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We present in this paper a novel optic disc detection method based on a fully convolutional network and visual saliency in retinal
fundus images. Firstly, we employ the morphological reconstruction-based object detection method to locate the optic disc region
roughly. According to the location result, a 400× 400 image patch that covers the whole optic disc is obtained by cropping the
original retinal fundus image. Secondly, the Simple Linear Iterative Cluster approach is utilized to segment such an image patch
into many smaller superpixels. *irdly, each superpixel is assigned a uniform initial saliency value according to the background
prior information based on the assumption that the superpixels located on the boundary of the image belong to the background.
Meanwhile, we use a pretrained fully convolutional network to extract the deep features from different layers of the network and
design the strategy to represent each superpixel by the deep features. Finally, both the background prior information and the deep
features are integrated into the single-layer cellular automata framework to gain the accurate optic disc detection result. We utilize
the DRISHTI-GS dataset and RIM-ONE r3 dataset to evaluate the performance of our method. *e experimental results
demonstrate that the proposed method can overcome the influence of intensity inhomogeneity, weak contrast, and the complex
surroundings of the optic disc effectively and has superior performance in terms of accuracy and robustness.

1. Introduction

Glaucoma is one of the most common ocular diseases
which can cause loss of vision and blindness. By 2020,
about 80 million people worldwide suffer from this disease.
Glaucoma is a disease characterized by atrophy of the optic
nerve head (ONH), the progressive of retinal ganglion cells,
and decreased vision [1]. *e main factors leading to
glaucoma are the increased intraocular pressure and the
insufficient blood supply to the optic nerve in the optic disc.
*e other factors include family history, genetics, race, and
age. *e loss of vision caused by glaucoma is totally ir-
reversible and extremely harmful. *erefore, early diag-
nosis and management of glaucoma can effectively reduce
its damage to the tissue of the optic nerve and preserve
eyesight. In clinical treatment, doctors usually diagnose
glaucoma through the size of the intraocular pressure (the

normal range is 10–21mmHg), the vertical diameter ratio
of the optic cup (OC) to the optic disc (OD), and the angle
between the cornea and the iris [2]. *e detection of the
optic disc in the retinal fundus images plays an important
role in the diagnosis of glaucoma. *e OD structure in the
fundus images is shown in Figure 1. *e shapes of the OD
and OC are approximated circular or elliptical and the OC
region is inside the OD region. At present, in clinical di-
agnosis, the extraction of the OD region mainly relies on
the doctor’s manual marking, which not only takes a long
time but also consumes an amount of doctors’ energy. In
recent years, with the development of computer science,
pattern recognition, artificial intelligence, and other dis-
ciplines, the computer-aided diagnosis technologies have
received more and more concerns. *e automatic detection
of the OD area in retinal fundus images has become a hot
topic.
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*e existing OD detection methods can be generally
divided into two types: unsupervised learning-based OD
detection methods and supervised learning-based OD de-
tection methods. *e former OD detection methods based
on unsupervised learning can be divided into the following
main categories: adaptive threshold-based ones [3,4],
superpixel-based ones [5,6], clustering analysis-based ones
[7,8], and active contour model-based ones [9–11]. In [3],
Issac et al. presented an adaptive threshold method for OD
detection. Both means and standard deviations were used to
decide the OD region with the interference of the other
redundant structures in the red channel images. In [4],
Welfer et al. proposed a mathematical morphology-based
adaptive method to solve the OD detection problem. Firstly,
the intensities were used to detect the OD region roughly,
and then the prior shape information of OD was introduced
to extract the OD contour accurately. In [5], Cheng et al.
developed a superpixel classification-based method for OD
detection. Firstly, the fundus images were divided into many
superpixels, the features of which were then extracted.
According to these features, it is determined whether the
superpixel belongs to the OD region or non-OD region. In
[6], Rehman et al. firstly performed superpixel segmentation
on the fundus images and then extracted the statistical and
textural features of each superpixel patch. In the classifi-
cation stage, four different classifiers were utilized to dif-
ferentiate between the OD region and background,
including Support Vector Machine (SVM), AdaBoost,
Random Forest (RF), and RusBoost. In [7], Nija et al. firstly
performed Fuzzy C-Means (FCM) clustering algorithm on
the morphological preprocessed images, and then the rough
detection result was improved by ellipse fitting. In [8], Ma
et al. firstly adopted a morphological processing method that
considers the characteristics of the vascular structures and
gray distribution to extract the region of interest which
contains the whole OD area. Secondly, a distance regularized
narrow-band level set evolutionmethod was implemented to
outline the accurate boundaries of OD. In [9], Gao et al.
proposed a novel OD detection model which integrated
prior features of OD into the local intensity clustering (LIC)
functional energy to eliminate the interference of intensity
inhomogeneity, blood vessels, and pathological changes. In
addition, this method adopted an improved robust adaptive
level set initialization method to deal with the problem
associated with the sensitiveness to the initial contour for a
better curve evolution result. In [10], *akur et al. proposed
a level set-based adaptive regularization kernel intuitionistic
Fuzzy C-Means clustering method to achieve the OD

detection. *is method firstly used the clustering method to
extract the initial contour of the OD area, on the basis of
which the level set method is employed to extract the OD
area. In [11], Wang et al. considered the geometric structure
between the OD and OC and then proposed a two-layer level
set method to describe the OD and OC contours. *is
method can detect the OD and OC boundaries simulta-
neously. Most of the methods mentioned above have low
computational complexity and can be implemented simply.
*ey can achieve the accurate detection of the OD region in
fundus images to a certain extent. However, there are still
some shortcomings needed to be overcome. *ese methods
can easily suffer from the interference of uneven illumi-
nation, low contrast, and blood vessels in fundus images,
which results in low accuracy and poor robustness.

*e OD detection methods based on supervised learning
can be divided into two major classes: traditional machine
learning-based OD detection methods [12–14] and deep
learning-based OD detection methods [15–19]. In [12],
Niemeijer et al. formulated the detection of OD region in a
retinal fundus image as a regression problem. *e OD lo-
calization was carried out by a trained k-nearest neighbor
(KNN) regressor which can measure the distance between
the object and a given location. In [13], Acharya et al.
proposed a method for OD detection based on texture and
local morphological features of fundus images. First, the
Leung-Malik filter, Schmid filter, and maximum response
filters were used to convolute the fundus image for the
extraction of the texture features and the local morpho-
logical features. *en these features were utilized to train a
desirable classifier to predict outputs. In [14], Perez et al.
proposed a novel cascade classifier-based OD detection
method. *e Haar features extracted from scanning rect-
angular windows in the fundus images were used for training
the cascade classifiers. *ese traditional machine learning-
based OD detection methods are greatly dependent on
features extraction and selection. When the selected features
cannot accurately distinguish the OD region from the
background, the accuracy of the detection methods will be
seriously affected. In recent years, deep learning has made
great achievements in the fields of image processing and
computer vision. *e deep learning-based OD detection
methods have been widely used due to their excellent feature
representation ability. *e authors in [20] proposed an el-
egant fully convolutional network (FCN) architecture
named U-net, which can be seen as an outstanding con-
tribution in biomedical image analysis. Most of the follow-
up works inherit the core design methodology of U-net. In
[15], Sevastopolsky proposed an improved U-net for OD
detection. Compared with the original U-net, the modified
version designed fewer convolutional layers which can re-
duce the number of redundant parameters effectively and
obtained similar or better detection results. In [16] Edu-
puganti et al. used an FCN to detect OD regions on full-scale
fundus images, and the postprocessing was applied to reduce
the false positive noises in the detection results. In [17], Fu
et al. proposed a joint multilabel M-net and polar trans-
formation algorithm for OD detection. *e performance of
OD detection was further improved through a combination
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Figure 1: Optic disc region in retina fundus image.
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of the multiscale pyramid input layers, U-net framework,
and multilabel loss function. In [18], Al-Bander et al. pro-
posed an OD detection method that combined Dense
Convolutional Network (DenseNet) and FCN to achieve a
pixel-level classification result. *is network benefited from
the dense connection between the current layer and all the
previous layers, which achieved feature reuse and mitigated
the gradient vanishing problem caused by the increasing of
neural network layers. In [19], Yu et al. proposed an im-
proved U-net structure, the core innovation of which was the
use of the pretrained ResNet-34 model as the encoding layer.
*e traditional decoding layer of U-net was still retained to
form an integrated OD detection framework. In this way, the
introduction of the pretrained ResNet-34 model shortened
the training time of the network and thereby further pre-
vented overfitting and improved the robust performance. In
[21], Juneja et al. modified U-net architecture by increasing
the filter size in the convolution layer, maxpool layer, and
upsampling layer, which can achieve higher detection ac-
curacy. In [22], Liu et al. proposed a two-stage method for
OD and OC detection. Firstly, the OD is located through a
simple convolution neural network. *en the densely
connected depthwise separable convolution network
(DDSC-Net) was designed to extract the OD and OC
according to the localization results. In [23], Jiang et al.
proposed a region-based convolutional neural network to
detect the OD and OC region. In this network, the disc
proposal network and the cup proposal network were
constructed to produce bounding box proposals for the OD
and OC, respectively. *e inscribed ellipses of the corre-
sponding bounding boxes were regarded as the final de-
tection results. *ese deep learning-based OD detection
methods have achieved relatively accurate detection results.
However, these models usually require complicated struc-
tural design, a large amount of computation, and high
hardware requirements. In order to obtain satisfactory re-
sults, a large number of data and accurate data annotation
from one or more experts are required to be provided to the
network, which is difficult to execute.

In view of the problems above encountered in OD de-
tection, this paper proposes a method of OD detection in
fundus images based on FCN and visual saliency. *e
proposed method shares the advantages of the unsupervised
learning-based OD detection methods and the supervised
learning-based OD detection methods, which can provide
high detection accuracy with low computational complexity.
In our method, the optic disc is considered as a salient object
and the deep features extracted from a pretrained network
without any training are applied to distinguish the OD
region from the background. *e proposed method mainly
contains two stages. First, a morphological reconstruction-
based OD localization method [24] is used to locate the OD
region in the full-scale fundus images. *en the improved
single-layer cellular automata (SCA) model [25] which
adopts the deep features extracted from a pretrained FCN
[26] for similarity measurement is proposed to extract the
accurate optic disc area. *e proposed method in this paper
is able to overcome the influence of uneven illumination, low
contrast, bright lesions, and blood vessel interference in

fundus images effectively. A large number of experimental
results verify the effectiveness of the proposed method in
terms of accuracy and robustness.

*e remainder of this paper is organized as follows. In
Section 2, the framework of FCN and SCA is described
briefly. Section 3 provides a detailed description of the
proposed OD detection method. Section 4 presents the
experimental results and comparison. Finally, this paper is
summarized in Section 5.

2. Background

2.1. Fully Convolutional Network. In recent years, con-
volutional neural networks (CNNs) have achieved re-
markable results in the field of image processing and
computer vision. *e main reason is that the CNNs have
excellent capabilities in feature representation. *ey can
learn the advanced features with semantic information of the
objects [24, 27–29]. CNNs automatically extract features
from images by constructing a multilayer convolution
structure. *e high-level features corresponding to the
deeper convolution layer of networks are usually regarded as
the abstract expression of object semantic information. As
one of the most important CNNs, FCN is an end-to-end
semantic segmentation neural network which can accept any
size input. Unlike the traditional CNNs for classification
tasks, the fully connected layers are totally replaced by the
convolutional layers in the FCN.*erefore, all layers in FCN
are the convolution layers such that it is called the full
convolution network. In the FCN, the deconvolution op-
erations are usually adopted to produce the output with the
same size as the input image. *e final output assigns each
pixel a prediction for the input image to realize the semantic
classification at pixel level. Figure 2 shows the structure of
the FCN [26].

FCN is a multilevel neural network, and its different
convolutional layers can provide features in multiple scales.
In this paper, we use a pretrained FCN [26] to extract the
deep features from different layers of the network for the
subsequent operation.

2.2. Saliency Detection via Single-Layer Cellular Automata.
*e cellular automata are often seen as a dynamic evolving
system with a simple structure and complex self-organizing
behavior, which consist of a certain number of cells with
discrete states. *ese cells can evolve according to the
specific update rules. During the evolution of each cell, its
next state is decided by the current states of itself and its
nearest neighbors. Considering that salient objects are
spatially coherent, Qin et al. [25] proposed a background-
based SCA algorithm, which introduced the cellular
automata as an unsupervised propagation mechanism to
detect the visual saliency object in the images. Some image
features such as color, edge, and texture are often regarded as
saliency values to reflect the states of the cells. *e simi-
larities in feature space and the distances among cells are
utilized to construct the updating strategy. *is method can
effectively enhance the foreground while suppressing the

Journal of Healthcare Engineering 3



background by taking into account the intrinsic relationship
among cells.*erefore, it can optimize the prior information
and update the saliency value to form a dynamic system
which can be used to distinguish the target from the
background.

In the SCA-based saliency detection algorithm [25], the
Simple Linear Iterative Clustering (SLIC) algorithm [30] is
firstly used to segment the image into N superpixels, each of
which is described by the mean color features and coordi-
nates of pixels. *en the K-means algorithm is adopted to
divide the boundary superpixels into K clusters as the
background seeds according to the features in Lab space.*e
number of superpixels in cluster k can be expressed as
pk(k � 1, 2, . . . , K). Consequently, K different global color
distinction (GCD) maps are constructed according to the K
superpixel clusters which can be represented as follows:

S � sk,i􏽨 􏽩
K×N

, (1)

where sk,i is the saliency value of superpixel i in the k-th GCD
map and defined by

sk,i �
1

p
k

􏽘
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e
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����
����/2σ21 + β

, (2)

where ‖ci, cj‖ is the Euclidean distance between superpixels i
and j in the Lab color space and σ1 and β are the weight
coefficients. In order to integrate the saliency information
from each GCD map, the global spatial distance matrix
(GSD) is constructed to balance these GCD matrixes, and
the GSD matrix is expressed as

W � wk,i􏽨 􏽩
K×N

, (3)

where wk,i represents the spatial distance between superpixel
i and all boundaries superpixels in the k-th cluster and can be
expressed as

wk,i �
1

p
k

􏽘
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j�1
e

− ri ,rj

����
����
2

2
/2σ22 , (4)

where ri and rj represent the coordinates of superpixels i and
j, respectively, and σ2 is the weight coefficient.

Integrating the color information sk,i and distance in-
formation wk,i, the background prior based map Sbg � [S

bg

i ],
i ∈ [1, . . . , N] is constructed as follows:

S
bg
i � 􏽘

K

k�1
wk,i × sk,i, (5)

where S
bg
i represents the initial saliency value of the i-th

superpixel at time t � 0.
Finally, the Euclidean distance ‖ci, cj‖ between super-

pixels i and j in the color space is used to construct the
impact factor matrix and the coherence matrix.*e specified
update rules are designed based on these two matrixes to
update the saliency value of each superpixel simultaneously.
In this way, the salient object detection in the image is
realized. In this paper, the optic disc is regarded as a salient
object and we improve the SCA-based saliency detection
algorithm to extract it.

3. The Proposed Method

*eOD is the bright yellowish area which can be regarded as
a salient object in the fundus images [24]. In this paper, we
introduce the visual saliency detection technique for OD
detection and propose a novel OD detection algorithm based
on FCN and visual saliency in fundus images. *e algorithm
flowchart is illustrated in Figure 3. Firstly, the morphological
reconstruction-based object detection method is used to
locate the OD region roughly and a 400× 400 red channel
image is extracted. Secondly, such an image patch is seg-
mented into many superpixels through the SLIC method.

image conv1 pool1 conv2 pool2 conv3 pool3 conv4 pool4 conv5 pool5 conv6-7
32×unsampled

prediction (FCNN-32s)

16×unsampled
prediction (FCNN-16s)

8×unsampled
prediction (FCNN-8s)

2×conv7
pool4

4×conv7
2×pool4

pool3

Figure 2: *e structure of the FCN.
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*irdly, the background prior information and the deep
features extracted from the pretrained FCN [26] are to be
utilized to represent each superpixel. Finally, both the
background prior information and the deep features are
integrated into the SCA framework to gain the accurate optic
disc detection result.

3.1. Optic Disc Region Localization. In the red channel, the
OD region usually shows the most contrast against the
background. On the contrary, the blood vessels and vascular
lesions always appear in low contrast. *erefore, in this
paper, we perform the subsequent OD detection operations
on the red channel images. Figure 4 shows an original
fundus image and its red channel image.

In this section, we adopt a morphological reconstruc-
tion-based object detection method [24] to locate the OD
region. Firstly, the Contrast Limited Adaptive Histogram
Equalization (CLAHE) algorithm is used to enhance the red
channel images, as shown in Figure 5(a). *en, the mor-
phology-based reconstructionmethod is used to increase the
visibility of the OD region, which facilitates the OD region to
be obtained. *e reconstruction result is shown in
Figure 5(b). It is obvious that the OD area appears as a bright
structure in the reconstructed image, which means that the
OD area contains at least one regional maximum.*erefore,
the H-max transform is carried out on the reconstructed
image to eliminate all the connected peaks and retrieve a
group of OD candidate regions as shown in Figure 5(c).
Finally, the maximum coefficient criterion is used to obtain
the gravity center of the OD region [31], which is shown in
Figure 5(d). In order to detect the OD region more accu-
rately, a square region with a size of 400× 400 is extracted
according to the gravity center of OD, as shown in
Figure 5(e). Such an image patch can cover the whole optic
disc and the optic disc can be considered as a salient object.

3.2. Visual Saliency-Based OD Detection

3.2.1. Background Priors. For saliency detection, the prior
map plays a significant role in locating the salient objects in
the image.*ere are manymodels proposed to produce such
a saliency map. In this paper, we construct a simple prior

map which only offers the propagation seeds for improved
SCA.

Firstly, we divide the 400× 400 red channel image into N
superpixels by using the SLIC algorithm and compute the
average gray value of each superpixel. *en we adopt the
Otsu threshold algorithm to obtain a gray threshold to
segment the image into background and foreground
roughly.

Let si ∈ [0, 1] be the initial saliency value of superpixel i
at time t � 0 which can be decided based on the following
assumptions: the superpixels located on the boundary of the
image belong to the background and the superpixels whose
average gray value is larger than the threshold belong to the
object. *erefore, we assign the superpixels on the boundary
an initial saliency value close to 0 and the superpixels with
larger average gray values an initial saliency value close to 1.
For the other superpixels, a uniform initial saliency value is
assigned. si can be defined by

si �

0.9, si > threshold,

0.5, si ∈ others,

0.01, si ∈ boundaries.

⎧⎪⎪⎨

⎪⎪⎩
(6)

3.2.2. Extraction of Deep Features in FCN. *e traditional
SCA model which only adopts the color feature is easily
affected by the pathological changes, bright lesions, and
complex vascular structures in the fundus image and cannot
provide the desirable detection result. It is widely known that
the features extracted from the last layer of the CNNs can
provide abstract semantic information of objects, which can
be used to capture the objects from different complex
backgrounds. However, since the spatial resolution of such
high-level image features is often low, they cannot represent
the spatial detail information effectively. In the CNNs, the
low-level features such as edge, color, and texture are usually
included in the early layers of the network. *erefore, the
combination of these image features extracted from different
layers in the network is a benefit for the object description in
multiple perspectives. In this paper, we adopt the pretrained
FCN (FCN-8s) [26] which is provided by the MatConvNet
team to extract deep features from the first pooling layer
pool1 and the fifth pooling layer pool5, which are

Optic disc
localization

Superpixel
segmentation

Fully
convolutional
network pre-

training model Extract deep
features

Background prior 
information

Single-layer
cellular automata

S(t+1)= C∗· S(t)+ (I − C∗) · F∗· S(t) 

Ground truth

……

Deep features

Background prior information

Figure 3: *e flowchart of the proposed method.

Journal of Healthcare Engineering 5



corresponding to the 5th and 31st layers of the network
respectively. Some examples of deep feature visualization are
shown in Figure 6.

In the FCN, the deep features in each layer are usually
different from each other in resolution because of the op-
erations of subsampling and pooling. *erefore, the features
extracted from different layers of network are resized uni-
formly to the same size of 400× 400 as the input image by
using cropping and nearest neighbor interpolation opera-
tions. On this basis, each superpixel can be represented by
the means of the deep features corresponding to itself. *e
similarity measurement between the superpixels i and j with
deep features representation can be defined by

g ri, rj􏼐 􏼑 � ρ · df
p1
i − df

p1
j

�����

�����2
+(1 − ρ) · df

p5
i − df

p5
j

�����

�����2
,

(7)

where df
p1
i and df

p5
i represent the means of the deep

features extracted from pool1 and pool5 corresponding to
superpixel i, respectively, and ρ ∈ [0, 1] denotes the
weight coefficient to balance the importance between
these two features. ri denotes the feature descriptor of
superpixel i.

3.2.3. Single-Layer Cellular Automata. In the SCA method,
the cells are represented with the superpixels produced by
the SLIC approach. *e saliency value of each superpixel
denotes its current state in the range [0, 1]. In this paper, we
adopt a more appropriate 2-layer neighborhood for each
superpixel. *is 2-layer neighborhood of a superpixel in-
cludes its adjacent superpixels and the superpixels which
share common boundaries with its adjacent superpixels. *e
next state of each superpixel depends on the current states of

itself and its neighborhood superpixels. *e saliency values
of superpixels are determined by the impact factor matrix
and the coherence matrix which are explained as follows.

(1) :e Impact Factor Matrix. Generally, the next state of a
superpixel is greatly influenced by its neighbors which own
similar features. *e similarity measurement of features
between a superpixel and its neighbor is often determined
by their distance in the feature space. *erefore, consid-
ering an image which is segmented into n superpixels, we
build an impact factor F ∈ Rn×n to realize this similarity
measurement. We define fij as a basic element in F ∈ Rn×n

which represents the impact factor of superpixels i to j as
follows:

fij �

exp
−g ri, rj􏼐 􏼑

σ2f
⎛⎝ ⎞⎠, j ∈ NB(i),

0, j � i or others,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where ri denotes the feature descriptor of superpixel i,
g(ri, rj) denotes a function which is used to measure the
distance between superpixels i and j in the feature space, σf

is a weight coefficient to control the strength of g(ri, rj), and
NB(i) represents the set of superpixels in the neighborhood
of superpixel i. Moreover, a degree matrixD is established to
regularize the impact factor matrix F.

D � diag d1, d2, . . . , dn􏼈 􏼉, (9)

where di � 􏽐 jfij. Finally, the regularized impact factor
matrix is formulated as

F∗ � D− 1
· F. (10)

(a) (b)

Figure 4: (a) *e original fundus image and (b) its red channel image.

(a) (b) (c) (d) (e)

Figure 5: *e extraction of OD region. (a) *e enhanced red channel map; (b) morphological reconstruction map; (c) binary map of
candidate regions; (d) the gravity center of OD region; (e) the cropped OD region.
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(2):e CoherenceMatrix.*e next state of each superpixel is
determined by the current state of itself and its neighbor-
hood. *erefore, it is necessary to make a balance between
these two factors. When a superpixel is significantly different
from its neighborhood in feature space, its next state will
mainly depend on itself. On the contrary, when a superpixel
is similar to its adjacent neighbors in feature space, its next
state will be consistent with them. Based on these analyses, a
coherence matrix is constructed to promote the evolution
among all superpixels in the following form:

C � diag c1, c2, . . . , cn􏼈 􏼉, (11)

where ci represents the coherence of each superpixel cor-
responding to its current state and can be initialized as
follows:

ci �
1

max fij􏼐 􏼑
. (12)

*en, the coherence of each superpixel ci is normalized
to be in a range ci ∈ [b, a + b] with the following form, in
which [b, a + b]⊆[0, 1]:

c
∗
i � a ·

ci − min cj􏼐 􏼑

max cj􏼐 􏼑 − min cj􏼐 􏼑
+ b, (13)

where j � 1, 2, . . . , n. Finally, the regularized coherence
matrix can be obtained as follows:

C∗ � diag c
∗
1 , c
∗
2 , . . . , c

∗
n􏼈 􏼉. (14)

(3) :e Evolution Rule. All the superpixels will update their
states simultaneously according to the evolution rule, which
plays a significant role in the final OD detection result. *e
synchronous evolution rule for all superpixels can be defined
as follows:

s(t+1)
� C∗s(t)

+(I − C)F∗s(t)
, (15)

where I represents the n × n dimensional identity matrix, F∗
and C∗ represent the regularized impact factor matrix and
coherence matrix, respectively, and s(t) ∈ Rn represents the
saliency map at time t. *e initial saliency value s(0) of each
superpixel can be calculated by (6) corresponding to time
t � 0. Additionally, the evolution rule will not change over
time, and the states of all superpixels s(t) will vary over
iterations until convergence.

*ere are many bright lesions and complex vascular
structures in fundus images, which cause serious interfer-
ences for OD detection. *e deep features provided by the
pretrained FCN [26] have a good performance in dis-
tinguishing OD region from different backgrounds.
Meanwhile, the SCA method makes use of the correlation
adequately among the adjacent regions to enhance the sa-
liency of the regions with similar features. *erefore, the
proposed method can overcome these interferences and
yield desirable detection results.

4. Experimental Results and Analysis

In order to verify the effectiveness of the proposed method,
the proposed method is applied to carry out OD detection
and compared with some existing OD detection methods
including the improved circular Hough transform and
superpixel segmentation method based on Hough peak
selection (SLIC-Hough) [32], local intensity clustering
model based on the fusion of multiple features (LICE) (Gao
et al.) [9], and the dense U-net method that combines
DenseNet and full convolutional neural network [18] which
is trained on HP Z440 workstation for 120 epoch with
15 hours used.

*e compared experiments are performed on two public
retinal fundus image datasets: DRISHTI-GS dataset [32] and
RIM-ONE r3 dataset [33]. *e DRISHTI-GS dataset is
provided by Aravind Eye Hospital, Madurai, India, which
can be used to verify the performance of computer-aided
algorithms. *is dataset contains 101 color retinal fundus
images with a resolution of 2896×1944 and a field of view of
30° centered at OD. *e ground truth of each image is
annotated manually by four experts with many years of
clinical experience. *e RIM-ONE r3 dataset collects 169
color retinal fundus images, the ground truth of which is
created by five experienced ophthalmic experts. In order to
evaluate the performance of the proposed OD detection
method in qualitative and quantitative, the Dice coefficient,
Jaccard coefficient, recall coefficient, and accuracy evalua-
tion metrics are adopted to measure the detection results.
*e values of evaluation indexes above all range from 0 to 1,
and the larger these evaluation indexes are, the better the OD
detection results are. In the following, the true positive (TP),
false positive (FP), true negative (TN), and false negative
(FN) are used to explain the evaluation indicators above.

*e Dice coefficient is defined by

(a) (b) (c) (d) (e) (f )

Figure 6: Some examples of deep feature visualization.
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Dice �
2 × TP

2 × TP + FP + FN
, (16)

where the Dice coefficient represents the ratio of the overlap
region between the detection result and the ground truth to
the total region.

*e Jaccard coefficient that measures the similarity
between the detection result and the ground truth is defined
by

Jac �
TP

TP + FP + FN
. (17)

*e recall coefficient that represents the ability of the
method to detect the object is defined by

Rec �
TP

TP + FN
. (18)

*e accuracy that reflects the ratio of the correctly de-
tected regions to the whole result is defined by

Acc �
TP + TN

TP + TN + FP + FN
. (19)

*e parameter setting in this experiment is as follows:
n � 200, ρ � 0.35, 1/σ2f � 23, a � 0.9, and b � 0. All of these
parameters are decided according to a large number of
experiments. And the experiments are carried on a computer
with i7-4710MQ CPU at 2.50GHz, 64GB of RAM, and
Matlab2019a.

Figure 7 shows the comparisons among these four
methods to detect the OD region on retinal fundus images
with complex vascular structures. Figure 7(a) shows the
original fundus images. Figure 7(b) shows the ground truth.
Figures 7(c)–7(f) show the OD detection results by the
proposed method, the SLIC-Hough method, the LICE
method, and the modified U-net method, respectively. From
these experimental results, it can be seen that the SLIC-

Hough method is severely interfered with by these complex
vascular structures.*ough it always tends to extract the OD
region which approximates an ellipse shape, the fitting el-
lipses deviate greatly from the ground truth. *e LICE
method suffers from the influence of blood vessels seriously,
which results in inaccurate boundaries of OD regions. *e
modified U-net method is also affected by the blood vessels.
When the blood vessels are densely distributed, it cannot
produce desirable detection results. Compared with these
three methods, the proposed method is able to overcome the
interference of blood vessels effectively and obtain the best
OD detection result.

Figure 8 shows the detection results of four methods on
some fundus images with weak OD boundaries and low
contrast between the OD regions and the background.
Figure 8 displays the OD detection results in some fundus
images with many lesion areas and irregular OD shapes.
Figure 8(a) shows the original fundus images. Figure 8(b)
shows the ground truth. Figures 8(c)–8(f) show the OD
detection results by the proposed method, the SLIC-Hough
method, the LICE method, and the modified U-net method,
respectively. It is obvious that the SLIC-Hough method
cannot capture the boundaries of the OD correctly, which
causes that the fitting ellipse deviates greatly from the
ground truth. *e LICE method is sensitive to weak edges
and yields the worst OD detection results. *e modified
U-net method always tends to detect the brightest part in the
OD region which leads to inaccurate OD detection results.
Instead, the proposed method that benefits from the deep
features extracted from the pretrained FCN [26] is less af-
fected by the blur OD boundaries and the low contrast and
obtains the desirable OD detection results.

Figure 9 displays the OD detection results on some
fundus images with many lesion areas and irregular OD
shapes. Figure 9(a) shows the original fundus images.
Figure 9(b) shows the ground truth. Figures 9(c)–9(f ) show

(a) (b) (c) (d) (e) (f )

Figure 7: *e OD detection results of four methods on retinal fundus images with complex vascular structures. (a) *e original fundus
images; (b) the ground truth; (c) results of ours; (d) results of SLIC-Houghmethod; (e) results of LICEmethod; (f ) results of modified U-net
method.
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the OD detection results by the proposed method, the
SLIC-Hough method, the LICE method, and the modified
U-net method, respectively. By the analysis of the exper-
imental results, we evaluate the performance of these
methods as follows. *e SLIC-Hough method always
considers the OD region as an ellipse shape, even when the
shape of the OD is seriously irregular due to the influence of
the ocular diseases. Additionally, the lesions around the
OD area are also regarded as the OD region. *e LICE
method suffers from the interference of the lesions severely.
When the intensities between the OD region and lesions
are close to each other, the method is not able to distinguish
them correctly. *e modified U-net method is seriously
affected by the lesion in the fundus images, and some le-
sions cannot be distinguished from the OD region.
Compared with the methods mentioned above, the pro-
posed method can overcome the influence of lesion in-
terference to a certain extent and extract the OD
boundaries more accurately.

In order to further verify the performance of these OD
detection methods, we compare the proposed method with
the other approaches according to the numerical indices
mentioned above for quantitative analysis. Table 1 shows the
experimental results obtained by four different methods on
the DRISHTI-GS and RIM-ONE r3 datasets. By observing
the numerical data in the table, it can be seen that the
proposed method is superior to other methods in terms of
the Dice, Jaccard, and recall coefficients. As for the accuracy
evaluation indexes, our method and the supervised deep
learning-based modified U-net method have achieved
similar results and are higher than the other approaches.

According to the results and analysis of the above
qualitative experiments, it can be seen that the algorithm in
this paper can effectively overcome the interference of
multiple tissues such as uneven grayscale, low brightness,
blood vessels, and lesions in fundus images and achieve
accurate detection of the OD area. *ese experimental re-
sults demonstrate its effectiveness and robustness.

(a) (b) (c) (d) (e) (f )

Figure 8: *e OD detection results of four methods on retinal fundus images with weak boundaries. (a) *e original fundus images; (b) the
ground truth; (c) results of ours; (d) results of SLIC-Hough method; (e) results of LICE method; (f ) results of modified U-net method.

(a) (b) (c) (d) (e) (f )

Figure 9:*eODdetection results of threemethods on retinal fundus images with lesions and irregular OD shapes. (a)*e original fundus images;
(b) the ground truth; (c) results of ours; (d) results of SLIC-Hough method; (e) results of LICE method; (f) results of modified U-net method.
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5. Conclusions

In this paper, we present a novel unsupervised learning
approach for OD detection based on FCN and visual sa-
liency detection in retinal fundus images. We focus on the
accurate extraction of the OD region with the interference
of vascular structures, lesion areas, and intensity inho-
mogeneity. *e morphological reconstruction-based-based
object detection method is utilized first to achieve the
rough localization of the OD region. On this basis, the
improved SCA model which incorporates the deep features
extracted from a pretrained FCN [26] into the original
framework is proposed to extract the accurate optic disc
area. Our proposed OD detection method is evaluated on
the DRISHTI-GS dataset and the RIM-ONE r3 dataset. *e
experimental results and quantitative analysis demonstrate
that the proposed method is able to detect the OD regions
precisely and yields superior performance compared with
some existing methods.
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