
Citation: Khristoforova, Y.;

Bratchenko, I.; Bratchenko, L.;

Moryatov, A.; Kozlov, S.; Kaganov, O.;

Zakharov, V. Combination of Optical

Biopsy with Patient Data for

Improvement of Skin Tumor

Identification. Diagnostics 2022, 12,

2503. https://doi.org/10.3390/

diagnostics12102503

Academic Editor: Viktor Dremin

Received: 7 September 2022

Accepted: 12 October 2022

Published: 15 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Combination of Optical Biopsy with Patient Data for
Improvement of Skin Tumor Identification
Yulia Khristoforova 1,* , Ivan Bratchenko 1 , Lyudmila Bratchenko 1, Alexander Moryatov 2, Sergey Kozlov 2,
Oleg Kaganov 2 and Valery Zakharov 1

1 Laser and Biotechnical Systems Department, Samara National Research University, 34 Moskovskoe Shosse,
443086 Samara, Russia

2 Department of Oncology, Samara State Medical University, 89 Chapaevskaya Str., 443099 Samara, Russia
* Correspondence: khristoforovajulia@gmail.com

Abstract: In this study, patient data were combined with Raman and autofluorescence spectral pa-
rameters for more accurate identification of skin tumors. The spectral and patient data of skin tumors
were classified by projection on latent structures and discriminant analysis. The importance of patient
risk factors was determined using statistical improvement of ROC AUCs when spectral parameters
were combined with risk factors. Gender, age and tumor localization were found significant for
classification of malignant versus benign neoplasms, resulting in improvement of ROC AUCs from
0.610 to 0.818 (p < 0.05). To distinguish melanoma versus pigmented skin tumors, the same factors
significantly improved ROC AUCs from 0.709 to 0.810 (p < 0.05) when analyzed together according
to the spectral data, but insignificantly (p > 0.05) when analyzed individually. For classification of
melanoma versus seborrheic keratosis, no statistical improvement of ROC AUC was observed when
the patient data were added to the spectral data. In all three classification models, additional risk
factors such as occupational hazards, family history, sun exposure, size, and personal history did not
statistically improve the ROC AUCs. In summary, combined analysis of spectral and patient data can
be significant for certain diagnostic tasks: patient data demonstrated the distribution of skin tumor
incidence in different demographic groups, whereas tumors within each group were distinguished
using the spectral differences.

Keywords: Raman spectroscopy; cancer risk factors; skin cancer; PLS analysis; statistical significance

1. Introduction

The annually growing trend of melanoma disease is observed worldwide [1]. Re-
search [2] estimated that 106,110 new cases of melanoma were diagnosed and about
7180 people died of this disease in the USA in 2021. The growth of melanoma can be
caused by different personal [3–5], behavioral, and socioeconomic factors [6,7]. The Na-
tional Cancer Institute has reported [2,8–10] that melanoma is more common in men than
women and more frequent among whites in comparison with other races or ethnicities.
Moreover, there is a strong relationship between melanoma cases and patient age [2]. For
example, incidence rates for MM skin cancer in the UK are the highest in people aged 75
and over [11].

In terms of environmental factors, ultraviolet radiation is the most dangerous factor
causing melanoma growth [11,12]. Localization can also be a potentially informative factor
for more accurate skin cancer diagnosis, because some types of skin tumor often develop
in the body areas that are directly exposed to UV radiation, with others appearing in
covered body sites subjected to intense sunburn because of their rare exposure to regular
UV radiation [13].

High risk can also be associated with family history: about 10% patients with melanoma
have a family history of the disease [14–17]. The study by Hemminki et al. [18] demon-
strated that melanoma is several times more common in people whose first-degree relatives
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have had melanoma. Moreover, researchers [19,20] reported on the relationship between
patient history of skin neoplasm and the risk of developing melanoma, suggesting that the
patient’s history indicates risk of skin cancer growth. People working in certain professions
can have a higher risk of skin cancer and some precancer conditions, due to interaction
with dangerous industrial carcinogens [21].

Preliminary diagnosis of melanoma using dermoscopy [22] or other developing optical
biopsy techniques [23–25] did not consider the above risk factors that may be potential pre-
requisites for developing skin cancer. However, incorporating patient-specific information
can improve the accuracy of disease identification based on clinical studies [26–28]. Pacheco
and Krohling [26] demonstrated the importance of clinical features for skin cancer detection
based on clinical images and confirmed the hypothesis that patient clinical information is
important for this task. However, they concluded that the clinical features they examined
were not practical indicators for all types of skin lesions. Zeng et al. [27] examined skin
tumors using Raman spectral data, considering various risk factors, and revealed that only
patient age significantly contributed to improved diagnosis of malignant tumors. Taking
into account the findings of other research teams [26–28], we aimed to test the possibility of
improving skin cancer identification with our experimental data, by combining Raman and
autofluorescence data as well as patient information.

In our previous work [29,30], we performed an optical biopsy using Raman and autoflu-
orescence (AF) spectroscopy to diagnose skin cancer. Raman spectroscopy has proved to be a
sensitive research instrument in clinical practice for a number of purposes [24,27,30,31]. The
proposed method [29,32] was able to classify skin neoplasms with a mean accuracy higher
than the accuracy of general practitioners or trainees, and with comparable or less accuracy
than trained dermatologists and experts. Therefore, it remains necessary to improve the
accuracy of skin cancer diagnosis performed with Raman and AF analysis.

The aim of our study was to estimate the prognostic possibility of combining individ-
ual patient factors with the results of optical biopsy for detecting skin cancer. The spectral
data of 617 skin tumors that were analyzed in our previous work [29] were combined
with data on risk factors, for joint analysis. We demonstrated the results of the proposed
approach by combining Raman spectroscopy and AF with individual patient factors such
as environmental risk, history, and personal risk factors for classification of malignant skin
tumors, melanoma, and other skin neoplasms.

2. Materials and Methods
2.1. Experimental Setup

The detailed description of the experimental setup for simultaneous Raman and AF
signal registration was presented in our previous studies [29,32]. The scattering spectral
response from skin tissue in the near-infrared region was stimulated using a thermally stabi-
lized diode laser module (LuxxMaster, LML-785.0RB-04, PD-LD, Ushio Inc., Tokyo, Japan)
with 785 ± 0.1 nm central wavelength. The laser power density on the skin was about
0.3 W/cm2 and did not cause any damage to skin or discomfort in patients. The optical
Raman probe (RPB785, InPhotonics Inc., Norwood, MA, USA) contained supplying and
collecting branches. Laser excitation at 785 nm was delivered to the skin surface by means
of the excitation optic fiber (0.22 NA, 100 µm) and the supplying branch of the probe with
a band-pass filter and a focusing lens. The scattered radiation was collected by the same
lens and delivered to the collecting branch by the dichroic mirror and the conventional
mirror. The longpass filter cut the excitation laser wavelength from the collected signal,
and the Raman and fluorescence signals of skin tissue were transmitted to the spectrometer
using the focusing lens and the collecting fiber (NA 0.22, 200 µm). The collected signal
was decomposed into a spectrum using a portable spectrometer (QE65Pro, Ocean Optics
Inc., Largo, FL, USA). The spectra were registered in the 780–1000 nm region with spectral
resolution of 0.2 nm. The acquisition time was 20 s with a triple accumulation. The QE65Pro
detector was cooled down to −15 ◦C. The silicon tip on the probe provided the 7–8 mm
distance between the skin surface and the probe for all measurements.
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2.2. Patients

The protocols of the in vivo tissue diagnostics were approved by the ethical committee
of Samara State Medical University (Samara Region, Samara, Russia, protocol No 132,
29 May 2013), the clinical studies fall within The Code of Ethics of a Doctor of Russia,
approved at the 4th Conference of the Russian Medical Association, and within the World
Medical Association Declaration of Helsinki. The study involved 615 patients of different
ages, including 178 men and 437 women, who consulted specialized oncologists in the
Samara Regional Clinical Oncology Dispensary from May 2017 to December 2019. All
the patients were aged ≥ 18. Informed consent was acquired from all patients before the
in vivo study.

Spectral measurements of 617 tumors were carried out for 615 patients. The spectral
measurement of each skin tumor was registered from the approximate central point of
the tumor area. The region of interest for spectral registration of tumors was confirmed
by a medical specialist on the basis of dermatoscopic images. The skin tumors were
localized at different body sites. The sizes of skin tumors varied widely, from 0.3 to 5 cm.
Summary of the patients and tumors is presented in [29]. In accordance with results of
histopathological analysis, the analyzed spectral cohort included 204 malignant tumors
(70 malignant melanomas (MM), 122 basal cell carcinomas (BCC) and 12 squamous cell
carcinomas (SCC)), as well as 413 benign tumors (26 dermatofibromas (DF), 62 papillomas
(PP), 40 hemangiomas (HE), 113 seborrhoeic keratosis (SK), 170 nevi (NE) (all types),
1 cutaneous horn, and 1 benign tumor of epidermal appendage).

2.3. Risk Factors for Skin Cancer Growth

Cancer develops when human cells are damaged due to various factors and the
number of damaged cells starts to grow uncontrollably. In this work, we analyzed several
risk factors that can potentially provoke skin cancer growth.

At the initial appointment, the oncologist collected the patient history and potential
risk factors for skin cancer growth: gender (G), age (A), tumor localization (L), family history
(FH), personal history (PH), sun exposure (SE), size (S), and occupational hazards (OH).
All the collected demographic indicators were defined by the patient survey. However,
for different reasons, not every patient provided the full set of collected risk factors. Only
gender, age and localization factors were received for all the 617 skin neoplasm spectra.
Therefore, we considered two spectra datasets:

(I) Spectral data of all 617 skin neoplasms with only three indicators: (G), (A), (L);
(II) Spectral data of only 481 out of the 617 skin neoplasms with all eight indicators: (G),

(A), (L), (FH), (PH), (SE), (S), (OH).

All the risk factors were digitized:

G: 1—male; 2—female;
A: 1—under 29, 2—30 to 39, 3—from 40 to 49, 4—from 50 to 59, 5—from 60 to 69,

6—over 70;
L: 1—head and neck, 2—trunk, 3—upper limb, 4—lower limb;
FH: 0—no malignant diseases in close relatives; 1—close relatives with malignant diseases,

2—close relatives with skin cancer disease;
PH: 0—the patient had no serious disease; 1—the patient had a different disease; 2—the

patient had a malignant disease;
SE: 0—the patient avoids suntan; 1—the patient gets suntan without sunburn; 2—the

patient often has sunburn;
S: 1—from 0 to 5 mm; 2—from 6 to 20 mm; 3—21 mm;
OH: 0—no occupational hazards; 1—occupational hazards due to skin contact with chemi-

cals (e.g., work with petroleum products, on chemical plants, etc.).

The digitization of the patient factors was performed by specialized oncologists at the
Samara Regional Clinical Oncology Dispensary.
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2.4. Preprocessing and Statistical Analysis of Spectra

The spectra were recorded in the 780–1000 nm region, but only the 803–914 nm
spectral region corresponding to the 300–1800 cm−1 wavenumber region in terms of Raman
spectroscopy was analyzed. Firstly, the raw spectra in the region of interest (803–914 nm)
were preprocessed by the following process: smoothing by the Savitsky–Golay filter,
normalization by the standard normal variate method (SNV), and centering.

In accordance with the data described in Section 2.2, we considered six classification
models with different sets of risk factors:

I.1 Malignant (n = 204) vs. benign (n = 413) neoplasms with 3 risk factors;
II.1 Malignant (n = 157) vs. benign (n = 324) neoplasms with 8 risk factors;
I.2 MM (n = 70) vs. benign pigmented (Ne and SK, n=283) neoplasms with 3 risk factors;
II.2 MM (n = 49) vs. benign pigmented (Ne and SK, n = 221) neoplasms with 8 risk factors;
I.3 MM (n = 70) vs. SK (n = 113) with 3 risk factors;
II.3 MM (n = 49) vs. SK (n = 90) with 8 risk factors.

Each spectrum included the Raman and AF signals in the region of interest (of
803–914 nm) and, therefore, represented a discrete set of intensity values at the 515 wave-
lengths (in accordance with the spectral resolution of the spectrometer). For the subsequent
regression analysis, the 515 spectral parameters respectively representing each tumor after
preprocessing were combined with the corresponding risk factor parameters. Therefore,
in classification models (I.1), (I.2), and (I.3) each tumor was represented as 518 predictors
(515 spectral parameters and three risk factor parameters) for PLS analysis, and in classifi-
cation models (II.1), (II.2), and (II.3) as 523 predictors (515 spectral parameters and eight
risk factor parameters), respectively.

The experimental data were processed using partial least square discriminant analysis
(PLS-DA) [33]. The PLS-DA method was applied to build a regression model between the
analyzed tumor predictors and tumor types. Stability of the PLS-DA classification was
checked by means of 10-fold cross-validation. The number of latent variables (LVs) for
the PLS-DA models was chosen according to the minimum of the RMSE in the 10-fold
cross-validation. To estimate the importance of all tumor predictors in the model, variable
importance in projection (VIP) analysis was performed [34]. The VIP scores highlighted
the informative predictors of tumors in the regression model that were more important for
classifying different tumor types. Higher relative intensity of VIP score indicated that the
predicted variable was more significant. To determine the differentiation accuracy of the
tumor analysis, the PLS predictors were calculated as numeric values of tumor diagnosis in
the built regression model.

The results of the skin tumor differentiation were visualized using a bee-swarm
diagram and the receiver operating characteristic (ROC) curves plotted using R studio
software [35]. The ROC analysis shows the diagnostic performances of the regression
model. For quantitative analysis, the area under the curve (AUC) was calculated. The
significance of the AUCs and the comparisons between different AUCs were tested in a
standard manner [36].

3. Results
3.1. Malignant vs. Benign Neoplasms

(I.1) To discriminate the malignant (n = 204) vs. benign (n = 413) neoplasms from set
(I), the 0.600 (0.567–0.652) ROC AUC was obtained using only the spectral data (RS and AF
data). The complementation of spectral dataset (I) with three risk factors made it possible
to improve the ROC AUCs to 0.818 (0.778–0.841). Moreover, adding each patient factor
separately to the spectral data significantly increased the ROC AUC (see Table 1). The
distribution of VIP scores as a weighted sum of loadings is shown in Figure 1, highlighting
all spectral features for all loadings obtained in this PLS classification model. For this model,
the VIP scores were utilized to classify malignant versus benign tumors by determination
of informative predictors (gender (G), age (A), location (L), and 515 spectral parameters) in
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regression specification. The VIP scores presented in Figure 1 demonstrate that age (A) is
the most informative risk factor, which was proved by the most significant improvement
of ROC AUC (0.804, p = 9 × 10−9) when only age was incorporated into the spectral data,
compared with the other factors.

Table 1. Results of regression models.

Model ROC AUC

I.1 Malignant (n = 204) vs. Benign (n = 413), cohort with 3 risk factors

only spectral data (803–914 nm) 0.600 (0.567–0.652)
spectral data with gender 0.691 (0.647–0.736), p = 0.008
spectral data with age 0.804 (0.767–0.840), p = 9 × 10−9

spectral data with localization 0.759 (0.718–0.800), p = 3 × 10−6

spectral data with all risk factors 0.818 (0.778–0.841), p = 2 × 10−11

II.1 Malignant (n = 157) vs. Benign (n = 324), cohort with 8 risk factors

only spectral data (803–914 nm) 0.610 (0.556–0.663)
spectral data with gender 0.707 (0.658–0.756), p = 0.006
spectral data with age 0.718 (0.671–0.766), p = 0.002
spectral data with localization 0.680 (0.628–0.732), p = 0.035
spectral data with family history 0.625 (0.570–0.677), p = 0.35
spectral data with personal history 0.609 (0.556–0.663), without improvement
spectral data with sun exposure 0.609 (0.555–0.663), without improvement
spectral data with size 0.689 (0.639–0.738), p = 0.02
spectral data with occupational hazards 0.616 (0.563–0.669), p = 0.43
spectral data with all risk factors 0.789 (0.746–0.832), p = 5 × 10−7

I.2 MM (n = 70) vs. Ne + SK (n = 283), cohort with 3 risk factors, n = 353

only spectral data (803–914 nm) 0.690 (0.630–0.761)
spectral data with gender 0.751 (0.685–0.818), p = 0.2
spectral data with age 0.771 (0.706–0.837), p = 0.1
spectral data with localization 0.772 (0.709–0.835), p = 0.1
spectral data with all risk factors 0.825 (0.766–0.884), p = 0.02

II.2 MM (n = 49) vs. Ne + SK (n = 221) (cohort with 8 risk factors, n = 270)

only spectral data (803–914 nm) 0.789 (0.718–0.861)
spectral data with gender 0.801 (0.729–0.873), p = 0.4
spectral data with age 0.808 (0.734–0.881), p = 0.37
spectral data with localization 0.804 (0.737–0.871), p = 0.4
spectral data with family history 0.796 (0.726–0.866), p = 0.45
spectral data with personal history 0.744 (0.668–0.819), without improvement
spectral data with sun exposure 0.798 (0.725–0.870), p = 0.44
spectral data with size 0.806 (0.736–0.876), p = 0.38
spectral data with occupational hazards 0.788 (0.714–0.861), without improvement
spectral data with all risk factors 0.849 (0.785–0.914), p = 0.14

I.3 MM (n = 70) vs. SK (n = 113) (cohort with 3 risk factors, n = 183)

only spectral data (803–914 nm) 0.791 (0.728–0.859)
spectral data with gender 0.791 (0.722–0.859), without improvement
spectral data with age 0.791 (0.723–0.859), without improvement
spectral data with localization 0.841 (0.783–0.900), p = 0.15
spectral data with all risk factors 0.844 (0.786–0.902), p = 0.15

II.3 MM (n = 49) vs. SK (n = 90) (cohort with 8 risk factors, n = 139)

only spectral data (803–914 nm) 0.814 (0.740–0.888)
spectral data with gender 0.815 (0.741–0.889), p = 0.49
spectral data with age 0.815 (0.740–0.889), p = 0.49
spectral data with localization 0.851 (0.784–0.918), p = 0.25
spectral data with family history 0.816 (0.743–0.889), p = 0.48
spectral data with personal history 0.815 (0.742–0.889), p = 0.49
spectral data with sun exposure 0.815 (0.741–0.889), p = 0.49
spectral data with size 0.860 (0.795–0.925), p = 0.19
spectral data with occupational hazards 0.815 (0.740–0.889), p = 0.49
spectral data with all risk factors 0.820 (0.748–0.892), p = 0.46
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The ROC AUCs and the bee-swarm diagram for this classification are presented in
Table 1 and Figure 2a–c.

(II.1) For set (II), the classification of malignant (n = 157) vs. benign (n = 324) neoplasms
using the PLS analysis was performed with the 0.610 (0.556–0.663) ROC AUC on the basis
of only the spectral data, and with the 0.789 (0.746–0.832) ROC AUC when supplying the
spectral data with eight risk factors. For this set, age was also the most important risk factor.
The ROC AUCs and bee-swarm diagram are presented in Table 1 and Figure 2d–f.

Table 1 presents the ROC AUCs of the models built using all risk factors separately.
Improvement of the ROC AUC by incorporating the spectral data with all risk factors to
identify malignant skin cancer was statistically significant (p < 0.05) in models I.1 and II.2.

3.2. MM vs. Benign Pigmented Neoplasms (Ne and SK)

(I.2) In this classification task, regression analysis of the cases from dataset (I) using
only the spectral data was performed with 0.690 (0.630–0.761) ROC AUC. For this task, the
combined analysis of the spectral data and the three risk factors significantly improved the
diagnostic performance to 0.825 (0.766–0.884) ROC AUC. The contribution of all three risk
factors in this model was significant for MM identification (p < 0.05), whereas separately
adding age, gender, or localization did not result in significant improvement of the ROC
AUC. Figure 2g–i and Table 1 show the results from cohort (I) for this classification task.

(II.2) In the same classification task for cohort (II), MMs (n = 49) were differentiated
from benign pigmented neoplasms (n = 221) with 0.789 (0.718–0.861) ROC AUC using
only the Raman and AF spectral data, and 0.849 (0.785–0.914) ROC AUC when combining
the spectral and risk factor variables. However, in this case, there were no significant
differences (p = 0.14) between the ROC AUCs obtained for the models with the eight risk
factors and those without. Figure 2 presents only the statistically significant results and
therefore does not include a diagram for this model. Table 1 indicates the ROC AUCs for
this classification task.
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Figure 2. Results of diagnostic models with statistical significance (p < 0.05). I.1: Malignant vs.
benign neoplasms: (a) ROC AUCs, bee-swarm diagrams of PLS predictors for tumor classification
based on (b) spectral parameters and (c) combination of spectral parameters and three patient factors.
II.1: Malignant vs. benign neoplasms: (d) ROC AUCs, bee-swarm diagrams of PLS predictors for
tumor classification based on (e) spectral parameters and (f) combination of spectral parameters and
eight patient factors. I.2: MM vs. benign pigmented neoplasms: (g) ROC AUCs, bee-swarm diagrams
of PLS predictors for tumor classification based on (h) spectral parameters and (i) combination of
spectral parameters and three patient factors.

3.3. MM vs. SK

(I.3) When classifying the MMs (n = 70) vs. SKs (n = 113) from cohort (I) using the
spectral data, 0.791 (0.722–0.859) ROC AUC was obtained. When the three risk factors
were combined with the Raman and AF spectral data, the ROC AUC increased to 0.844
(0.786–0.902) but with no statistical significance.

(II.3) When analyzing dataset (II) with the same classification task, the discrimination
model showed 0.820 (0.748–0.892) ROC AUC obtained by combining spectral data and the
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eight risk factors, while the analysis of only the spectral data was performed with 0.814
(0.740–0.888) ROC AUC.

The AUCs of this classification task were insignificantly improved (p > 0.05) in models
I.3 and II.3. The diagnostic performance results for this classification task are presented
in Table 1.

4. Discussion

The classification results for different types of skin neoplasms based on Raman and
AF spectral data were demonstrated in our previous research [29,32]. In this current work,
we combined individual patient risk factors and spectral data to obtain a more precise skin
cancer diagnosis, in particular of malignant tumor and MM. It should be noted that true
statistics of skin cancer incidence might differ from the data we obtained, due to including
in this study only those patients who were aware of skin tumors, attentive to their health,
and had access to resources for tumor detection.

Considering the significance of the analyzed patient factors, our classification models
have demonstrated that although gender was a significant factor for classifying malignant
versus benign skin tumors in both model I.1 and model II.1, it was not significant for
diagnosis of MM. The analyzed cohort was heterogeneous in the numbers of men and
women: women outnumbered men 2–3 times in the general cohort and in the analyzed
classes. However, the proportion of men with malignant tumors among all men involved
in this study was 0.43, whereas the relative proportion of women was 0.28. At the same
time, the relative incidence rates of MM were 0.13 among men and 0.11 among women
(Figure S1a). The statistics for different ethnicities and races vary. According to statistics
from Australia and the USA [10,13], the incidence of MM is higher among men than women.
In Russia in 2020, the standardized incidence rates (number per 100,000 population) of
skin cancer (without MM) and MM among men were 21.48 and 4.08 respectively, whereas
among women the figures were 20.62 (skin cancer without MM) and 4.32 (MM) [37]. Data
for our cohort was collected from May 2017 to December 2019, and revealed that in our
study the relative number of malignant cases was higher among men, while the number of
MM cases was the same among men and women.

Localization was also a significant factor in models I.1 and II.1 for malignant versus
benign classification. We suppose that the significance of this factor can be explained by
the most common localization group for different tumor types (Figure S1b). In model I.1,
most of the malignant tumors, namely 86 out of 204 cases (about 42%), were located on
the head and neck, while 209 out of 413 benign tumors (about 51%) were situated on the
trunk. Despite the fact that more MM cases occurred on the trunk (about 51%), the large
number of malignant tumors on the head and the neck was due to the contribution of the
BCC and SCC cases. However, when classifying MM and benign pigmented tumors or SK,
this factor was found to be insignificant, because most cases within each class occurred
on the trunk: 51% among melanoma cases, 51% among benign pigmented cases, and 47%
among cases of seborrheic keratosis.

The sun exposure factor was insignificant in all models (II.1, II.2, and II.3), but exposure
to sun radiation is partly responsible for localization. BCC and SCC are more likely to occur
on body areas that are most exposed to solar radiation, i.e., on the head. According to our
data presented in Figure S1, 61% of BCC and 71% of SCC in this study were localized on
the head and the neck [29]. On the other hand, most MM (51%) and other melanocytic
tumors, such as pigmented nevus, occurred on the trunk and legs: these body areas
may be subjected to intense sunburn because of less frequent exposure to regular UV
radiation. Other research [38] reports that trunk melanomas are more strongly associated
with pigmented nevus counts. Thus, exposure to sun radiation is an equally important
growth factor for all melanocytic tumors, confirmed by a similar distribution of various
melanocytic tumors (e.g., most cases of MM and benign pigmented nevus were recorded
on the trunk). Therefore, these tumors were not distinguished within each localization.
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Our models suggest that age is a significant factor when classifyin malignant and
benign tumors, because the patient distribution in each age group was different. Most cases
of malignant tumors (about 44%) were recorded in patients over 70, while the groups of
patients with benign tumors aged from 30 to 39, from 40 to 49, from 50 to 59, and from
60 to 69 were equal in size. For classification of MM versus only SK, age was completely
insignificant and did not improve the ROC AUC when added to the spectral data, because
the distribution of patients in age groups for MM and SK was fairly similar (Figure S1c).
The maximum frequency of MM and benign pigmented tumors (Ne and SK) was recorded
in the age group from 60 to 69. The larger number of pigmented benign tumors in the age
group from 60 to 69 was due to more SK cases, which did not allow significant separation
of these classes by age. However, there were differences in the numbers of patients in
other age groups: among those with benign pigmented tumors, more than 30% were under
40 because of a larger number of young patients with pigmented nevus. This resulted in
the fact that adding the age factor to the spectral data improved the ROC AUC to 0.808
(0.734–0.881) for the classification of MM versus benign pigmented tumors, but these
differences were not sufficient for statistical significance.

Finally, it should be noted that in all three classification tasks (models II.1, II.2, and II.3),
OH, FH, and PH were not able to improve the ROC AUCs (see Table 1). We lack precise
data on the behavioral and genetic factors obtained in the survey because the oncologists
collected this information by questioning the patients, which can lead to inaccuracy and
uncertainty. To enhance the importance of these factors, they could be defined in a more
precise way, for example, in terms of controlling exposure to sunlight or to chemicals that
can be dangerous in case of contact with skin. Thereby, the significance of such patient data
as gender, age, tumor localization, and size can become more reliable for tumor detection.

Diagnostic performance combining patients’ demographic data with optical data has
been evaluated in several works [26–28]. Zhao et al. [27] investigated whether incorpo-
rating such patient demographics as gender, skin type, localization, and age into Raman
spectral analysis can improve performance in malignant skin cancer diagnosis. Using
PLS analysis, the authors reported that the ROC AUC improved significantly from 0.913
(0.892–0.933) to 0.934 (0.917–0.952) (p < 0.05) after combining only the Raman data with
all the demographics, to differentiate malignant and benign skin lesions. In comparison
with the study by Zeng et al., in our work we analyzed a larger set of risk factors for cancer
growth, including not only demographics but patient lifestyle and behavioral factors as
well. We similarly found that combining all the risk factors with the spectral data achieved
better performance in discriminating malignant and benign tumors, increasing the ROC
AUC from 0.600 to 0.818 with three factors and from 0.610 to 0.789 with eight factors. We
increased the ROC AUCs by 30–36% taking into account the patient risk factors, while in the
study by Zeng et al. [27] the improvement was only 2%. Probably, this greater improvement
of malignant skin cancer identification was a result of a different signal-to-noise ratio in
the spectral data. Our spectral data were recorded with a lower signal-to-noise ratio [39]
that resulted in low accuracy of detecting malignant neoplasms by only the Raman and AF
spectra (0.600 and 0.610 ROC AUC in models I.1 and II.1, respectively), and a significant
improvement when the patient factors were added. In the previous work [27], the authors
used a highly sensitive spectroscopic system that allowed them to obtain a high ROC AUC
0.913 using only the Raman spectral data.

Kharazmi et al. [28] proposed a non-invasive fast BCC detection tool that incorporates
dermoscopic lesion features and clinical patient information including lesion localization,
size, and elevation, as well as patient age and gender. The integrated analysis of the
patient profile and dermoscopic features using data-driven feature learning allowed them
to increase the ROC AUC for BCC detection from 0.847 to 0.911, in comparison with only
the dermoscopic features. According to our statistics [29], BCC cases occur within specific
demographic conditions, for example, 61% of BCCs were located on the head and neck,
and 90% of BCCs were recorded from patients over 60. Thus, it might be assumed that we
would be able to determine the significance of patient factors for BCC detection. However,



Diagnostics 2022, 12, 2503 10 of 13

we analyzed BCC and MM as malignant tumors and did not estimate the importance of
patient information for identifying BCC only. Considering that our statistical results about
BCC are in good agreement with the statistics reported by Kharazmi et al., this may suggest
the significance of patient factors only for several types of skin lesions.

It is also interesting to compare the results of the proposed methodology and the results
of dermoscopic image analysis performed by dermatologists, which represents the current
standard for clinical diagnosis of skin lesions. According to research [40], the accuracy
of melanoma vs. non-melanoma skin lesion classification was 79.9% for novice dermatol-
ogists, 83.3% for qualified dermatologists, and 86.9% for experts. The mean diagnostics
performance of 21 board-certified dermatologists using dermoscopic images to classify
71 malignant vs. 40 benign lesions was nearly 71% sensitivity and 81% specificity [41].
Thus, the proposed methodology can classify skin neoplasms with a mean accuracy higher
than GPs and trainees, but with slightly less accuracy than trained dermatologists and
experts.

To sum up, our results show that information on patient risk factors and Raman
and AF spectral data can complement each other to provide more accurate skin cancer
identification. For each skin tumor type, we observed a specific distribution trend by
gender, age group, and localization, in good agreement with worldwide statistics on skin
tumor incidence. Patients’ age and tumor localization are able to discriminate tumors
in different groups, but these factors become insignificant when analyzing different skin
tumors within individual groups. For example, similar numbers of malignant, benign,
pigmented tumors, SK, and MM were recorded on the trunk or in patients aged from 50 to
59 or from 60 to 69. So, within a separate demographic group, accuracy results for different
tumor type diagnosis can differ when only the Raman and AF spectral data are used. For
this reason, to differentiate malignant versus benign skin tumors we improved the ROC
AUCs by adding risk factors to the model. To differentiate MM versus pigmented skin
tumors or SK, similar demographic trends did not allow us to increase the performance
accuracy of skin tumor identification. To improve diagnostic performance, the proposed
methodology may be added to the estimation of neoplasm morphology performed during
dermoscopy analysis. Deep learning-based applications using computer visualization have
shown promising results in detecting melanoma based on the analysis of dermoscopic
images [40–42]. However, additional studies are required to estimate the capability of joint
dermoscopy analysis and low-cost Raman systems.

5. Conclusions

We tested the possibility of improving skin cancer detection by combining spectral
analysis with analysis of individual patient characteristics and factors for skin cancer
growth. We analyzed two cohorts of patients with skin tumors: (I) the cohort with
617 spectra of different tumors and three patient factors for each case, and (II) the co-
hort with 481 spectra of different tumors and eight risk factors. For each cohort, three
classification tasks were considered: malignant versus benign tumors, MM versus benign
pigmented tumors, and MM versus SK.

The significance of risk factors for type of cancer growth was estimated when all factors
were combined with the spectral data, and when each factor was added separately to the
Raman and AF spectral data. Statistical improvement was achieved for the classification of
204 malignant tumors and 413 benign tumors, from 0.610 to 0.818 ROC AUC, p = 2 × 10−11,
when spectral data in the 300–1800 cm−1 range were combined with three individual patient
factors for skin cancer growth. Moreover, classification of 157 malignant tumors and 324 be-
nign tumors using the spectral data and eight risk factors was statistically improved from
0.610 to 0.789, p = 5 × 10−7. Finally, 70 MMs and 283 benign pigmented skin neoplasms were
differentiated with a statistical improvement from 0.709 to 0.825, p = 0.02 when combining
the spectral data and the three risk factors. Improvements of ROC AUC for discriminating
MM (n = 49) and pigmented benign tumors (n = 172) with eight factors, MM (n = 70) and SK
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(n = 113) with three factors, and the MM (n = 49) and SK (n = 90) with eight factors were all
statistically insignificant.

Our results show that among all risk factors, patient demographics including gender,
age, and tumor localization were statistically significant for detecting skin tumor type, due
to their univocal definition. In contrast, the data for behavioral factors were collected by
staff directly from patients and might therefore lack accuracy. For certain classification tasks,
it was found that the combination of spectral data and patient risk factors was significant.
Particular overall trends for each skin tumor type were observed for patient age, gender, and
tumor localization. However, these demographic features did not allow us to discriminate
different tumor types, especially pigmented tumors, within an individual demographic
group. Therefore, distinguishing skin tumors in groups with similar demographics was
possible using the Raman and AF spectral data only. However, these findings need to be
verified in further experimental cohort studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12102503/s1, Figure S1: Patients’ statistics: (a) distri-
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