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Abstract: Background: Humans are constantly exposed to low concentrations of 4-tert-octylphenol
(OP). However, studies investigating the effects of low-dose OP on the liver are scarce, and the
mechanism of these effects has not been thoroughly elucidated to date. Methods: Adult male
institute of cancer research (ICR) mice were exposed to low-dose OP (0, 0.01 and 1 µg/kg/day)
for 7 consecutive days. Weights of mice were recorded daily during the experiment. Blood serum
levels of OP, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined,
and haematoxylin-eosin (HE) staining of the liver was performed. We applied an integrated
metabolomic and enzyme gene expression analysis to investigate liver metabolic changes, and the
gene expression of related metabolic enzymes was determined by real-time PCR and ELISA. Results:
OP in blood serum was increased after OP exposure, while body weights of mice were unchanged.
Liver weight and its organ coefficient were decreased significantly in the OP (1 µg/kg/day) group,
but ALT and AST, as well as the HE staining results, were unchanged after OP treatment. The levels of
cytidine, uridine, purine and N-acetylglutamine were increased significantly, and the level of vitamin
B6 was decreased significantly in mice treated with OP (1 µg/kg/day). The mRNA and protein levels
of Cda and Shmt1 were both increased significantly in OP (1 µg/kg/day)-treated mice. Conclusions:
Through metabolomic analysis, our study firstly found that pyrimidine and purine synthesis were
promoted and that N-acetylglutamine was upregulated after low-dose OP treatment, indicating that
the treatment disturbed nucleic acid and amino acid metabolism in mice liver.
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1. Introduction

As a ubiquitous environmental pollutant, 4-tert-octylphenol (OP) is a kind of alkylphenols (APs)
with endocrine-disrupting effects. OP has been widely used in the production of industrial and
household detergents, and it enters the environment through human use of products containing APs
and through the manufacturing waste stream [1]. OP is a kind of lipophilic AP that shows significant
bioaccumulation [2,3]. Humans can be exposed to OP through ingestion of contaminated food and
drinking water, via inhalation of gases and particles in the air and through the skin. Several studies
have shown that OP is easily detected in the environment and in human urine samples [4–6].
Evidence indicates that OP is one of the most oestrogenic AP isomers [7], and epidemiological studies
have shown that OP exposure is related to adverse reproductive and birth outcomes in humans [8–10].
Therefore, environmental levels of OP may be sufficient to disrupt the biological endocrine system and
exert toxic effects in humans [10,11].

Previous studies indicated that OP accumulates rapidly in the liver [12], where it exerts its adverse
effects [13,14]. It has been reported that OP induces hepatotoxicity in Rana chensinensis and male
rats [15,16]. However, the concentrations of OP in these studies were considerably higher than the
exposure level in humans. There is a lack of research regarding the effects of low-dose OP on the liver,
and the underlying mechanism of these effects remains unclear.

Metabolomics is a rapidly developing approach to detect small molecules in multiple biological
samples [17]. The metabolomic approach has become indispensable to system biology [18], which aims
to analyse functional changes in different metabolic pathways due to exogenous chemical exposure
or diseases. Currently, the analysis of metabolomic profiles is a promising tool which provides novel
insights into mechanisms of exogenous chemical toxicity [19,20], including hepatotoxicity [21,22].

In this study, we evaluated the effects of low-dose OP on mouse liver and conducted a
hypothesis-free metabolomic analysis to reveal the underlying mechanism.

2. Materials and Methods

2.1. Chemicals

4-tert-octylphenol (CAS number: 140-66-9, purity ≥ 99.0%) was purchased from Dr. Ehrenstorfer
(Augsburg, Germany). All metabolite standards were obtained from Sigma–Aldrich (St. Louis,
MO, USA). Methanol and acetonitrile (ACN) were purchased from Merck (Darmstadt, Germany).
All chemicals were of chromatogram grade.

2.2. Animals and Treatments

Specific pathogen-free (SPF) institute of cancer research (ICR) male mice at 8 weeks of age were
purchased from Slaccas (Slaccas Laboratory Animal, Shanghai, China). All mice were housed under
controlled temperature (22 ◦C ± 2 ◦C) and humidity (40–60%) with a 12 h light/dark cycle and were
randomized into 3 groups (n = 10 mice/group). The number of mice per group was used based on
the “power analysis” (http://3rs-reduction.co.uk) according to a previous report [23]. The animals
had free access to food and water and were acclimatized to the laboratory environment for 1 week
prior to the start of the experiments. Mice were injected intraperitoneally with saline, 0.01 µg/kg body
weight (bw)/day of OP, or 1 µg/kg bw/day of OP daily for 7 consecutive days. The liver has a large
blood perfusion, as it is the main metabolic organ, and OP accumulates rapidly [12], meaning that
the liver is vulnerable to toxic damage. Therefore, the exposure duration was chosen according to
previous studies on hepatic toxicity [24,25]. OP dosages of 0.01 µg/kg bw/day and 1 µg/kg bw/day
were chosen according to OP exposure levels in humans [6]. OP solutions were prepared by dissolving
the OP standard into saline to the concentrations of 0.001 µg/mL and 0.1 µg/mL. The injection volume
per unit bw of mice was 0.1 mL/10g according to the previous studies [26,27]. Body weight and food
consumption of all mice were recorded daily. At 7th day after dosing, the mice were fasted for 8 h,
anaesthetized and sacrificed, after which blood samples were collected. Then, the livers were dissected
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and weighed in order to calculate the organ coefficient for each mouse. Liver tissues were stored at
−80 ◦C after snap freezing in liquid nitrogen or fixed in 10% formaldehyde for haematoxylin-eosin
(HE) staining. This study was carried out strictly in accordance with the international standards on
animal welfare and the guidelines of the Institute for Laboratory Animal Research of Nanjing Medical
University. This study was approved by the Animal Ethical and Welfare Committee of Nanjing Medical
University (Approval No: IACUC14030184).

2.3. Analysis of Serum Levels of ALT and AST

Fresh mice blood samples were centrifuged at 1800× g for 15 min at 4 ◦C to obtain blood serum.
Serum ALT and AST are common biochemical markers of liver injury. The serum ALT and AST were
analysed using commercially available diagnostic kits (Span Diagnostics, Surat, India) according to a
previous method [28].

2.4. Histological Evaluations

HE staining was conducted to investigate morphological changes. Pieces of liver from the
three groups were fixed in 10% formaldehyde and dehydrated with 70% ethanol. The tissues were
embedded in paraffin, and then 5-µm sections were cut and mounted onto slides. The slide sections
were stained with haematoxylin and eosin Y. The morphological features of the liver were determined
by optical microscopy.

2.5. Sample Preparation for the Mass Spectrometry Analysis of Mouse Liver and Blood Serum

Liver sample preparation was performed as follows: 50 mg of frozen liver tissue was shredded
by surgical scissors; tissues were mixed with 150 µL ultra-pure water and 600 µL pure methanol.
The tissues were ultrasonicated (power: 60%), and the supernatant was obtained after centrifugation
(16,000× g, 10 min, 4 ◦C) for dryness. To avoid the heat generated by continuous working probe,
ultrasound was on for 6 sec at 78 W and then off for 4 sec per cycle. The total ultrasound
generation time was 5 min. After dryness, the residue was reconstituted for metabolomic and targeted
S-adenosylmethionine (SAM) analysis. Blood serum sample preparation was performed as follows:
30 µL methanol was added into 10 µL serum. After protein precipitation, the supernatant was obtained
after centrifugation (16,000× g, 10 min, 4 ◦C) for dryness. Then, the residue was reconstituted for
4-tert-octylphenol analysis.

2.6. Metabolomic Profiling

The metabolomic analysis was done according to the previous report [29]. Briefly, LC-HRMS
analysis was performed on a UPLC Ultimate 3000 system (Dionex, Germering, Germany) coupled to
a Q-Exactive mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) in both positive and
negative modes simultaneously. The heated electrospray ionization (HESI) source was used, and the
parameters of the mass spectrometer were set as follows: for the positive mode, a spray voltage of
3.5 kV; for the negative mode, a spray voltage of 2.5 kV; for both modes, a capillary temperature of
300 ◦C; a sheath gas flow of 50 arbitrary units (AU); an auxiliary gas flow of 13 AU; a sweep gas
flow of 0 AU; an S-Lens RF level of 60. Data acquisition was performed in a full-scan mode ranging
from 70 m/z to 1050 m/z. The instrument was operated at a 70,000 resolution with an automatic
gain control (AGC) target of 3 × 106 charges. The UPLC analysis was carried out with a Hypersil
GOLD C18 column (100 mm × 2.1 mm, 1.9 µm) (Thermo Fisher Scientific) with column temperature
set at 40 ◦C. A multistep gradient was used with a mobile phase A of 0.1% formic acid in ultra-pure
water and mobile phase B of 0.1% formic acid in pure ACN with a flow rate of 0.4 mL/min over a
run time of 15 min. The UPLC autosampler temperature was set at 4 ◦C, and the injection volume for
each sample was 10 µL. The MS system was calibrated according to the manufacturer’s instructions.
The metabolite identification was based on the comparison of accurate mass and retention time with
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metabolite standards. All samples were analysed in a randomized fashion to avoid complications
related to the injection order.

2.7. Targeted S-Adenosylmethionine Analysis in Liver and 4-Tert-Octylphenol in Blood Serum

SAM and OP were detected using UPLC Ultimate 3000 system coupled to a Q-Exactive mass
spectrometer. The conditions of the chromatography and mass spectrometer were the same as described
in metabolomic profiling. The [M]+ ions of SAM at m/z 399.14451 and the [M − H]− ions of OP at m/z
205.15979 were monitored.

2.8. Real-Time PCR Analysis

Total RNA was homogenized and extracted from snap-frozen liver tissues by use of Trizol
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. The concentration of
total RNA was determined using a NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA).
Reverse transcription was performed using a Prime-Script RT Reagent Kit (Takara, Dalian, China)
in accordance with the manufacturer’s recommendations. All real-time PCR reactions were carried
out on an ABI7900 HT Fast Real-Time System (Applied Biosystems, Foster City, CA, USA) using
SYBR Green PCR Master Mix reagent kits (Takara, Dalian, China) according to the manufacturer’s
instructions. Specific primers for the genes of interest are listed in Table 1. All oligonucleotide primers
were synthesized by Invitrogen (Shanghai, China). All of the PCRs were performed in triplicate, and
the specificity of the PCR products was confirmed using melting curve analysis. The 2−∆∆Ct method
was used to calculate the relative expression [30]. Gapdh was used as an internal control for real-time
PCR. The levels of the Cda and Shmt1 genes were normalized relative to the expression levels of Gapdh.

Table 1. Primers for real-time PCR.

Target Gene GenBank
Accession no. Product Length (bp) Primer Sequences

Cda NM_028176.1 78
Sense: 5′-ATGAGAGAGTTTGGCACCGAC-3′

Anti-sense:5′-CTCCTGGACCGTCCTGACTA-3′

Shmt1 NM_009171.2 94
Sense: 5′-CCCGAAACCAAGTGAACTGGA-3′

Anti-sense:5′-ACTGGTTCAGAGTTGCCTTGTA-3′

Gapdh NM_001289726.1 124
Sense: 5′-CCCTTAAGAGGGATGCTGCC-3′

Anti-sense:5′-TACGGCCAAATCCGTTCACA-3′

2.9. Enzyme-Linked Immunosorbent Assay

The protein level of Shmt1 in mice liver tissues was measured using a commercial enzyme-linked
immunosorbent assay (ELISA) kit (MyBiosource, San Diego, CA, USA). The protein level of Cda in
mice liver tissues was measured using a commercial ELISA kit (LifeSpan Biosciences, Seattle, WA,
USA). The data are presented as fold change compared with the mean value of the control group
according to the previous report [31]. All procedures were performed in accordance with protocols
provided by the kit manufacturers.

2.10. Statistical Analysis

Statistical analysis of the data was performed using Stata statistical package (Version 9.2,
Stata Corp, LP, Lakeway Drive College Station, TX, USA) and SPSS (version 22.0, SPSS, Inc., Chicago,
IL, USA). Statistical comparisons among the three groups were performed by ANOVA followed by
Dunnett’s test. The dose effect relationship between OP dosage and weight, metabolite and gene
expression data was tested by Spearman correlation test. A p value < 0.05 was considered to be
statistically significant.
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3. Results

3.1. Changes of Body Weight and Liver Organ Coefficient

As shown in Figure 1A, body weight was not significantly affected in the OP-treated mice.
Food consumption in the control group, the OP (0.01 µg/kg/day) group and the OP (1 µg/kg/day)
group was 5.36 ± 0.59 g/day, 5.14 ± 0.16 g/day and 5.52 ± 0.19 g/day (mean ± SEM), respectively,
and there was no significant difference among the groups. Liver weight was decreased significantly in
the OP (1 µg/kg/day) group (Figure 1B). The liver organ coefficient was decreased significantly in the
OP (1 µg/kg/day) group (Figure 1C) and was negatively correlated with OP doses by Spearman’s
correlation test (r = −0.458, p < 0.05). These results indicated that OP might cause liver injury in
relatively low doses, which was dose-related. We detected OP in blood serum and found that OP was
undetectable in the control group, while it was detectable in the OP (0.01 µg/kg/day) group and the
OP (1 µg/kg/day) group. The level of OP in the OP (1 µg/kg/day) group was significantly higher
than that in the OP (0.01 µg/kg/day) group (Figure 1D).
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Figure 1. Effects of low-dose 4-tert-octylphenol (OP) on body weight, weight of liver and liver organ
coefficient as well as OP blood serum level in mice. (A) Body weights of mice were not significantly
changed between the control and OP-treated groups. Values are mean ± SEM. (B) Weight of liver was
decreased significantly in the OP (1 µg/kg/day) group. Values are mean ± SEM. Significance level:
* p < 0.05 compared with controls. (C) Organ coefficient of liver was decreased significantly in the OP
(1 µg/kg/day) group. Values are mean ± SEM. Significance level: * p < 0.05 compared with controls.
(D) The blood serum level of OP in the OP (1 µg/kg/day) group was significantly higher than that in
the OP (0.01 µg/kg/day) group, and OP was undetectable in the control group. ND: Not detectable.
Significance level: * p < 0.05 compared with the OP (0.01 µg/kg/day) group using t-test.

3.2. Histological Results

The results of HE staining showed that there was no obvious morphological change in the liver
between OP-treated and control mice (Figure 2).
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Figure 2. Effects of low-dose OP on liver morphology in mice. Representative images of
haematoxylin-eosin (HE) staining in mice liver tissues. No obvious morphological damage was
observed in the livers of OP-treated mice. Scale bar = 100 µm.

3.3. Results of the Serum ALT and AST

Figure 3A,B shows that the serum levels of ALT and AST were not significantly changed in the
OP (0.01 µg/kg/day) and the OP (1 µg/kg/day) groups compared with those in the control group.
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Figure 3. Serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the
control and low-dose OP treated mice. (A) There was no significant difference in serum levels of ALT
in mice after OP treatment. (B) There was no significant difference in serum levels of AST in mice after
OP treatment.

3.4. Metabolomic Profiles

A total of 190 metabolites were detected in mouse liver in all groups by LC-HRMS. Among these,
uridine, N-acetylglutamine, cytidine, pyridoxine, and purine were significantly changed in the
liver samples from the OP (1 µg/kg/day) group (p < 0.05) (Figure S1). We found that uridine,
N-acetylglutamine, cytidine, and purine were increased, whereas pyridoxine, also known as vitamin
B6, was decreased in mice treated with OP at a dosage of 1 µg/kg/day. Additionally, the relative levels
of these metabolites were positively or negatively correlated with OP doses by Spearman’s correlation
test in the three groups (r > 0.35, for positive correlation; r < −0.45, for negative correlation, p < 0.05),
indicating the dose-related alterations of these metabolites. After classifying the chemicals and
mapping the metabolites into general biochemical pathways, as illustrated in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/), it became clear that metabolomic
disturbances in mouse liver caused by low-dose OP exposure are involved in pyrimidine metabolism
(uridine and cytidine), D-glutamine and D-glutamate metabolism (N-acetylglutamine), vitamin B6
metabolism (vitamin B6) and purine metabolism (purine).

3.5. Low-Dose OP Promoted Pyrimidine Synthesis through Cytidine Deaminase

The increased cytidine and uridine were among the most dramatic changes in mouse liver caused
by OP treatment at a dosage of 1 µg/kg/day. The relative levels of cytidine and uridine in mice treated
with 1 µg/kg/day of OP were significantly higher than those in control mice (p < 0.05) (Figure 4A,B).
Additionally, the relative levels of cytidine and uridine were positively correlated with OP doses by
Spearman’s correlation test in the three groups (r = 0.453, p < 0.05, for cytidine; r = 0.368, p < 0.05,
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for uridine). The mRNA and protein levels of Cda, which encodes cytidine deaminase [EC:3.5.4.5]
and catalyses the irreversible hydrolytic deamination of cytidine to uridine, were also increased
significantly in mice treated with 1 µg/kg/day of OP (Figure 4C,D). The mRNA and protein levels of
Cda were positively correlated with OP doses in the three groups (r = 0.491, p < 0.05, for mRNA level;
r = 0.328, p < 0.05, for protein level). All of these results indicated that pyrimidine synthesis might be
increased in mouse liver after low-dose OP treatment, which was dose-related (Figure 4E).
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(A) The relative level of cytidine was increased significantly at the OP dosage of 1 µg/kg/day. (B) The
relative level of uridine was increased significantly at the OP dosage of 1 µg/kg/day. (C) The mRNA
level of Cda was increased significantly at the OP dosage of 1 µg/kg/day. (D) The protein level of Cda
was increased significantly at the OP dosage of 1 µg/kg/day. (E) Schematic diagram showing that
pyrimidine synthesis might be promoted in the livers of mice treated with low-dose OP. Significance
level: * p < 0.05 compared with controls.

3.6. Purine Synthesis Was Increased through Pyridoxal-5′-Phosphate (PLP)-Dependent Enzyme-Shmt1 after
Low-Dose OP Treatment

One-carbon metabolism plays a key role in DNA synthesis, DNA methylation, detoxification
and protection against oxidation, in which vitamin B6 is a cofactor of several enzymes, including
serine hydroxymethyltransferase 1 (Shmt1) [32]. Shmt1 is a PLP-dependent enzyme [33] that
catalytically converts serine into glycine. Tetrahydrofolate (THF) receives one-carbon groups from
serine and changes into 5,10-methylenetetrahydrofolate (5,10-MTHF), which is involved in purine
synthesis [34–36]. As shown in Figure 5A, the relative level of vitamin B6 was decreased significantly
in mice treated with 1 µg/kg/day of OP. Furthermore, the relative levels of vitamin B6 were negatively
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correlated with OP doses by Spearman’s correlation test in the three groups (r = −0.486, p < 0.05).
The relative level of purine in mice treated with 1 µg/kg/day of OP was significantly higher than that in
the control mice (Figure 5B). Additionally, the relative levels of purine were positively correlated with
OP doses by Spearman’s correlation test in the three groups (r = 0.437, p < 0.05). PLP, the active form of
vitamin B6, is an essential coenzyme that is involved in amino acid and nucleotide metabolism [37,38].
PLP was detectable in all mice from the three groups. The PLP relative level to vitamin B6 relative
level ratio of each mouse was calculated. Accordingly, this ratio was increased significantly in the
low-dose OP treated groups (Figure 5C). Furthermore, the ratios were positively correlated with OP
doses by Spearman’s correlation test in the three groups (r = 0.670, p < 0.05). The mRNA and protein
levels of Shmt1, which encodes serine hydroxymethyltransferase 1, were increased significantly in
the OP (1 µg/kg/day) treated group (Figure 5D,E). Besides, the mRNA and protein levels of Shmt1
were positively correlated with OP doses by Spearman’s correlation test in the three groups (r = 0.234,
p < 0.05, for mRNA level; r = 0.415, p < 0.05, for protein level). These results indicated that purine
synthesis might be increased in mouse liver after low-dose OP treatment, which was dose-related.
This metabolism can further support the formation of SAM, and DNA methylation depends upon the
availability of methyl groups from SAM [39,40]. To explore the possible DNA methylation disruption
caused by OP from the perspective of metabolites, we detected SAM in the livers and found that it
was not significantly changed after low-dose OP treatment (Figure 5F). Thus, OP might not exert an
effect on DNA methylation in the liver. The summary of the effect of OP on purine metabolism in the
liver is shown in Figure 5G.
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Figure 5. Metabolomic analysis for purine metabolism in mouse liver after low-dose OP treatment.
(A) The relative level of vitamin B6 was decreased significantly at the OP dosage of 1 µg/kg/day.
(B) The relative level of purine was increased significantly at the OP dosage of 1 µg/kg/day. (C) The
Pyridoxal-5′-Phosphate (PLP) relative level to vitamin B6 relative level ratio was increased significantly
in the OP treated groups. (D) The mRNA level of Shmt1 was increased significantly at the OP dosage of 1
µg/kg/day. (E) The protein level of Shmt1 was increased significantly at the OP dosage of 1 µg/kg/day.
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(F) The relative level of S-adenosylmethionine (SAM) was not significantly changed after OP treatment.
(G) Schematic diagram showing that the metabolism (the conversion of tetrahydrofolate (THF) into
5,10-methylenetetrahydrofolate (5,10-MTHF)) might be promoted by increasing the expression of
Shmt1 (a PLP-dependent enzyme); thus, purine synthesis might be promoted in mice treated with a
low dose of OP. Significance level: * p < 0.05 compared with controls.

3.7. Amino Acid Derivative Was Increased after Low-Dose OP Treatment

N-acetylglutamine is a kind of amino acid derivative (an acetylated analogue of glutamine) [41].
In this study, compared with the control group, the relative level of N-acetylglutamine was elevated
significantly following OP treatment at 1 µg/kg/day (Figure 6). In addition, the relative levels of
N-acetylglutamine were positively correlated with OP doses by Spearman’s correlation test in the
three groups (r = 0.472, p < 0.05).
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The relative level of N-acetylglutamine was increased significantly at the OP dosage of 1 µg/kg/day.
Significance level: * p < 0.05 compared with controls.

4. Discussion

The present study aimed to evaluate the effects of low-dose OP on the male mouse liver and to
reveal the underlying mechanism by integrated metabolomic and enzyme gene expression analysis.
As a kind of endocrine disrupting chemical, OP has been shown to exert oestrogenic activity in
many in vivo and in vitro studies [42,43]. At relatively high doses, OP exerted hepatotoxic effects
and induced oxidative stress in male rats [44], indicating that OP has hepatotoxicity. In this study,
the results of HE staining showed no obvious morphological changes in the hepatic tissues of low-dose
OP treated mice. A previous study has shown that OP at the dosage of 25 mg/kg/day increased
the serum levels of ALT and AST and induced liver damage in male Wistar albino rats [44]. In this
study, the serum levels of ALT and AST were not significantly changed in low-dose OP-treated mice.
However, liver weight and its organ coefficient were decreased significantly after OP treatment at
a dosage of 1 µg/kg/day, which indicated that low doses of OP might induce injury in mice liver.
Metabolomics is a sensitive tool to detect metabolic dynamics of small molecules in organisms with no
obvious damage or diseases caused by exogenous chemical exposure [45,46]. In this study, cytidine,
uridine, vitamin B6, purine and N-acetylglutamine were the significantly changed metabolites in the
livers of low-dose OP treated mice without obvious liver damage. We found the alterations of these
metabolites were dose-related by Spearman’s correlation test among all groups.

The importance of pyrimidines lies in the fact that they are structural components of a broad
spectrum of key molecules that are involved in the synthesis of DNA and RNA [47]. Cytidine is
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the major material for the synthesis of cytosine and uracil. Cytosine hydrolyses to uracil rather
rapidly, and cytidine is hydrolysed to uridine at a similar rate [48]. In this study, the levels of
cytidine and uridine were increased significantly in mice treated with a 1 µg/kg/day dosage of
OP with the increased gene expression of Cda, indicating that pyrimidine synthesis was increased
in mouse liver after low-dose OP treatment. Uridine, the material basis of RNA synthesis [49],
was increased significantly in the OP (1 µg/kg/day) group, which indicated that low-dose OP might
affect transcription in the liver. Collectively, pyrimidine metabolism was disturbed in the liver,
indicating that DNA and RNA synthesis might be disrupted in hepatocytes after low-dose OP exposure.

PLP is the active form of vitamin B6, which acts as a coenzyme involved in DNA synthesis [50].
In this study, the relative level of vitamin B6 was decreased significantly at the OP dosage of
1 µg/kg/day, and the PLP relative level to vitamin B6 relative level ratio was increased significantly in
the low-dose OP-treated mice. These results indicated that low-dose OP might promote coenzyme
activation in mouse liver. Shmt1, a PLP-dependent enzyme, catalyses conversion of serine to
glycine and therefore connects serine metabolism with glycine metabolism [51]. During this process,
THF receives one-carbon groups from serine and changes into 5,10-MTHF, which is involved in
purine synthesis. The mRNA and protein levels of Shmt1 were increased significantly in the OP
(1 µg/kg/day) treated group, which indicated that low-dose OP might promote one-carbon unit
synthesis by increasing the expression of Shmt1. A previous study has shown that the biosynthetic
pathways which employ folate-derived one-carbon units to generate purine [52]. Another study has
shown that exogenous chemical exposure induced liver damage in ICR mice through the activation
of purine metabolism [53] and that the disturbance of purine metabolism mediated the generation
of genotoxicity [54]. In this study, the relative level of purine was increased significantly in the OP
(1 µg/kg/day) treated mice, indicating that low-dose OP might promote purine synthesis in the liver
and exert hepatotoxic effects.

N-acetylglutamine is an amino acid derivative which is the downstream metabolite involved
in D-glutamine and D-glutamate metabolism [55]. Previous studies have shown that urinary
N-acetylglutamine could be a potential biomarker to identify several diseases [56,57]. Another
metabolomic study showed that liver injury is associated with changes in the metabolism of
N-acetylglutamine [58]. In this study, we observed that the relative level of N-acetylglutamine
was increased significantly in the OP (1 µg/kg/day) group, indicating that the metabolism of
N-acetylglutamine was disturbed in the livers of mice treated with OP at a relatively low dose.

In this study, we only used males to study the metabolomic changes in the liver according to
previous reports [59,60]. As a sexually dimorphic effect was previously found in liver treated with
another endocrine disrupting chemical, PCB in rats [61], the metabolomic change caused by OP in
the liver of females is an interesting topic which needs further investigation with strict control of
confounding factors.

5. Conclusions

By integrated metabolomic and enzyme gene expression analysis, our study firstly revealed that
low-dose OP promoted pyrimidine and purine synthesis through the increased expression of Cda and
Shmt1, respectively. In addition, N-acetylglutamine was upregulated after low-dose OP treatment.
The combination of these results indicated that low-dose OP exposure disturbed nucleic acid and
amino acid metabolism in mouse liver, which might exert hepatotoxic effects (Figure 7).
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