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MicroRNAs constitute an important class of noncoding, single-stranded, ~22 nucleotide long RNA molecules encoded by
endogenous genes. They play an important role in regulating gene transcription and the regulation of normal development.
MicroRNAs can be associated with disease; however, only a few microRNA-disease associations have been confirmed by traditional
experimental approaches. We introduce two methods to predict microRNA-disease association. The first method, KATZ, focuses on
integrating the social network analysis method with machine learning and is based on networks derived from known microRNA-
disease associations, disease-disease associations, and microRNA-microRNA associations. The other method, CATAPULT, is a
supervised machine learning method. We applied the two methods to 242 known microRNA-disease associations and evaluated
their performance using leave-one-out cross-validation and 3-fold cross-validation. Experiments proved that our methods

outperformed the state-of-the-art methods.

1. Introduction

MicroRNAs constitute a class of non-protein-coding small
RNAs, 20 to 25 nucleotides long, that bind to the 3’ untrans-
lated region of target mRNAs to regulate mRNA turnover
and translation. There are many biological processes, which
are regulated by microRNAs, such as development, differ-
entiation, apoptosis, and diseases [1-3]. Many studies have
found that microRNAs play an important role in cellular
signaling networks [4], tissue development, [5-7] and cell
growth [8]. They are also associated with various diseases [9,
10], including breast cancer [11, 12], lung cancer [13, 14], car-
diomyopathy [15], and cell lymphoma [16]. If the microRNA
abnormality causes the disease, the abnormal microRNA and
the disease are associated by the causal relationship. And
the microRNA-disease association is what we aim to predict.
Predicting microRNA-disease associations has emerged as
an important strategy in understanding disease mechanisms
[17]. For example, dysregulation of microRNAs can affect

apoptosis signaling pathways and cell cycle regulation in
cancer [18].

The importance of microRNA-disease association predic-
tion has been appreciated for some time [19]. However, most
of the techniques that have been developed to achieve this
suffer several inherent weaknesses; in particular, traditional
experimental approaches are time-consuming and expensive.
It is necessary to employ the bioinformatics analysis, which
could make use of databases and the potential inferences.
For bioinformatics approaches, it is important to measure
the functional similarities among microRNAs in order to
construct networks based on functional similarity [20-24].
The construction of functional similarity networks for genes
encoding proteins has produced significant results [25-32];
however, the methods used to analyze protein-encoding
genes are not always adaptable to enable use with microRNAs
because the correlation between the functional similarities of
genes and gene sequences or expression similarities may
not exist for microRNAs [5, 6, 33, 34]. MicroRNAs directly
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adjust the one-third of the human genes. The genes targeted
by miRNAs identified are recognized from directed biological
process. However, the previous published methods to find
gene used bio-experiment or the characteristics of protein
sequence. However, gene and miRNA identification is quite
ineflicient. Another issue is that there are not many validated
associations between microRNAs and diseases. For studying
microRNA-disease association, there are two well-known
databases: the human microRNA-associated disease database
(HMDD) and the miR2Disease database of differentially
expressed MiRNAs in human cancers (dlbDEMC). The data
in HMDD and dbDEMC are manually collected and archived
from publications [10, 21, 22, 35]. The last main challenge is
that it is difficult to select negative samples as there are no
verified negative microRNA-disease associations. It is the
refore difficult to conduct biological experiments without
such controls. Hence, it is necessary to develop effective com-
putational methods to detect potential microRNA-disease
associations.

To overcome the above challenges and to effectively
predict associations, we explored the computational method
KATZ [36] and the machine learning method CATAPULT
[5, 6] to predict microRNA-disease associations. The two
methods can succeed to overcome the challenges above. The
highlight work is to discover unknown associations through
known associations, including microRNA-microRNA asso-
ciations, a small quantity of microRNA-disease associations,
and disease-disease associations. Previous studies show that
one or more mutations from the same functional module
can give rise to diseases with overlapping clinical features
[1, 37-39]. Biological experiments of human disease show
that microRNAs causing similar diseases often interact with
each other directly or indirectly [40-45]. Hence, we learn
from the idea of social network. This is an integrated
network composed of microRNA-microRNA association
networks, known microRNA-disease association networks,
and disease-disease association networks and is similar to
social networks used to predict the relationship between
two individuals [40, 46-49]. In this paper, we take full
advantage of relationships among microRNAs and diseases
to predict the association between microRNA and disease.
Each predicted microRNA-disease association is denoted by
a score. For each disease, we rank the microRNA on the basis
of a score. For a disease, if a microRNA is ranked in the top
k, the microRNA is expected to have a high probability of
association with the disease [50, 51]. We show that KATZ
and CATAPULT are superior to current methods by cross-
validation. KATZ and CATAPULT are able to propose many
potential associations, which is of great value for future
studies.

2. Datasets

We used three types of data, microRNA-microRNA asso-
ciation, microRNA-disease association, and disease-disease
association data. The microRNA-microRNA association
dataset includes 271 microRNAs, and the association is
denoted by a functional similarity score. The dataset was
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TaBLE 1: Distribution of the three datasets.

Dataset Matrix Similarity score >0
MichRNA—microRNA 271 % 271 56289
association dataset

Disease-disease 5080 x 5080 20285172
association dataset

MicroRNA-disease 271 % 5080 242

association dataset

FIGURE I: Bipartite graph of the microRNA-disease association
network.

downloaded from http://www.webcitation.org/query.php [5,
6]. The disease-disease association dataset, including 5080
diseases, was downloaded from MimMiner [52], which
provides a similarity score for each phenotype pair by text
mining analysis of their phenotype descriptions in the Online
Mendelian Inheritance in Man (OMIM) database [53].
The disease-disease similarity scores have been successfully
used to predict or prioritize disease related genes [54, 55].
The microRNA-disease association dataset contained 271
microRNAs and 5080 diseases. Furthermore, there are 242
microRNA-disease associations. It means there are 242
nonzero elements in the matrix of microRNA-disease associ-
ation. The microRNA-disease association dataset was down-
loaded from [56]. In addition, we verified that the 242
nonzero elements consisted of 99 microRNAs and 51 diseases.
The details of the datasets are shown in Table 1.

With the above datasets, we could construct a microRNA-
microRNA network, a disease-disease network, and a mic-
roRNA-disease network using a bipartite graph. For example,
Figure 1 denotes the bipartite graph of the microRNA-disease
network. In the graph, the nodes denote microRNAs or
diseases and the lines correspond to associations between
microRNAs and diseases. If there is an association between
a microRNA and a disease, there must be a line between the
microRNA and the disease.

The degree distributions of microRNAs and diseases in
the bipartite graph of the microRNA-disease association
network are illustrated in Figure 2. The microRNA degree is
defined as the number of diseases that connect with
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FIGURE 2: Degree distributions of microRNAs and diseases in the
bipartite graph of the microRNA-disease association network.

TABLE 2: Statistical data for the bipartite graph of the microRNA-
disease association network.

Title Number
MicroRNAs 271
Diseases 5080
Known-associating microRNAs 99
Known-associating diseases 51
Known-associations 242
Average number of microRNA degrees 2.44
Average number of disease degrees 4.75

a microRNA. In the same way, the disease degree is defined
as the number of microRNAs that connect with a disease. The
node degree can show the activeness or status of the node
(microRNA or disease) in the entire network.

We propose to compare our methods with the previously
described microRNA-based similarity inference (MBSI),
phenotype-based similarity inference (PBSI), and network-
consistency-based inference (NetCBI) methods [55]. Hence,
we used the same datasets as them and we present Table 2
to clearly describe the statistical data for the bipartite graph
of the microRNA-disease association network. Table 2 illus-
trates that there are few known microRNA-disease associa-
tions for a disease. For example, it should have 271 * 5080
microRNA-disease associations, but known associations are
only 242.

FIGURE 3: Unweighted, undirected graph.

3. Methods and Algorithm

We introduce two different computational methods, which
were presented by [36] to predict microRNA-disease asso-
ciations. The first method, KATZ [57], has been shown to
be successful at predicting links in a social network. When
KATZ is applied to predict microRNA-disease associations, it
uses the functional similarity score to denote the associations.
KATZ computes the similarity score based on walks of differ-
ent lengths between the microRNA and disease nodes. The
second method, CATAPULT, is a supervised learning
method. For the supervised learning method, features must
be offered that are derived from hybrid walks through the
microRNA-disease association network. However, CATA-
PULT is a transformation of a general supervised learning
method. For the problem of microRNA-disease association,
there are only positive examples and unlabeled examples,
which CATAPULT is able to overcome. Algorithm part will
detailedly present KATZ and CATAPULT.

3.1. KATZ. KATZ is similar to classical approaches, such
as random walk [58], Prince [59], and CIPHER [60]. The
essence of these approaches is a ranking algorithm. For
example, the KATZ method computes the functional simi-
larity score for microRNA-disease node pairs based on the
microRNA-disease association network and ranking the
diseases for a microRNA on the basis of the functional
similarity score [57]. KATZ was successfully applied to
predict social associations based on a social network [60].
Predicting microRNA-disease associations on the basis of a
microRNA-disease association network is equivalent to pre-
dicting associations in a social network. KATZ results show
that it can also adapt to predict associations between microR-
NAs and diseases.

For the known associations between microRNAs and
diseases, we constructed an unweighted, undirected graph
and derived a corresponding adjacency matrix of the graph.
To vividly describe the method, we illustrate a simple
unweighted, undirected graph, in Figure 3. Suppose the cor-
responding adjacency matrix of Figure 1 is A; the adjacency



matrix A can be written with A;; = 1, if microRNA node
i and disease node j are connected, and A;; = 0, if there
is no line between microRNA node i and disease node j.
However, there are not many direct lines linking microRNA
and disease; therefore, it is difficult to denote the microRNA-
disease association through the adjacency matrix A. Thus,
we counted the number of walks of different lengths, which
link microRNA node i and disease node j to signify the
association between microRNA and disease. (Al)ij denotes
the number of walks of length [/ that link node i and node j.

Next, we integrated different walks of different length to
obtain a comprehensive association measure. We introduced
a nonnegative coefficient f3;, whose function is to control the
contribution of different length walks. If /1 is larger than [2,
B, is smaller than f;,. Suppose microRNA node i and disease
node j are not connected in the unweighted, undirected
graph; then A;; = 0 and the microRNA i and disease j
association can be computed through

k
s, = 3 (4, 0
=1

From formula (1), we can draw the conclusion that higher
order paths contribute much less to microRNA-disease
association. Formula (2) can process the entire unweighted,
undirected graph:

k
$=Y BA, )
I=1

where if| — ©co0, f; — 0.1In KATZ, if 3, is replaced by /8,
KATZ can be written as

s =Y BA = (1- gAYy -1, 3)

I>1

where f3 is chosen on the basis of 8 < 1/||All%. For the
choice of value k, the sum over infinitely many path lengths
is not necessarily considered. According to the experimental
results, small values of k (k = 3 or k = 4) obtain good
performance in the task of recommending linked nodes. We
have carried out the experiments for the other values of k.
When k < 3, the experimental results are worse. However, for
k > 4, the results are no better than k = 3 or 4. In addition,
when k > 4 or bigger, the experimental time is much longer.

To use KATZ, we need a microRNA-disease association
adjacent matrix A, which is the adjacent matrix of the
microRNA-disease association network and is denoted as
follows:

GMM GMD

GI/ID Gpp

(4)

where Gy, is the adjacent matrix of the microRNA-
microRNA association network, Gyp, is the adjacent matrix
of the microRNA-disease association network, and G, is the
adjacent matrix of the disease-disease association network.
We substituted the adjacent matrix A into formula (3)

BioMed Research International

to obtain the association score matrix of microRNAs and
diseases.

Setting k = 3, the correlation score matrix SKATZ( )
denoting the association between microRNAs and diseases
can be written as expression (5). Here we use KATZ with
k = 3 to obtain the correlation score matrix. Consider

S (A) = PGypp + B (GyimGip + GuinGop)
+ /33 (GMDGIADGMD + Gi/[MGMD (5)
+GymGupGpp + GMDGIZDD) .

One of the advantages of KATZ is that it can study
human microRNA-disease association and association for
other species. In KATZ, this is achieved simply by changing
the submatrix of adjacent matrix A, denoted as

GMD = [GHS Gs] >

Dpys 0 (6)
0 Dyl

where Dy and Dypg represent human disease and disease of
other species, respectively. Gy and Gg are microRNA-disease
association of human and other species, respectively. When
we conduct an experiment on human, set Dpg = 0 and G = 0.

3.2. CATAPULT. CATAPULT is a supervised learning
method. General supervised learning methods need positive
examples and negative examples. However, for microRNA-
disease association, there is a lack of negative examples. Posi-
tive associations can be checked through existing methods,
but there is not a method to prove negative associations.
Because negative associations are seldom proven, we
processed the problem by treating all nonpositive association
node pairs as unlabeled because previous studies have shown
that most unlabeled pairs have a negative association [55].

A study by Mordelet and Vert [61] used the bagging
technique to obtain an aggregate classifier based on positive
examples and unlabeled examples. CATAPULT uses a biased
support vector machine (SVM) to classify microRNA-disease
pairs. Hence, CATAPULT uses a bagging algorithm to train
biased SVM. In CATAPULT, unlabeled samples are ran-
domly selected from the set of all unlabeled examples and a
classifier is used to train the selected unlabeled samples as
negative examples and positive examples. The features of
microRNA-disease pairs are obtained from hybrid walks
through the heterogeneous network. To some extent, bagging
could reduce the variance in the classifier. The variance is
caused by randomly selecting negative examples. R is the set
of randomly selected negative microRNA-disease pairs and
N-—is the number of set R. T'is the set of positive microRNA-
disease pairs and N+ is the number of set T'. U denotes all the
unlabeled microRNA-disease pairs. The biased SVM means
that we assign a penalty, k—, for false positives and a larger
penalty, k+, for false negatives. Detail of the CATAPULT
algorithm is displayed in the following part. To train a biased
SVM, CATAPULT uses formula (7) based on the known
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positive examples T' and randomly selected negative examples
R to obtain a biased SVM. &; denotes the distance of example i
from a boundary and SVM gives the example i corresponding
penalty. (0,, ®(x)) denotes the function score for iteration ¢,
where 6, is the normal to the hyper plane at the tth iteration
and ®@(x) is the feature vector of example x. Besides, the
feature vector of example x is the feature vector of the
microRNA-disease pair. In our experiment, we assign 1to k—
and 30 to N- [36].

CATAPULT Algorithm.

INIT
Fort=1,2,3,...,N—:

(1) Select the set R of size N— from U as negative
examples.

(2) Train a classifier based on positive examples T and
negative examples

min ol k&R YE
i€R

! copd
0'eR ieT

subject to &, >0, VieRUT,

(7)
((x;),0')21-¢&, VieT,
~{®(x),0')21-§, VieR
(3) For any update:
nx «—nx +1
s(x) — s(x) + (6, © (x)) (8)
return s (x) «— s(x) , VxeU.
n(x)

4. Implementation

4.1. Results. The KATZ and CATAPULT methods were
applied to the 242 known microRNA-disease associations
to infer potential microRNA-disease associations. First, we
mainly verified microRNA-disease associations. The set of
242 known microRNA-disease associations is regarded as
the “gold standard” data and was used to evaluate the
performance of KATZ and CATAPULT methods in the leave-
one-out and 3-fold cross-validation experiment and training
dataset in the comprehensive prediction [62]. To compare our
methods with MBSI, PBSI, and NetCBI, we carried out leave-
one-out cross-validation on microRNA-disease associations
using KATZ and CATAPULT methods. Furthermore, we
carried out the 3-fold cross-validation to make sure that
the outperformance of KATZ and CATAPULT is solid. For
the leave-one-out cross-validation, each of the 242 known
microRNA-disease associations is left out once in turn as the
testing case. For the 3-fold cross-validation, the dataset con-
taining 242 known microRNA-disease associations is divided
into three parts, which is turned to act as testing. We ranked

1.0

~
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0.4

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1 — specificity

Source of the curve

— KATZ

—— CATAPULT
Reference line

FIGURE 4: ROC curves of KATZ and CATAPULT methods by leave-
one-out cross-validation.

all microRNA-disease associations according to the scores
obtained from KATZ and CATAPULT results.

We used a receiver operating characteristic (ROC) curve
to evaluate the effect of the method. Varying the threshold
plots a ROC curve, and the numeric representation of a ROC
curve is the area under the curve (AUC). If we could not
compare which method was best from the ROC curve, we
could compare the AUC. In the experiment of leave-one-
out cross-validation, KATZ and CATAPULT were tested on
the 242 known microRNA-disease associations and AUC
values 98.9% and 98.8% for KATZ and CATAPULT were
achieved. Figure 4 is the corresponding ROC curve of KATZ
and CATAPULT methods. This indicates that our methods
have great potential to infer new microRNA-associations.

For the leave-one-out cross-validation, we carry out one
loop for each known microRNA-disease association. In each
loop, we hide a microRNA-disease association in the known
association group and run KATZ and CATAPULT methods
on the remaining associations repeating 242 times to ensure
that each known microRNA-disease association is hidden
exactly once. In each loop, we order the 5080 diseases for the
microRNAs, which is the hidden association. We rule that if
the disease that is the hidden association has the highest k
value, then prediction is true. The principle behind this rule is
that the method is better if it can predict the true microRNA-
disease association with higher probability. Table 3 shows
the distribution of diseases on the basis of the number of
microRNAs. Figure 6 presents the result of prediction hidden
microRNA-disease associations. The x-axis is the threshold
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TABLE 3: Distribution of diseases on the basis of microRNAs.
Number of microRNAs 0 1 2 3 4 6 8 9 10 12 15 20 24 27
Number of diseases 5029 16 10 6 3 2 4 1 1 1 1 1 1 1
ROC curve TaBLE 4: Comparison of different prediction methods based on
1.0 1 AUC values.
’ Method MBSI PBSI NetCBI KATZ CATAPULT
0.8 AUC 74.83% 54.02% 80.66% 98.9% 98.8%
TaBLE 5: Top 10 newly predicted microRNA-disease associations by
KATZ.
o 0.6
g Rank  MicroRNA ,OMIM Disease Source
£ disease ID
3 1 hsa-let-7i 211980 Lung cancer ~ HMDD
041 2 hsa-let-7d 114480 Breast cancer HMDD
3 hsa-mir-145 211980 Lung cancer = HMDD
4 hsa-mir-18a 114480 Breast cancer HMDD
0.2
5 hsa-mir-145 114480 Breast cancer HMDD
6 hsa-mir-106b 114480 Breast cancer HMDD
00 7 hsa-let-7e 114480 Breast cancer HMDD
. T T T T
0.0 02 04 0.6 08 10 8 hsa-let-7b 114480 Breast cancer HMDD
1 - specificity 9 hsa-mir-19a 114480 Breast cancer HMDD
Source of the curve 10 hsa-mir-125a 114480 Breast cancer HMDD

—— CATAPULT
—— KATZ
Reference line

FI1GURE 5: ROC curves of KATZ and CATAPULT methods by 3-fold
cross-validation.

k and the y-axis is the amount of true prediction. Figure 6
shows the results for KATZ and CATAPULT.

In the experiment of 3-fold cross-validation, KATZ and
CATAPULT were tested on the 242 known microRNA-
disease associations and AUC values 98.4% and 98.3%
for KATZ and CATAPULT were achieved. Figure 5 shows
AUC values of KATZ and CATAPULT methods. The cross-
validation results prove that the outperformance is solid.

4.2. Evaluation. To confirm the strength of our methods, we
compared them with MBSI, PBSI, and NetCBI. MBSI and
PBSI both work on the basis of recommendation. However,
MBSI takes full advantage of microRNAs similarity. This
means that if association between a microRNA and a disease
has been validated, then other similar microRNAs would be
recommended to the disease. The drawback of MBSI is that it
overlooks disease-disease associations. In contrast, PBSI take
full advantage of disease similarities but overlooks the
microRNA-microRNA associations. NetCBI considers both
associations. The basic idea of NetCBI is ranking. Suppose a
microRNA and a disease are linked; if a microRNA is ranked
top by querying the microRNAs and a disease is ranked top

by querying the diseases, then it rules that associations exist
between top-ranking microRNAs and top-ranking diseases.

We used leave-one-out cross-validation to compare our
methods with previous methods based on the same datasets.
Table 4 shows the comparative results and our methods are
clearly better at predicting microRNA-disease associations
than the other methods. The assessment criteria that we used
were ROC and AUC. AUC and ROC are the measure of the
standard classifier model which is good or bad. ROC presents
the evaluation criteria in a visual form, and the AUC value is
the area under the ROC curve. Our methods yield 98.9% and
98.8%, which are better than MBSI (74.83%), PBSI (54.02%),
and NetCBI (80.66%).

We verify the top 10 predicted associations, which
were not identified in our microRNA-disease association
dataset. However, the latest online databases provide the
evidence. The online databases that we referenced were
OMIM, HMDD, and miR2Disease. Tables 5 and 6 show the
prediction results by KATZ and CATAPULT. Each predicted
association is confirmed by one of the three databases.

5. Conclusions

Identifying microRNA-disease associations is an important
part of understanding disease mechanisms. Although exper-
imental methods can identity microRNA-disease associa-
tions, they are time-consuming and expensive. Hence, effi-
cient methods to identity microRNA-disease associations are
desired.
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FIGURE 6: Recovery of microRNA-disease associations with respect to disease rank under leave-one-out cross-validation.
TABLE 6: Top 10 newly predicted microRNA-disease associations by CATAPULT.

Rank MicroRNA OMIM disease ID Disease Source
1 hsa-let-7a 176807 Prostate cancer miR2Disease
2 hsa-mir-34a 114480 Breast cancer HMDD
3 hsa-mir-21 211980 Lung cancer HMDD
4 hsa-let-7c 114480 Breast cancer HMDD
5 hsa-mir-19a 114480 Breast cancer HMDD
6 hsa-let-7a 151400 Chronic lymphocytic leukemia miR2Disease
7 hsa-mir-29b 114480 Breast cancer miR2Disease
8 hsa-mir-146a 211980 Lung cancer HMDD
9 hsa-mir-155 211980 Lung cancer HMDD
10 hsa-let-7¢ 114550 Hepatocellular carcinoma miR2Disease

We introduce KATZ and CATAPULT methods for pre-
dicting microRNA-disease associations. KATZ succeeds in
processing social network links to achieve prediction, which
is a different strategy to other methods, such as PBSI
and MBSI. The KATZ method uses the entire heteroge-
neous network, including microRNA-microRNA association,
microRNA-disease association, and disease-disease associa-
tion networks. CATAPULT is a supervised learning method
and uses a biased SVM. KATZ and CATAPULT significantly
outperform other prediction microRNA-disease association
methods, assessed by the leave-one-out and 3-fold cross-
validation evaluation strategy. The potential microRNA-
disease association predicted by KATZ and CATAPULT
will facilitate biological experiments, which identify the true
associations between microRNAs and diseases. The KATZ
uses the simple measure on the heterogeneous network to
predict the potential microRNA-disease associations. KATZ’s
performance is relatively poor on the sparse known associa-
tions.

Although our methods perform well, better methods
would be proposed to predict microRNA-disease associa-
tions. There are many features of microRNAs and diseases
that are not used to help predict microRNA-disease associ-
ations, such as gene ontology and the external manifestations
of disease. With the use of more factors in prediction methods
and the emergence of new relevant data, the prediction of

microRNA-disease association will further advance. Ulti-
mately this will help the medical treatment of disease.
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