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ABSTRACT
Background: Disturbances are crucial in determining forest biodiversity, dynamics,
and ecosystem functions. Surface fire is a significant disturbance in tropical forests,
but research on the effect of surface fire on structuring species and functional
composition in a community through time remains scarce. Using a 20-year dataset of
tree demography in a seasonal evergreen tropical forest in Thailand, we specifically
addressed two essential questions: (1) What is the pattern of temporal turnover in
species and functional composition in a community with frequent fire disturbance?
(2) How did the temporal turnover vary with tree size?
Methods: We analyzed species compositional and functional temporal turnovers in
four different tree size classes among five tree censuses. We quantified species
turnover by calculating Bray-Curtis dissimilarity, and investigated its underlying
mechanisms by comparing pairwise dissimilarity of functional traits with simulations
from null models. If fire disturbances contribute more to a stochastic process,
the functional composition would display a random pattern. However, if they
contribute more towards a deterministic process, the functional composition should
reveal a non-random pattern.
Results: Over 20 years (1994–2014), we observed changes in species composition,
whereas functional composition remained relatively stable. The temporal turnover
patterns of species and functional compositions varied with tree sizes. In particular,
temporal functional turnover shifted very little for large trees, suggesting that changes
in species composition of larger trees are contributed by species with similar
functional traits through time. The temporal functional composition turnovers of
smaller trees (DBH ≤ 5 cm) were mostly at random. We detected a higher functional
turnover than expected by null models in some quadrats throughout the 50-ha study
plot, and their observed turnover varied with diameter classes.
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Conclusions: Species compositional changes were caused by changes in the
abundance of species with similar functional traits through time. Temporal
functional turnover in small trees was random in most quadrats, suggesting that the
recruits came from the equal proportions of surviving trees and new individuals of
fast-growing species, which increased rapidly after fires. On the other hand,
functional composition in big trees was more likely determined by surviving trees
which maintained higher functional similarities than small trees through time. Fire
disturbance is important for ecosystem functions, as changing forest fire frequency
may alter forest turnover, particularly in functional composition in the new recruits
of this forest.

Subjects Biodiversity, Ecology, Plant Science, Forestry
Keywords Surface fire, Temporal turnover, Functional composition, Stochastic process, Pairwise
dissimilarity, Environmental filtering, Diameter class, Fast-growing species, Thailand, Functional
trait

INTRODUCTION
Many studies have used a functional trait-based approach to understand the processes of
community assembly and mechanisms that underlie the shifts in species composition
(Bernard-Verdier et al., 2012; Swenson et al., 2012; Purschke et al., 2013; Letten, Keith &
Tozer, 2014). Species’ responses to the environment are mediated by their functional traits
(Sandel & Low, 2019; Wang & Wan, 2021; Guerin et al., 2022), which affect species
performance such as growth and survival (Geber & Griffen, 2003; Violle et al., 2007; Reich,
2014). Optimal functional traits of tree species vary along environmental gradients.
For example, tropical trees in higher elevations tend to have thicker leaves and lower
specific leaf areas than those in lower elevations. These leaf traits assist trees to tolerant in
harsh environments, such as limited soil water condition (Xu, Tomlinson & Li, 2019).
For these reasons, spatial and temporal variation in environmental conditions may lead to
changes in species and functional composition.

Mechanisms underlying community dynamics involve stochastic and deterministic
processes (Swenson et al., 2012). The relative importance of these two processes can be
determined by evaluating temporal turnover in species and functional composition
(Swenson et al., 2012). With only stochastic processes, such as ecological drift or dispersal
limitation (Hubbell, 2001; Chave, 2004), a community is formed by a set of species that
randomly enter or leave the community. Therefore, the temporal turnover in species
composition is not related to changes in abiotic or biotic conditions, such as drought,
predation pressure, and competition. As a consequence, the changes in functional
composition would display a random pattern (Swenson et al., 2012). On the other hand,
deterministic processes involve interactions among species and environment. As plant
functional traits mediate species’ responses to abiotic or biotic conditions, species turnover
may be associated with species functional traits which are favored in certain environments
(Kraft, Valencia & Ackerly, 2008; Cornwell & Ackerly, 2009). In this case, a community
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would exhibit non-random turnovers in functional composition, either due to
environmental filtering or biotic and abiotic factors.

Disturbances in tropical forests are critical driving forces of forest turnover, with
consequent changes in species (Denslow, 1980; Turner, Dale & Everham, 1997; Otterstrom,
Schwartz & Velázquez-Rocha, 2006; Chazdon et al., 2007) and functional composition
(Michalski, Nishi & Peres, 2007; Vanderwel, Coomes & Purves, 2013; Marra et al., 2018).
Shifts in species composition can alter ecosystem function (Diaz & Cabido, 1997;
Cardinale et al., 2011), such as primary productivity and long-term carbon storage
(Chapin, Matson & Mooney, 2002). In seasonal dry tropical forests in Southeast Asia,
fire disturbance is a key element in maintaining forest structure and species diversity
because it not only leads to death of trees but also provides opportunities for new recruits
to establish (Baker & Bunyavejchewin, 2017). Fire events in tropical dry forests are usually
low-intensity surface fires with short flame lengths and often occur during the dry
season (Stott, 1988; Baker, Bunyavejchewin & Robinson, 2008; Bunyavejchewin, Baker &
Davies, 2011). Surface fires usually cause high tree mortality rates for small-sized trees (Slik
& Eichhorn, 2003; Baker, Bunyavejchewin & Robinson, 2008), open up space for
recolonization, and boost seed germination of some tree species (Fenner, 2000; Knox &
Clarke, 2006; Otterstrom, Schwartz & Velázquez-Rocha, 2006). In addition, loss of
aboveground vegetation due to fire reduces potential neighborhood competition for
surviving individuals. Fast-growing or pioneer species with functional traits like high leaf
nutrient contents (phosphorus and nitrogen) may have a higher chance to establish after
fire successfully (Chai et al., 2016). Accordingly, the post-fire community is likely
composed of large surviving trees and new recruits from species with certain traits that
adapt to the post-fire environment.

Many studies found fire disturbances could cause shifts in species composition
(Cochrane & Schulze, 1999; Gilliam & Platt, 1999; Cleary et al., 2006). However, it is still
unclear how fire influences turnover in functional composition, because fire can contribute
to both stochastic and deterministic processes. When fire contributes to a stochastic
process, it is likely to kill trees randomly or indiscriminately, regardless of species, size of
trees, or functional traits. Consequently, functional turnover should exhibit random
patterns. However, the role of the fire in shaping a community may be different, as a
surface fire disturbance would kill mostly small trees, while a large canopy fire disturbance
is more likely to kill almost all trees indiscriminately. Because of the non-random
mortality, temporal turnover in functional composition should be non-random (Swenson,
Anglada-Cordero & Barone, 2011; Prado-Junior et al., 2016). When larger trees have higher
chance to survive after fire disturbances than smaller trees (Slik & Eichhorn, 2003;
Baker, Bunyavejchewin & Robinson, 2008), we would expect the post-fire functional
composition should be more similar to the pre-fire composition in large trees than in
small trees. Even though there are studies that focused on the effect of fire disturbance on
species turnover according to tree size variability in tropical forests (Slik & Eichhorn, 2003;
Baker, Bunyavejchewin & Robinson, 2008), there is no study that investigates how
functional turnover varies with size classes in relation to fire disturbances. Quantifying this
functional turnover in different tree sizes could help to enhance our understanding of

Kaewsong et al. (2022), PeerJ, DOI 10.7717/peerj.13270 3/19

http://dx.doi.org/10.7717/peerj.13270
https://peerj.com/


mechanisms driving community dynamics. Such a study would also help us better predict
future population dynamics and ecosystem functions.

To better understand the role of fires in structuring tropical dry forests, we quantified
the effects of fire disturbance on species and functional composition of tree species using a
20-year tree demography dataset from a seasonal dry evergreen forest with recurrent
surface fires. Specifically, we addressed the following questions: (1) What are the pattern of
temporal turnover in species and functional composition? (2) How did the temporal
turnover vary with tree size?

MATERIALS AND METHODS
Study site
The research was conducted in a seasonal dry evergreen tropical forest, the 50-ha Huai
Kha Khaeng Forest Dynamics Plot (HKK FDP) from north-western Thailand (15�40′N,
90�10′E). The HKK FDP was established in 1990 to 1991. All trees with diameter at breast
height (DBH, 1.3 m above ground) ≥1 cm were tagged with a unique number and
identified to species (Condit, 1998; Anderson-Teixeira et al., 2015). Trees were measured
and censused at a 5-year interval from 1994 to 2014. The plot contains about 300 tree
species, most of which are evergreen. Dominant species include Croton roxburghii
(Euphorbiaceae), Dimocarpus longan (Sapindaceae), and Polyalthia viridis (Annonaceae).
The elevation of the plot ranges from 549 m to 638 m above sea level (Bunyavejchewin
et al., 1998). The mean annual temperature is around 23.5 �C (Bunyavejchewin et al.,
2009). Mean annual rainfall is 1,500 mm (Baker & Bunyavejchewin, 2017), with a 6-month
dry season beginning in November (Bunyavejchewin et al., 2003). The major disturbances
are low-intensity surface fires. There were three fire events recorded between 1990 and
2020 (Baker, Bunyavejchewin & Robinson, 2008; Trouvé, Bunyavejchewin & Baker, 2020),
and fire occurred approximately once in a decade. The 1992 fire burned the south-east
corner of the 50-ha plot (2 years before the first full census in 1994), the 1998 fire burned
through the entire area of the plot (Bunyavejchewin et al., 2009), and the 2005 fire burned
only some parts mostly around the border and very slightly in the middle of the plot
(Trouvé, Bunyavejchewin & Baker, 2020). The HKK FDP had no records of human
disturbances (Bunyavejchewin et al., 1998).

Functional trait measurement
We collected functional trait samples of the 49 most abundant species (Table S1) from June
to September 2016. We collected leaf samples from trees across four DBH size classes:
(1) ≤5 cm, (2) >5 cm to ≤10 cm, (3) >10 cm to ≤20 cm, and (4) >20 cm. We sampled at
least three individual trees in each diameter class of each species. We collected three leaves
and ten leaflets from the species with simple and compound leaves, respectively, except
for of C. roxburghii. For C. roxburghii, only two individual trees from the smallest size
class were sampled. All leaf samples were collected from trees inside the 50-ha plot.
We measured leaf chlorophyll content (Chlo, SPAD) from each individual leaf by using a
hand-held ‘SPAD-502 Chl meter’ (Minolta Camera Co., Osaka, Japan). We measured leaf
area (LA, cm2), leaf dry matter content (LDMC, mg g−1), leaf thickness (LT, mm), and
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specific leaf area (SLA, cm2 g−1) of each leaf. We calculated the mean values of each species
and each size class from these individual leaves. For leaf chemical traits, we took
mixed-sample leaves as represented for size class mean values to measure leaf total carbon
concentration (LCC, g kg−1), leaf total nitrogen concentration (LNC, g kg−1), leaf total
phosphorus concentration (LPC, g kg−1), and leaf total potassium concentration
(LKC, g kg−1). All leaf functional traits were measured according to Pérez-Harguindeguy
et al. (2013). We collected five wood samples from individuals outside the plot for each
tree species and measured wood density following the ForestGEO protocol (www.
forestgeo.si.edu/protocols). We calculated the mean wood densities of each species. Note
that due to the limitation of collecting wood samples across size classes, we assigned the
wood densities of all four size classes of each species the same values as takenfrom the
mean wood density of that species.

Quantifying temporal turnover in species and functional composition
We compared species and functional composition of 1,250 20 m × 20 m quadrats between
different censuses. We used the 1994 census as a baseline and calculated the temporal
turnover of the following time intervals: 1994–1999, 1994–2004, 1994–2009, and
1994–2014. The 20 m × 20 m is an appropriate scale to investigate forest turnover for
tropical forests as recommended by Swenson et al. (2006) and Swenson et al. (2012).
We quantified species turnover for the community from the 49 most abundant species and
for each diameter class using an abundance-based metric, the Bray-Curtis dissimilarity
(‘vegdist’ function in the package ‘vegan’ in R). To calculate temporal turnover in
functional traits, we performed the log10-transformation of the functional trait values to
achieve normality prior to the analysis. We then standardized all functional traits by
subtracting the mean and divided by the standard deviation. We calculated the pairwise
dissimilarity of the functional traits using the Euclidean distance-based measurement
(‘dist’ function in the package ‘stats’) of each 20 m × 20 m quadrat to represent the
temporal turnover in functional composition in each quadrat. We did the same analysis
for temporal functional turnover in each of the four tree diameter classes (1–5, 5–10,
10–20, >20 cm). The formula of pairwise dissimilarity calculation is described in Swenson
et al. (2012). This gives:

DPW ¼ fA
XSA

i¼1

fidib þ fB
XSB

j¼1

fjdja

where SA and SB are the total number of tree species at time A and B in the community,
respectively; fi is the relative abundance of species i at time A, and fj is the relative
abundance of species j at time B in the community. The mean pairwise functional distance
between species i at time A and all species at time B in the community is represented by dib
and the mean pairwise functional distance between species j at time B and all species
at time A in the community is represented by dja. fA is the total number of trees at time A
divided by the total number of trees at time A and B, and fB is the total number of trees at
time B divided by the total number of trees at time A and B.
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Null models for temporal turnover in functional trait composition
We used a null model approach to test if the observed pairwise functional dissimilarity
value was significantly different from random. We constructed null distributions of
temporal turnover in functional trait combinations for each quadrat using 9,999
randomizations. In each randomization, species names were randomly drawn from all
studied species (49 species) for each quadrat. We calculated the pairwise functional
dissimilarity of each quadrat using the randomized data. We then compared the observed
value with the null distribution and estimated the quantile score (rank) of the observed
pairwise dissimilarity value. The quantile scores of observed functional pairwise
dissimilarity were significantly lower or higher than expected when the quantile scores of
the observed values fell within the bottom 2.5th or the top 97.5th percent quantiles,
respectively. This also implies that the temporal turnovers in functional composition were
more similar or dissimilar than expected by chance.

RESULTS
Temporal species turnover
The Bray-Curtis (BC) dissimilarities tended to increase with the time intervals (1994–1999,
1994–2004, 1994–2009, and 1994–2014). This indicates that the species composition of
most quadrats changed over time. On average the BC dissimilarities between 1994 and
1999 were the lowest in comparison to other intervals (Fig. 1 but see additional
information in Fig. S1). The distribution of this interval had the highest peak compared
with other time intervals.

The temporal turnover in species composition varied across diameter classes (Fig. 2 and
Fig. S2). The BC dissimilarities tended to increase with the time interval between censuses
for all diameter classes, and the shift was most evident in trees at the smallest diameter
class (DBH ≤ 5 cm). In other words, the differences in BC dissimilarities tended to decrease
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Figure 1 Kernel density estimates of Bray-Curtis dissimilarity for temporal community-wide
turnover in species composition varying in time intervals. The dissimilarity values were calculated
at 1,250 20 m × 20 m quadrats in the 50-ha Huai Kha Khaeng Forest Dynamics Plot, Thailand. Line
colors represent time intervals in 1994–1999, 1994–2004, 1994–2009, and 1994–2014 in black, purple,
blue, and red respectively. Increasing dissimilarity values indicate increasing differences in species
composition through time. Variations in kernel density highlight that the shifts in species composition
tend to increase with the increasing time. Full-size DOI: 10.7717/peerj.13270/fig-1
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with tree sizes. Furthermore, the average values were the lowest in 1994–1999 in all
diameter classes. Trees in the largest size class (DBH > 20 cm) had the lowest
compositional turnover between 1994 and 1999.

Temporal functional turnover
The temporal functional turnover did not increase with time intervals (Fig. 3 and Fig. S3).
Overall, the quantile scores of pairwise functional dissimilarity were not significantly
different from the null models in most quadrats. Within 1,250 quadrats, 77, 49, 50, and 59
quadrats exhibited functional turnover significantly different from random in 1994–1999,
1994–2004, 1994–2009, and 1994–2014, respectively, (Fig. 3). In addition, these
quadrats are primarily distributed around the middle of the 50-ha study plot (Fig. 4).

While the overall temporal turnover in functional composition remained unchanged,
the functional turnover decreased with tree size (Fig. 5 and Fig. S4). The number of
quadrats that had functional turnover significantly lower than expected by random
increased with tree size. In most quadrats, pairwise dissimilarities of saplings and treelets
(DBH ≤ 5 cm and 5 cm < DBH ≤ 10) were not significantly different from null models.
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Figure 2 Kernel density estimates of Bray-Curtis dissimilarity for temporal turnover in species
composition for four different time intervals according to the tree diameter size classes. The dis-
similarity values were calculated at 1,250 20 m × 20 m quadrats in the 50-ha Huai Kha Khaeng Forest
Dynamics Plot, Thailand. Line colors represent time intervals in 1994–1999, 1994–2004, 1994–2009, and
1994–2014 in black, purple, blue, and red respectively. We show results for all four DBH size classes as
right-hand panels (large trees) highlight the much lower species turnover comparing to left-hand panels
(small trees). Full-size DOI: 10.7717/peerj.13270/fig-2
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Figure 3 Histograms show quantile scores of functional pairwise dissimilarity for community-wide
turnover in functional composition for different time intervals at 1,250 20 m × 20 m quadrats in the
50-ha Huai Kha Khaeng Forest Dynamics Plot, Thailand. Quantile scores represent values of sig-
nificantly smaller or higher than expected by null models at 2.5 (blue bars) or 97.5 (yellow bars)
respectively, at the 0.05 level. The other bars in greyscale represent the values between 2.5 and 97.5 (low
values in grey and high values in white). Each bar corresponds to an interval of 2.5.

Full-size DOI: 10.7717/peerj.13270/fig-3
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Figure 4 Spatial distributions of quantile scores of functional pairwise dissimilarity for
community-wide turnover in functional composition for different time intervals at 1,250 20 m ×
20 m quadrats in the 50-ha Huai Kha Khaeng Forest Dynamics Plot, Thailand. Quantile scores
represent values of significantly smaller or higher than expected by null models at 2.5 (blue squares) or
97.5 (yellow squares) respectively, at the 0.05 level. The other squares in greyscale represent the values
between 2.5 and 97.5 (low values in grey and high values in white).

Full-size DOI: 10.7717/peerj.13270/fig-4
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Figure 5 Histograms show quantile scores of functional pairwise dissimilarity for turnover in functional composition for different time
intervals and diameter classes at 1,250 20 m × 20 m quadrats in the 50-ha Huai Kha Khaeng Forest Dynamics Plot, Thailand.
(A) 1994–1999, (B) 1994–2004, (C) 1994–2009, and (D) 1994–2014. Quantile scores represent values of significantly smaller or higher than
expected by null models at 2.5 (blue bars) or 97.5 (yellow bars) respectively, at the 0.05 level. The other bars in greyscale represent the values between
2.5 and 97.5 (low values in grey and high values in white). Each bar corresponds to an interval of 2.5. Full-size DOI: 10.7717/peerj.13270/fig-5
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The quadrats with pairwise dissimilarities significantly higher than null models were
distributed differently within the HKK FDP among size classes (Fig. 6). That is, in the
smallest size class the quadrats with significantly higher functional turnover distributed
around the southwest corner of the plot, whereas in the largest size class the quadrats with
significantly higher functional turnover primarily occurred at the high elevations (Fig. 6).

DISCUSSION
Effect of fire on turnover in species composition
Our results showed that the abundance-based species compositional changes tended to
increase with the time intervals in HKK in the past two decades (Fig. 1 and Fig. S1).
One possible reason is that fire events occurred prior to both 1994 and 1999 tree censuses,
and the recovery time from fires was similar for both censuses (Table S2). In 1992, a fire

Figure 6 Spatial distributions of quantile scores of functional pairwise dissimilarity for turnover in functional composition for different time
intervals and diameter classes at 1,250 20 m × 20 m quadrats in the 50-ha Huai Kha Khaeng Forest Dynamics Plot, Thailand. (A) 1994–1999,
(B) 1994–2004, (C) 1994–2009, and (D) 1994–2014. Quantile scores represent values of significantly smaller or higher than expected by null models
at 2.5 (blue squares) or 97.5 (yellow squares) respectively, at the 0.05 level. The other squares in greyscale represent the values between 2.5 and 97.5
(low values in grey and high values in white). The blue rectangle represents area with high elevations (around x = 200 to 400 m and y = 0 to 150 m).

Full-size DOI: 10.7717/peerj.13270/fig-6
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burned some parts of the study site, and in 1998 a fire burned around 1,500 km2 of the
surrounding area and thoroughly across the 50-ha study plot (Baker, Bunyavejchewin &
Robinson, 2008). There are only two years apart between the 1992 fire and the 1994 census,
and one year apart between the 1998 fire and the 1999 census. As surface fires killed
mostly small individuals (Baker, Bunyavejchewin & Robinson, 2008), species composition
1 or 2 years after a fire was probably composed of surviving trees and recruits of
fast-growing species. The number of trees in the 50-ha plot declined from 78,923 to 74,347
individuals between 1994 and 1999, probably due to the 1998 fire which killed a large
number of individuals. Since then, only one fire occurred in 2005 and the abundance in the
50-ha plot increased to more than 127,000 trees in 2014.

Even though surface fires have been observed to reduce the number of trees, the
abundance of many species can quickly recover with a few years (Cochrane & Schulze,
1999; Baker, Bunyavejchewin & Robinson, 2008). This is because the reduction in tree
density opens up more space for recruitment. In addition, a decrease in tree density may
weaken density dependent effect due to competition or natural enemies, which may lead to
higher seedling survival rate (Augspurger, 1984). Fast-growing species, such as
C. roxburghii, had high mortality during fire events but can quickly recover after fire
disturbances (Baker, Bunyavejchewin & Robinson, 2008). Unlike other slow-growing
species, these species may benefit from the reduction in tree density caused by fires.
Abundances of C. roxburghii increased greatly from 8,896 in 1994 to 33,990 in 2014.
On the other hand, Baccaurea ramiflora, a thin bark species (Baker & Bunyavejchewin,
2006) that fires greatly affect its mortality (Baker, Bunyavejchewin & Robinson, 2008), has
slightly decreased in abundance from 2,567 in 1994 to 2,048 in 2014.

The patterns of temporal turnover in species composition across size classes (Fig. 2 and
Fig. S2) were similar to the overall pattern (Fig. 1 and Fig. S1). Our results particularly
showed a strong species turnover pattern in small trees through time. This finding
highlights that species composition in big trees was more stable than in small trees over
time. The effect of surface fire may contribute to these patterns. Big trees are more effective
in preventing the heat of fires from entering their living tissues than small trees (Gutsell &
Johnson, 1996; Brando et al., 2012). While fires kill a huge number of small trees (Cochrane
& Schulze, 1999; Baker, Bunyavejchewin & Robinson, 2008; Brando et al., 2012), new
recruits of diverse species enter the post-fire community. According to our results, species
turnover is lower in larger trees (DBH > 5 cm), perhaps due to low mortality rates and
limited recruitment in large size classes. Even though a previous study in this forest has
reported that fires could effectively kill large trees of some common species such as
C. roxburghii, B. ramiflora, and P. viridis (Baker, Bunyavejchewin & Robinson, 2008),
the mortality of these large trees was relatively low. For example, the 1998 fire burned
through the study plot, and the mortality of the larger C. roxburghii trees was 34 times
lower than that of the smaller trees in the 1999 census. We also found that the largest-sized
trees had the lowest compositional turnover between 1994 and 1999 (Fig. 2). The result
may reveal the relatively minor effects of 1992 and 1998 fires on species composition in big
trees. Those surviving big trees that persist in 1994 and 1999 might contribute to the
composition similarities in 1994 and 1999.
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Effects of fire on turnover in functional composition
Our results showed that functional turnover in many quadrats was not different from the
expectations of stochastic processes (Fig. 3 and Fig. S3). The results indicate that the
temporal shifts in functional composition in the whole plot are predominantly random.
In other words, the changes in tree species composition in this forest are mostly random
through time in terms of functional trait combinations. However, the functional turnover
was significantly lower than null expectations in some quadrats (Figs. 3 and 4). This
implies that the observed temporal turnover patterns in these quadrats were a result of
deterministic processes, such as environmental filtering, that favor species with optimal
functional traits in that environment (Kraft, Valencia & Ackerly, 2008; Cornwell & Ackerly,
2009; Jung et al., 2010). In our case, high canopies of dipterocarps in the flat areas around
the middle of the plot create a low-light condition that is suitable for shade-tolerant
species. These species usually have dense wood, providing these trees with resistance from
physical damages under the shade (van Gelder, Poorter & Sterck, 2006). After these
shade-tolerant trees die, new recruits under the same dipterocarp canopies will be
constrained by the light condition, resulting in another set of shade-tolerant species with
dense woods. Consequently, functional composition in this area will remain similar
through time.

Furthermore, we found functional composition resulting from species with highly
functional similarities was more stable in 1994–1999. After the 1992 and 1998 fire
disturbances, the recolonizing species possessed similar functional traits to those before the
fire. Consequently, the functional turnover in 1994–1999 was lower than in other years
(Fig. 3). Another reason could be that, based on species turnover results, we found species
compositions were similar between 1994 and 1999. Species turnover during this time
was possibly mainly determined by trees that survived both the 1992 and 1998 fires.

As species composition varied through time, the functional composition remained
unchanged. One possible reason for this apparent decoupling between species and
functional turnover is that species that died during this study period were replaced by
species with similar traits through some deterministic processes. Our findings are
consistent with previous research in the 50-ha Barro Colorado Island Forest Dynamics
Plot (BCI FDP) in Panama. Functional composition in BCI FDP was relatively stable
through time, despite there being shifts in species composition (Swenson et al., 2012).

We further observed functional trait distributions of each trait over time in the
community, which could help us better explain the temporal trends in functional
composition. Only a few functional traits shifted through time. WD slightly decreased,
while LPC increased with the time interval (Fig. 7). Accordingly, species that grow fast
commonly have high values of LPC, LNC (Chai et al., 2016), SLA (Poorter et al., 2008;
Prado Júnior et al., 2015), and low WD (Enquist et al., 1999;Muller-Landau, 2004). If fires
kill many trees and create suitable habitats for recruits of fast-growing species, one would
expect functional composition after fire disturbances to be contributed mainly by
fast-growing species. Consistent with this expectation, we found that the dominant and
fast-growing species C. roxburghii, which has low WD and high LPC, greatly increased in
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abundance over time. This implies that a prominent change in the abundance of this
species may have caused the increase in LPC and decrease in WD. Other functional
traits varied very little through time, suggesting that this forest is generally composed of
species with similar functional traits over time. Thus, the compositional changes in species
in this forest are mainly caused by shifts in the abundance of a dominant fast-growing
species and species with similar functional traits over time.

Temporal functional turnover varied with tree sizes and exhibited similar patterns in
species turnover. We found that big trees (DBH > 10 cm) mostly showed significantly
lower functional turnover than small trees (Fig. 5). The functional turnover in many
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Figure 7 Kernel density estimates of functional traits of all trees from 49 study species at the 50-ha
Huai Kha Khaeng Forest Dynamics Plot, Thailand.All trees of the same species are assigned to have the
same trait values derived by species mean traits. Chlo, Chlorophyll content; LT, leaf thickness; LA, leaf
area; SLA, specific leaf area; LDMC, leaf dry matter content; WD, wood density; LCC, leaf total carbon
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quadrats of big trees was significantly lower than expected by null models, indicating that
the shifts in species composition of big trees were due to replacement by species with
similar functional traits. In other words, most large trees that survived fires through
time determined the functional composition after burning. The temporal functional
turnover of small trees appeared to be more random than big trees. The composition of
small trees may be equally contributed by recruits of fast-growing species and surviving
trees. The areas which contained most quadrats with random patterns in functional
turnover were distributed throughout the plot. Remarkably, high temporal functional
turnover was observed in some quadrats which differed according to areas and varied
among diameter size classes (Fig. 6).

Higher temporal functional turnovers than expected by null models mainly occurred in
many quadrats around the southwest corner of HKK FDP for trees of the smallest
size. Functional turnovers in these areas are possibly determined by the increase in
C. roxburghii abundance. On the other hand, quadrats with significantly high functional
turnover in big trees were distributed mainly at high elevations (Fig. 6). In fact, these
areas are relatively dry and have a high percentage of rock with low soil moisture compared
to lower elevations. There are few big trees in comparison to low elevations, and
only few species, such as Lagerstroemia tomentosa, live specifically in these areas
(Bunyavejchewin et al., 2009). Big trees of L. tomentosa disappeared in some quadrats while
other species such as C. roxburghii and Mallotus philippensis established in these areas
through time. Consequently, temporal functional turnover in these areas was perhaps
driven by species with different functional traits.

Although surface fires could kill some large trees for some species (Baker,
Bunyavejchewin & Robinson, 2008), other factors, such as drought, may also be important.
Drought not only induces fire occurrences (Cleary & Genner, 2004; Cochrane, 2009)
but also increases the mortality risk of large trees (Bennett et al., 2015). During the study
period (1991–2014), several ENSO events were recorded (1991–1992 (Harger, 1995),
1993–1994, 1997–1998 (Wooster, Perry & Zoumas, 2012)). Droughts associated with these
ENSO events may also contribute to the death of the big trees in HKK.

Although temporal turnover in functional composition changed very little, functional
turnover varied greatly throughout the entire 50-ha plot (Figs. 4 and 6). This variation
across quadrats might be affected by the spatial heterogeneity of fire intensity (Trouvé,
Bunyavejchewin & Baker, 2020). Factors such as light conditions, soil and topographic
variables at local scales might also contribute to the spatial variation in the functional
turnover patterns. For instance, the soil moisture in the quadrats at low elevations was
relatively high, influencing the fire occurrence and intensity (Trouvé, Bunyavejchewin &
Baker, 2020), thus contributing to the temporal forest turnover in HKK.

CONCLUSIONS
Overall, this study demonstrates that temporal shifts in species composition are not
associated with functional compositional changes in a seasonal dry evergreen tropical
forest. This suggests that the temporal changes in species composition were caused by
species with similar functional traits. Both species compositional and functional turnover
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varied with tree size. Surface fires might kill many small trees and, at the same time,
promote dominant and fast-growing species that are well adapted to fire disturbances to
increase after burning. Accordingly, functional similarities were lower in these small
trees. In contrast, big trees that survived fires could persist and dominantly act as
determinants of similar functional composition through time. Other environmental
factors might also co-determine in these compositional changes through time.
The limitation of our study is that we could not include functional traits related to fire
tolerance and survival strategies, such as bark thickness and resprouting ability. Further,
we could not assess the effects of intraspecific (inter-individual) variation in trait
values and fire regimes like fire intensity which may affect the results. Therefore, future
works should include fire-related functional traits, intraspecific trait variation, and detailed
fire information in the analysis.
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