metabolites (Cornett et al., 2006). MSI alone or
in conjunction with (immuno-)histochemistry (IHC) enhances
our understanding of complex heterogeneous cancer metabolic
reprogramming with spatial information and facilitate the
discovery of potential metabolic vulnerabilities that might be
targeted for tumor therapy. MSI suffers some technical
limitations like area of detection limits, instrument sensitivity
at the high spatial resolution, ion suppression, matrix effects, and
data analysis, particularly normalization and background
correction, but has tremendous potential to improve cancer
diagnostics. Huang et al. developed a graphical data processing
pipeline for MSI based spatially resolved metabolomics (Huang
et al., 2019), which could achieve multivariate statistical results in
an intuitive and simple way as well as discovery low-abundant
Frontiers in Pharmacology | www.frontiersin.org 7
but reliable biomarkers in heterogeneous tumors. MSI has been
employed to different cancers including brain (Jarmusch et al.,
2016; Clark et al., 2018), breast (Guenther et al., 2015;
Abdelmoula et al., 2016; Angerer et al., 2016; Wang S. et al.,
2016; Torata et al., 2018; Vidavsky et al., 2019), lung (Calligaris
et al., 2015; Li T. et al., 2015; Carter et al., 2017; Holzlechner et al.,
2018), ovarian (Dória et al., 2016; Briggs et al., 2019), prostrate
(Wang et al., 2017), esophageal (Guo et al., 2014; Abbassi-Ghadi
et al., 2016; Sun et al., 2019a), colon (Hiraide et al., 2016; Inglese
et al., 2017), oral (Uchiyama et al., 2014; Bednarczyk et al., 2019),
skin (Xu et al., 2017; Margulis et al., 2018), adrenal gland (Sun
et al., 2019b) and gastrointestinal stromal tumors (Abu
Sammour et al., 2019) for spatial metabolomics analysis. MSI
is also used to determine the metabolite changes in the 3D
osteosarcoma cell culture model upon drug treatments
(Palubeckaitė et al., 2020). MSI has been used to investigate
tumor biopsy tissues for hypoxia (Chughtai et al., 2013; Jiang
et al., 2015), driver of tumor resistance to radiotherapy or
chemotherapy, and lipid distributions (Inglese et al., 2017;
Paine et al., 2019). Esteva et al., employed deep convolutional
neural networks (CNNs)-representing a diverse class of multi-
layer artificial neural networks, pre-trained on millions of images
representing more than 1000 generic image classes to automate
the classification of skin cancers (Esteva et al., 2017). The same
approach could be extrapolated for analyzing the images
captured by MSI for better cancer management. Inglese et al.
recently developed a new computational multimodal pipeline
Spatial Correlation Image Analysis (SPACiAL) to integrate MSI
molecular imaging data with multiplex IHC. The pipeline allows
comprehensive analyses of metabolic heterogeneity, thereby
increasing the efficiency and precision for spatially resolved
analyses of specific cell types (Inglese et al., 2017).
CONSIDERATION AND CHALLENGES
FOR AI-MEDIATED MULTI-OMICS DATA
INTEGRATION

AI-mediated clinical cancer research has attained new heights for
its unpreceded learning capabilities to process complex data. ML
and deep learning (DL) are the subset of artificial intelligence
that enables computers to learn with data without being
explicitly programmed. AI analytical skills are primarily due to
image recognition, computer vision, data integration, decision
making, and natural language processing. AI could thus self-
adapt, synchronize qualitative and quantitative information, and
validate clinical results obtained from multiple platforms.
However, AI applications in oncology research still is infancy
and must overcome several challenges (Figure 2).

Data Integration: A Major Challenge in
Precision Oncology
A major challenge in precision oncology is to integrate data
generated from multiple types of omics to predict biomarkers or
phenotypic outcomes (tumor/normal, early/late stage, survival,
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etc.). Machine learning tasks consist of three key steps in order to
develop a computational model for biological data integration
and analysis: (i) selection and pre-processing of data set, (ii)
selection of algorithm and identify the ways to train it for
development of a prediction model, and (iii) validation of the
model in another data set (Figure 3).
Input Data Selection and Pre-Processing
Input data for most of the models consists of gene expression
data, copy number alteration, epigenomics, proteomics, and
single nucleotide mutations data sets. However, an integrated
data analysis strategy combines various omics modalities, and
this amalgamation of different types of data could help to develop
promising prognostic models. Multi-platform data integration
relies on (a) advances in sample extraction and processing
technologies; (b) the availability of sufficiently large, matched,
and carefully annotated data sets for multi-omics data; (c)
molecular and physiologically characterized and graded tumor/
cancer data set; (d) data sets with more informative images
compared to present databases, e.g., the TCGA image collection
(Yu K.-H. et al., 2017) for better 3D-fitting of in vivo imaging and
ex vivo data. The first step in ML analysis is pre-processing of a
defined data set(s). It requires normalization, noise filtration, and
feature selection when more than one data sets are combined.
Normalization becomes an essential step to eliminate biases
during the analysis of different data sets that are merged.
Selection of defined features is a critical phase in the success of
an algorithm in classification, regression, and pattern recognition
(Vougas et al., 2019).
Selection of Algorithm/Prediction Model and
Data Integration
Algorithms are trained through optimizing the parameters to
reach an ideal model. k-fold cross-validation (KF-CV) is widely
used for optimizing without capturing the noise of data so that
the results of statistical analysis can be generalized to an
independent data set (Gao et al., 2019). Several studies on
statistical methods and algorithms for data integration are
reported (Huang et al., 2017; Perakakis et al., 2018; Zeng and
Lumley, 2018; Wu C. et al., 2019). Standard machine learning
techniques are supervised and unsupervised learning. Supervised
learning requires algorithms to be provided with labeled inputs
(e.g., omics data) and the desired output (e.g., the presence of a
disease or not). In unsupervised learning, data are not labeled,
and the algorithm is trained to look for naturally occurring
pattern to correspond with the output. Another category that is
more common in multi-omics studies is semi-supervised
learning, where unlabelled data is used in conjunction with
small labeled input. Briefly, multi-omics data integration
consists of (a) dimension reduction: to reduce complexity, a
number of factors are condensed to fewer variables (called
components). (b) Clustering: Grouping input variables with
common characteristics in same clusters, (c) density estimation
to assess the distribution of input variables in specific space, and
Frontiers in Pharmacology | www.frontiersin.org 8
(d) regression to estimate the relationships among variables and
for developing predictive models.
Testing the Prediction Models
Building amodel that fits data beyond the current predictivemodel
is the ultimate goal of training a candidate computational model.
This can be tested by implementing a candidate predictive model
to blind data sets. If the model is for developing tools to identify
precision and personalized therapies for individual cancer patients,
panels from clinical data sets should be preferentially used. A
trained model that fails to generalize might be because of
overfitting or underfitting (Dietterich and Bakiri, 1995). In the
case of overfitting, noise, or random fluctuations are picked up in
the training data, which negatively impact the model’s ability to
generalize. Overfitting of a trained model is a major issue in
machine learning. In underfitting, the underlying structure of a
particular data set is not captured in a set of in silico pipeline. The
predictive model’s capacity to make predictions understandable or
interpretable to humans is another key requirement, i.e., the higher
the complexity of the model, the more challenging interpretability
becomes (black box models). This could be achieved at different
levels of data processing and abstraction, however the development
of methods for interpretingMLmodels is at a relatively early stage,
particularly for precision oncology (Castelvecchi, 2016). Enhancing
the interpretability will allow users to peer into the hidden layers of
themodel anddetermine how exactly the predictions aremade on a
case-to-case basis.

Deep Neural Networks: For Multi-Omics
Data Integration
Deep neural networks (DNNs) are a subset of machine
learning, which is gaining popularity in precision medicine.
Today’s complex multi-omics data might be challenging to
analyze with traditional machine learning algorithms. DNNs
algorithms can integrate multi-omics data with better sensitivity,
specificity, and efficiency. Moreover, DNNs have the advantage
of integrating other sources of information such as medical
images or clinical health records, which is a pre-requisite for
personalized medicine. Sakellaropoulos et al. designed the DNNs
model, which could capture pathways that linked gene
expression with drug response and showed that DNNs are
better than other traditional machine learning algorithms.
Also, DNNs predicted drug response and survival in a large
clinical cohort (Sakellaropoulos et al., 2019). Deep learning is still
an emerging area in biomedical field, their effectiveness is not
always guaranteed. Cancer multi-omics data integration is done
using various approaches: unsupervised cancer subtyping to
show patient survival (Ramazzotti et al., 2018), graph-based
integration to integrate copy number aberration, epigenome,
and transcriptome data sets for ovarian cancer clinical
outcome prediction (Kim et al., 2015) and integration DNA
methylation and matched imaging data to predict glioblastoma
disease progression (Klughammer et al., 2018). However,
rigorous mathematical foundations for emerging DNNs
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architectures are still lacking (Martorell-Marugán et al., 2019).
One of the most challenging and futurist modules of the data-
integration is combining multi-omics and non-omics data
(imaging, biochemical/molecular profile data, clinical
symptoms). Yu et al., associated omics data of lung cancer
patients with the histopathology data to determine the patient
survival rate (Yu K.-H. et al., 2017).
Frontiers in Pharmacology | www.frontiersin.org 9
Machine Learning for Drug Response
Prediction in Precision Oncology
Applications
Identification of a panel of biomarkers that are associated with
treatment responses is imperative for the precision oncology
approach. Machine learning algorithms are being developed for
prediction to drug response using response-predictive biomarkers
FIGURE 2 | Artificial Intelligence-mediated oncology workflow and challenges.
FIGURE 3 | Considerations for major stage of Machine Learning based analysis in oncology.
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through integrative analysis of multi-omics data (Ali and
Aittokallio, 2019). Drug sensitivity prediction models,
which are entirely based on gene expression profile, are
less trustworthy compared to those which are based on
integrated multi-omics profiling. Input data type, noise ratio,
dimensionality, data complexity, and heterogeneity, are
the crucial factors for drug response prediction model
development. Sometimes, it is difficult to understand prediction
models due to the dominance of gene expression profile data sets,
which can be decreased by a two-stage method, called TANDEM
(Aben et al., 2016). Bayesian efficient multiple kernel learning
(BEMKL) is another drug response prediction model based on
multi-omics data. It was the top-performing model in the
National Cancer Institute - Dialogue for Reverse Engineering
Assessment and Methods (NCI-DREAM7) Drug Sensitivity
Prediction Challenge (Costello et al., 2014). Currently, the
majority of data in repositories that are publicly available
represent a significant set of data that are derived using cell
lines treated with different doses of drugs and a large number of
compounds. Some of these widely used data sets are: (i) The
genomics of Drug Sensitivity in Cancer (GDSC), (ii) Cancer Cell
Line Encyclopedia (CCLE), and (iii) National Cancer Institute
drug screening panel (NCI-60). It is essential to understand that
data extracted from clinical samples are ideal for the development
of favorable drug prediction models. Heterogeneous properties of
cancers make in silico analysis for molecular matching using
cancer cell lines challenging in clinical settings (Hanahan and
Weinberg, 2011; Turajlic et al., 2019). Importantly, the
interplay of tumor-microenvironment that determines cancer
development and response to drug treatment cannot be
recapitulated using cancer cell lines model, and therefore,
molecular changes associated with clinical cancers are diverse
than in cancer cell lines (Wu and Dai, 2017). Lack of reliable
resources for input data set stalled the success of creating drug
prediction models. There is an urgent need to evaluate in silico
technologies like transfer learning (TrLe) methods employing
different ML algorithms and applications that utilize predictive
feature (very complex non-linear relationships between features)
learned in cell line trained model to build a newmodel or leverage
information from auxiliary data not directly belonging to the
problem being handled, that can be used in real clinical settings.
Several studies have executed TrLe approach and tested and
trained machine learning model for data obtained from clinical
samples (Daemen et al., 2013; Turki et al., 2018). Turki et al. used
TrLe-based approach to transfer patterns learned in breast and
lung cancer patient data sets to predict drug sensitivity of multiple
myeloma patients (Turki et al., 2018). Daemen et al. used breast
cancer cell lines data for training model and tested on clinical data
sets derived from TCGA (Daemen et al., 2013). Similarly, the
Geeleher group built a training model on gene expression data
sets extracted from Cancer Genomics Project and tested them on
TCGA data sets from non-small-cell-lung cancers (NSCLC)
(Geeleher et al., 2014). Using an elastic net model on to B-cell
lymphoma cell lines, Falgreen et al. identified gene signatures that
are associated with the development of resistance to drug
(cyclophosphamide, doxorubicin, and vincristine) in diffuse
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large B-cell lymphoma (Falgreen et al., 2015). Sevakula et al.
transfer learning for molecular cancer classification using DNN
(Sevakula et al., 2019).

Machine Learning in Biomarker Discovery
and Patient Classification
The identification of the disease biomarkers from -omics data
does not only facilitate the stratification of patient cohorts but
also provides early diagnostic information to improve patient
management and prevent adverse outcomes. Coudray et al.
applied CNN on whole-slide images obtained from The Cancer
Genome Atlas to accurately and automatically classify subtypes
of lung cancer, namely adenocarcinoma (LUAD) and squamous
cell carcinoma (LUSC) and normal lung tissue (Coudray et al.,
2018). Likewise, Huttunen et al., automated classification of
multiphoton microscopy images of ovarian tissue (Huttunen
et al., 2018). Further, they reported a prediction performance
comparable to that obtained by pathologists. Brinker et al.,
automated dermoscopic melanoma image classification using
CNN and showed its superiority over both junior and board-
certified dermatologists (Brinker et al., 2019). Molecular profiling
of carcinoma using circulating cell-free DNA is another
approach for sub-dividing patients in risk factors (Kaseb et al.,
2019). It has the advantage of being a noninvasive panel of
biomarkers based on the multi-omics approach to increase the
accuracy compared to biomarker-based on single omics data. For
instance, protein biomarkers found in small sample sizes in the
discovery cohort may be prone to achieve over-fitting and
overinterpretation of proteomic data. Combined analysis of
genomics with proteomics data sets led to the identification of
novel therapeutic targets such as altered PI3K pathway in
hormone receptor-positive breast cancer (Stemke-Hale et al.,
2008). Transcriptomics with proteomics data sets analysis leads
to the identification of gonadotropin-releasing hormone (GnRH)
signaling pathway in glioblastoma that was not interpreted with
single omics data set (Jayaram et al., 2016). Similarly, integrated
analysis of DNA copy number alteration, with gene expression
data in breast cancer patients led to understand the biology of
cancer type and promoted to identify novel therapeutic
interventions (Curtis et al., 2012). Four unique urinary
biomarkers were identified in an integrated transcriptomic and
metabolomics data analysis that was more reliable than single
omics data analysis (Nam et al., 2009). Integrated proteogenomic
characterization of paired tumor and adjacent liver samples
identified alterations of the liver-specific proteome and
metabolism. Biomarkers and patients’ subgroups with distinct
features in metabolic reprogramming, microenvironment
dysregulation, cell proliferation, and potential therapeutics
were identified (Gao et al., 2019).
CONCLUDING REMARKS AND OUTLOOK

Cancer refers to a compendium of related diseases with
uncontrolled dividing and spreading cells. More than 100s of
different types of cancers are known. Cancer will be the leading
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cause of mortality in developed countries by 2030 (Centre for
Disease Control). Cancer treatments are challenging due to its
heterogenicity (temporal and spatial), high recurrence, and low
median survival rate causing millions of deaths every. The
molecular understanding of tumor biology has notably
changed cancer treatment paradigms during the past 15 years.
Still, the success of cancer therapeutics in clinical trials is the
lowest of all major diseases. Future cancer treatments thus vouch
for tailoring personalized therapies and targeting components of
the tumor microenvironment. Accurate early diagnosis and
prognosis of cancer greatly increases the chances for successful
treatment and patient’s survival rate. Present cancer diagnosis
relies on the clinician’s judgment based on their knowledge and
clinical experience, which certainly cannot be guaranteed
accurate diagnosis. This aspect points to the variability of the
human brain to integrate large amounts of sample data. AI (ML
and deep learning) is extremely proficient at handling vast
amounts of complex nonlinear data (multi-omics and non-
omics) generated during cancer treatments and researches,
fault tolerance, parallel distributed processing, learning, and
decision-making capabilities to improve oncologic care.
AI could thus not only integrate various aspects of the clinical
diversity but also helps to address the current lack of objectivity
and universality in expert systems. Various researches showed
impressive diagnostic and prognosis performance of AI using
ML (Esteva et al., 2017; Ferroni et al., 2019; Jiang and Xu, 2019).
Yoon et al. showed the potential of AI models for personalized
oncology treatments that can estimate individualized treatment
effects based on the analysis of counterfactual clinical outcomes
(Yoon et al., 2018). ML algorithms (supervised or unsupervised
learning) guided by clinicians could unravel the hidden
molecular patterns within the data sets (multi-omics and non-
omics) to support discovery of biomarkers (diagnostic,
prognostic, recovery, and recurrence), candidate therapeutic
targets associated with a specific patient group, and clinically
relevant subtypes without explicit programming in clinical
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setups. Clinicians’ roles are inevitable in selecting the training
data sets and multiple combinations of parameters necessary for
building a classification ML model to address specific research
questions. In turn, AI can help train junior physicians in clinical
diagnosis and decision making. Expanding AI applications from
pattern recognition capacity to dealing with multiple data
modalities, insufficient data, evaluation of selective and
predictive performance, guiding the learning process, and fine-
tune models via feedback could revolutionize the cancer
managements. Another step forward towards AI mediated
clinical application is the development of ML pipelines that
not only automate the design and evaluation of algorithms but
also delineate the clinician the reasoning underlying the model
predictions. This is a crucial step considering the fact although
AI has learning potential but is in its infancy and cannot be left
unattended. Yet another aspect is the extrapolation of the models
generated using the cell line data to the patients, as the majority
of the previous studies are performed on cell lines or limited
small patient sample size, and the portability of the models
generated in one cancer to another. AI has come long way but
still it must achieve several landmarks: (a) non-reproducible
results, (b) population heterogeneity, (c) instrument-variation,
(d) lab-to-lab variation, (e) data normalization, (f) cross-
compare results by different studies, (g) simulate results in
vitro to clinics, (h) personalize, and (i) cost-effectiveness.
Taken together, advancements in AI-based clinical cancer
research will remarkably improve cancer prognosis and
diagnosis with precision, resulting in enhanced prediction rates
and patient survival.
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Bertini, I., Calabró, A., De Carli, V., Luchinat, C., Nepi, S., Porfirio, B., et al. (2009).
The metabonomic signature of celiac disease. J. Proteome Res. 8, 170–177.
doi: 10.1021/pr800548z

Bhasin, J. M., Lee, B. H., Matkin, L., Taylor, M. G., Hu, B., Xu, Y., et al. (2015).
Methylome-wide Sequencing Detects DNA Hypermethylation Distinguishing
Indolent from Aggressive Prostate Cancer. Cell Rep. 13, 2135–2146.
doi: 10.1016/j.celrep.2015.10.078

Bi, W. L., Hosny, A., Schabath, M. B., Giger, M. L., Birkbak, N. J., Mehrtash, A.,
et al. (2019). Artificial intelligence in cancer imaging: Clinical challenges and
applications. CA. Cancer J. Clin 69, 127-157. doi: 10.3322/caac.21552

Biglarian, A., Hajizadeh, E., Kazemnejad, A., and Zali, M. R. (2011). Application of
artificial neural network in predicting the survival rate of gastric cancer
patients. Iran. J. Public Health 40, 80–86.

Bottaci, L., Drew, P. J., Hartley, J. E., Hadfield, M. B., Farouk, R., Lee, P. W., et al.
(1997). Artificial neural networks applied to outcome prediction for colorectal
cancer patients in separate institutions. Lancet (Lond. Engl.) 350, 469–472.
doi: 10.1016/S0140-6736(96)11196-X

Brat, D. J., Verhaak, R. G.W., Aldape, K. D., Yung,W. K. A., Salama, S. R., Cooper, L.
A. D., et al. (2015). Comprehensive, integrative genomic analysis of diffuse lower-
grade gliomas. N. Engl. J. Med. 372, 2481–2498. doi: 10.1056/NEJMoa1402121

Briggs, M. T., Condina, M. R., Ho, Y. Y., Everest-Dass, A. V., Mittal, P., Kaur, G.,
et al. (2019). MALDI Mass Spectrometry Imaging of Early- and Late-Stage
Serous Ovarian Cancer Tissue Reveals Stage-Specific N-Glycans. Proteomics
19, e1800482. doi: 10.1002/pmic.201800482

Brinker, T. J., Hekler, A., Enk, A. H., Berking, C., Haferkamp, S., Hauschild, A.,
et al. (2019). Deep neural networks are superior to dermatologists in melanoma
image classification. Eur. J. Cancer 119, 11–17. doi: 10.1016/j.ejca.2019.05.023

Buchhalter, I., Hutter, B., Alioto, T. S., Beck, T. A., Boutros, P. C., Brors, B., et al.
(2014). A comprehensive multicenter comparison of whole genome sequencing
pipelines using a uniform tumor-normal sample pair. Cold Spring Harbor Labs J.
013177. doi: 10.1101/013177

Calligaris, D., Feldman, D. R., Norton, I., Brastianos, P. K., Dunn, I. F., Santagata, S.,
et al. (2015). Molecular typing of meningiomas by desorption electrospray
ionization mass spectrometry imaging for surgical decision-making. Int. J. Mass
Spectrom. 377, 690–698. doi: 10.1016/j.ijms.2014.06.024

Cancer Moonshot - National Cancer Institute (2016). Natl. Cancer Inst. Available
at: https://www.cancer.gov/research/key-initiatives/moonshot-cancer-
initiative (Accessed April 19, 2020).

Carter, C. L., Jones, J. W., Farese, A. M., MacVittie, T. J., and Kane, M. A. (2017).
Lipidomic dysregulation within the lung parenchyma following whole-thorax
Frontiers in Pharmacology | www.frontiersin.org 12
lung irradiation: Markers of injury, inflammation and fibrosis detected by
MALDI-MSI. Sci. Rep. 7, 10343. doi: 10.1038/s41598-017-10396-w

Castelvecchi, D. (2016). Can we open the black box of AI? Nature 538, 20–23.
doi: 10.1038/538020a

cBioPortal for Cancer Genomics. Available at: http://www.cbioportal.org/
(Accessed March 24, 2020).

Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al.
(2012). The cBio Cancer Genomics Portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2, 401–404.
doi: 10.1158/2159-8290.CD-12-0095

Chakraborty, S., Hosen, M.II, Ahmed, M., and Shekhar, H. U. (2018). Onco-Multi-
OMICS Approach: A New Frontier in Cancer Research. BioMed. Res. Int.
2018:9836256. doi: 10.1155/2018/9836256

Chang, S.-W., Kareem, S. A., Kallarakkal, T. G., Merican, A. F. M. A., Abraham,
M. T., and Zain, R. B. (2011). Feature selection methods for optimizing
clinicopathologic input variables in oral cancer prognosis. Asian Pac. J.
Cancer Prev. 12, 2659–2664.

Chang, E. K., Yu, C. Y., Clarke, R., Hackbarth, A., Sanders, T., Esrailian, E., et al.
(2016). Defining a Patient PopulationWith Cirrhosis. J. Clin. Gastroenterol. 50,
889–894. doi: 10.1097/MCG.0000000000000583

Chang, K., Bai, H. X., Zhou, H., Su, C., Bi, W. L., Agbodza, E., et al. (2018).
Residual convolutional neural network for the determination of IDH status in
low- and high-grade gliomas from mr imaging. Clin. Cancer Res. 24, 1073–
1081. doi: 10.1158/1078-0432.CCR-17-2236

Chaudhary, K., Poirion, O. B., Lu, L., and Garmire, L. X. (2018). Deep Learning-
Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer.
Clin. Cancer Res. 24, 1248–1259. doi: 10.1158/1078-0432.CCR-17-0853

Chorell, E., Hall, U. A., Gustavsson, C., Berntorp, K., Puhkala, J., Luoto, R., et al. (2017).
Pregnancy to postpartum transition of serum metabolites in women with
gestational diabetes. Metabolism 72, 27–36. doi: 10.1016/j.metabol.2016.12.018

Chughtai, K., Jiang, L., Greenwood, T. R., Glunde, K., and Heeren, R. M. A. (2013).
Mass spectrometry images acylcarnitines, phosphatidylcholines, and
sphingomyelin in MDA-MB-231 breast tumor models. J. Lipid Res. 54, 333–
344. doi: 10.1194/jlr.M027961

Clark, A. R., Calligaris, D., Regan, M. S., Pomeranz Krummel, D., Agar, J. N., Kallay, L.,
et al. (2018). Rapid discrimination of pediatric brain tumors by mass spectrometry
imaging. J. Neurooncol. 140, 269–279. doi: 10.1007/s11060-018-2978-2

Cohen, J. D., Li, L., Wang, Y., Thoburn, C., Afsari, B., Danilova, L., et al. (2018).
Detection and localization of surgically resectable cancers with a multi-analyte
blood test. Sci. (80-. ). 359, 926–930. doi: 10.1126/science.aar3247

Cornett, D. S., Mobley, J. A., Dias, E. C., Andersson, M., Arteaga, C. L., Sanders, M. E.,
et al. (2006). A novel histology-directed strategy forMALDI-MS tissue profiling that
improves throughput and cellular specificity in human breast cancer. Mol. Cell.
Proteomics 5, 1975–1983. doi: 10.1074/mcp.M600119-MCP200

Costello, J. C., Heiser, L. M., Georgii, E., Gönen, M., Menden, M. P., Wang, N. J.,
et al. (2014). A community effort to assess and improve drug sensitivity
prediction algorithms. Nat. Biotechnol. 32, 1202–1212. doi: 10.1038/nbt.2877

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D.,
et al. (2018). Classification andmutation prediction from non-small cell lung cancer
histopathology images using deep learning. Nat. Med. 24, 1559–1567. doi: 10.1038/
s41591-018-0177-5

Cui, M., Wang, Q., and Chen, G. (2016). Serum metabolomics analysis reveals
changes in signaling lipids in breast cancer patients. Biomed. Chromatogr. 30,
42–47. doi: 10.1002/bmc.3556

Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J.,
et al. (2012). The genomic and transcriptomic architecture of 2,000 breast
tumours reveals novel subgroups. Nature 486, 346–352. doi: 10.1038/
nature10983

Daemen, A., Griffith, O. L., Heiser, L. M., Wang, N. J., Enache, O. M., Sanborn, Z.,
et al. (2013). Modeling precision treatment of breast cancer. Genome Biol. 14,
R110. doi: 10.1186/gb-2013-14-10-r110

Delcourt, V., Franck, J., Leblanc, E., Narducci, F., Robin, Y. M., Gimeno, J. P., et al.
(2017). Combined Mass Spectrometry Imaging and Top-down Microproteomics
Reveals Evidence of a Hidden Proteome in Ovarian Cancer. EBioMedicine 21,
55–64. doi: 10.1016/j.ebiom.2017.06.001

Delen, D., Walker, G., and Kadam, A. (2005). Predicting breast cancer
survivability: A comparison of three data mining methods. Artif. Intell. Med.
34, 113–127. doi: 10.1016/j.artmed.2004.07.002
August 2020 | Volume 11 | Article 1177

https://doi.org/10.1016/j.metabol.2017.02.006
https://doi.org/10.1016/j.metabol.2017.02.006
https://doi.org/10.1021/acs.analchem.6b03884
https://doi.org/10.1002/prca.201700077
https://doi.org/10.3390/jcm8101535
https://doi.org/10.1126/scitranslmed.3005623
https://doi.org/10.1126/scitranslmed.3005623
https://doi.org/10.1038/npjschz.2015.30
https://doi.org/10.1007/s10735-018-9802-3
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.1021/pr800548z
https://doi.org/10.1016/j.celrep.2015.10.078
https://doi.org/10.3322/caac.21552
https://doi.org/10.1016/S0140-6736(96)11196-X
https://doi.org/10.1056/NEJMoa1402121
https://doi.org/10.1002/pmic.201800482
https://doi.org/10.1016/j.ejca.2019.05.023
https://doi.org/10.1101/013177
https://doi.org/10.1016/j.ijms.2014.06.024
https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative
https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative
https://doi.org/10.1038/s41598-017-10396-w
https://doi.org/10.1038/538020a
http://www.cbioportal.org/
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1155/2018/9836256
https://doi.org/10.1097/MCG.0000000000000583
https://doi.org/10.1158/1078-0432.CCR-17-2236
https://doi.org/10.1158/1078-0432.CCR-17-0853
https://doi.org/10.1016/j.metabol.2016.12.018
https://doi.org/10.1194/jlr.M027961
https://doi.org/10.1007/s11060-018-2978-2
https://doi.org/10.1126/science.aar3247
https://doi.org/10.1074/mcp.M600119-MCP200
https://doi.org/10.1038/nbt.2877
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1002/bmc.3556
https://doi.org/10.1038/nature10983
https://doi.org/10.1038/nature10983
https://doi.org/10.1186/gb-2013-14-10-r110
https://doi.org/10.1016/j.ebiom.2017.06.001
https://doi.org/10.1016/j.artmed.2004.07.002
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Patel et al. Artificial Intelligence to Decode Cancer Mechanism
Dietterich, T. G., and Bakiri, G. (1995). Solving Multiclass Learning Problems via
Error-Correcting Output Codes (AI Access Foundation and Morgan Kaufmann
Publishers).

Doerr, A. (2019). Single-cell proteomics. Nat. Methods 16, 20. doi: 10.1038/
s41592-018-0273-y
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