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Abstract 

Background: To assess the ability of the pix2pix generative adversarial network (pix2pix GAN) to synthesize clinically 
useful optical coherence tomography (OCT) color-coded macular thickness maps based on a modest-sized original 
fluorescein angiography (FA) dataset and the reverse, to be used as a plausible alternative to either imaging technique 
in patients with diabetic macular edema (DME).

Methods: Original images of 1,195 eyes of 708 nonconsecutive diabetic patients with or without DME were retro-
spectively analyzed. OCT macular thickness maps and corresponding FA images were preprocessed for use in training 
and testing the proposed pix2pix GAN. The best quality synthesized images using the test set were selected based on 
the Fréchet inception distance score, and their quality was studied subjectively by image readers and objectively by 
calculating the peak signal-to-noise ratio, structural similarity index, and Hamming distance. We also used original and 
synthesized images in a trained deep convolutional neural network (DCNN) to plot the difference between synthe-
sized images and their ground-truth analogues and calculate the learned perceptual image patch similarity metric.

Results: The pix2pix GAN-synthesized images showed plausible subjectively and objectively assessed quality, which 
can provide a clinically useful alternative to either image modality.

Conclusion: Using the pix2pix GAN to synthesize mutually dependent OCT color-coded macular thickness maps or 
FA images can overcome issues related to machine unavailability or clinical situations that preclude the performance 
of either imaging technique.

Trial registration: ClinicalTrials.gov Identifier: NCT05105620, November 2021. “Retrospectively registered”.

Keywords: Generative adversarial networks image synthesis, Pix2pix, Color-coded macular thickness maps, 
Fluorescein angiography, Optical coherence tomography
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Background
One of the most common causes of visual impairment 
in diabetic patients is diabetic macular edema (DME) 
[1]. Fluorescein angiography (FA) depicts retinal blood 

flow over time, revealing the status of retinal perfusion 
and the presence of leakage from the retinal vascula-
ture. Therefore, it plays a crucial role in the staging of 
diabetic retinopathy (DR) and evaluation of the retinal 
vasculature. However, the physical characteristics of 
fluorescein, which can leak from diseased blood vessels 
obscuring the fluorescence of underlying tissue, and the 
invasiveness of the technique makes it not without risks 
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[2]. A popular non-invasive method for diagnosing DR 
and tracking its laser, medicinal, and surgical treat-
ment is optical coherence tomography (OCT). OCT 
is inherently risk-free and independent of the physi-
cal characteristics of fluorescein, as it does not use a 
dye [3]. OCT offers a quantitative evaluation of DME 
and the location of retinal thickness. Geographically, 
the macular thickness can be represented as a falsely 
colored topographic map with green and yellow repre-
senting normal and near-normal values and areas with 
progressively increasing retinal thickness being repre-
sented by orange, red, and white in agreement with the 
color-coded scale [4]. DME and its response to treat-
ment are commonly monitored using automated OCT 
retinal thickness mapping [5]. Standard OCT, however, 
only offers structural information, and as a result, does 
not distinguish blood flow within the retinal vascula-
ture and merely offers spatial features. Zones of leakage 
can be linked to structural changes in the retina by fus-
ing the physiological data from FA with the structural 
data from OCT, allowing for a more accurate assess-
ment and monitoring of the response of DME to vari-
ous treatment regimens. The decision-making process 
during the follow-up of patients with DME may be hin-
dered by the occasional unavailability of either imaging 
modality [6].

With the advent of deep convolutional neural net-
works (DCNN), which are gradually replacing other 
approaches in most machine learning tasks like pat-
tern recognition and image recognition, the problem of 
medical data generation, particularly images, has been 
of great interest and has thus been extensively studied 
in recent years [7]. Generative adversarial networks 
(GANs) are neural network models that simultane-
ously train their generator and discriminator networks. 
A network’s integrated performance efficiently creates 
new, realistic image samples [8].

A broad solution to supervised image-to-image 
translation problems is provided by the pix2pix GAN 
framework. Its generator takes an image from the input 
domain and translates it to the target domain by reduc-
ing the adversarial loss sent back by the discriminator 
and the pixel-reconstruction error. Additionally, the 
discriminator must distinguish between the generator’s 
fake output and the desired ground truth output image 
until it achieves equilibrium with the generator [9].

We evaluated the effectiveness of a GAN implement-
ing pix2pix image translation from the original OCT 
color-coded macular thickness map to synthetic FA 
image translation and the reversal(from original FA 
image to synthetic OCT color coded macular thick-
ness map translation). Both subjective and objective 

evaluations of the synthesized images’ quality were 
conducted for each class.

Materials and methods
Study population
This study followed the tenets of the Declaration of Hel-
sinki in compliance with applicable national and local 
ethics requirements. The institutional review board of 
Faculty of Medicine, Assiut University waived the need 
for patients’ informed consent of this retrospective study. 
We retrospectively analyzed charts and results of imag-
ing studies for patients from the retina clinic at Assiut 
University Hospital who had simultaneously undergone 
same-day FA and OCT with a diagnosis of confirmed or 
suspected DME, over 31 months (August 2018 to Febru-
ary 2021). Patient demographics and clinical data were 
obtained from electronic medical records. Previous retin-
opathy or maculopathy treatment was recorded, and only 
one examination per patient was analyzed. The exclusion 
criteria were the following: significant media opacity that 
obscured the view of the fundus; OCT images with high 
signal-to-noise ratio, expressed by the device as "TopQ 
image quality" < 60; and/or vitreoretinal interface disease 
distorting the OCT thickness map. Patients with concur-
rent ocular conditions interfering with blood flow, uveitic 
diseases, or high myopia of more than − 8.0 diopters were 
also excluded.

Image acquisition
Anonymized charts of patients with diabetes that con-
tained color fundus photographs and standard 30-degree 
FA obtained using a conventional fundus camera (TRC-
NW8F retinal camera; Topcon Corporation, Tokyo, 
Japan) were used for diabetic retinopathy grading by 
two independent retinal specialists (EW and SK). Grad-
ing of the retinopathy was based on the Early Treatment 
Diabetic Retinopathy Study (ETDRS) classification [10]. 
After classification, the inter-rater agreement between 
the two graders was calculated. The labeled images 
were then reviewed by a third party (HA), who identi-
fied conflicting images and adjudicated their grades by 
consensus.

Swept-source OCT was performed using the Topcon 
DRI OCT Triton device (ver.10.13; Topcon Corporation, 
Tokyo, Japan) to obtain a 3D macular report view. The 
report shows a 7.0 × 7.0 mm horizontal box scan of the 
macular area centered at the fovea. The retinal thickness 
map is transparently overlaid on a red-free fundus image 
as a color-coded square that represents retinal thickness 
measured from the internal limiting membrane to the 
photoreceptor outer segment/retinal pigment epithe-
lium junction. Normal retinal thickness values are repre-
sented in green, while progressively thicker than average 
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values (compared to the normative database) are shown 
in yellow, orange, red, and white. Meanwhile, thinner 
than usual values are depicted in blue and violet. A color 
bar is attached to the map showing the values of retinal 
thickness for each color ranging from 0 to 500 µm. The 
relative position of the foveal center in each map is auto-
matically identified by the machine software; sometimes, 
the certified operator may change the fovea location to 
correct centration errors.

Image dataset preprocessing pipeline
All image preprocessing was performed using the Python 
imaging library (PIL) and Open CV, which is a library of 
Python bindings designed to solve computer vision prob-
lems. Pix2pix uniquely requires paired images across the 
two domains, which are spatially registered identically to 
each other. The images must be combined side by side to 
produce a composite image of width = 2 × height.

Our dataset comprises OCT color-coded macular 
thickness maps and their corresponding FA frames that 
feature the same macular area. The image translation 
problem involves converting the OCT macular thickness 
map photo to an FA frame, or the reverse (FA frame to 
macular thickness map image). The prepared images have 
a digit filename and are in the JPEG format. Each image is 
1024 pixels wide and 512 pixels tall and contains both the 
FA image on the left and the corresponding OCT color-
coded macular thickness map image on the right. We 
used the fovea location as the reference landmark to crop 
identical macular areas in both image domains. To locate 
the fovea in FA frames, we implemented foveal avascular 
zone (FAZ) segmentation using a contour detection tech-
nique, and then used the FAZ centroid as the presumed 
fovea location.

Preparation of OCT images
All available anonymized 3D macular reports were digi-
tally named and cropped to the color-coded macular 
thickness map. Then, all left eye maps were mirror-
imaged to look as right eye maps. This horizontal flipping 
of the images serves as an image augmentation technique 
so that all images appear as fundus images of the right 
eye. Automated cropping of the resulting images to the 
color-coded macular thickness square was implemented 
using a Python script by iterating over pixel values and 
locating the outlines of the colored square overlaying the 
red-free (gray-scale) fundus photograph. The algorithm 
scanned a central squared area to avoid errors intro-
duced by scanning the color bar and reducing the com-
putational cost. The colored square center is considered 
to be the presumed foveal location. The colored square is 
finally resized to 512 × 512 pixels JPEG image format and 
saved.

Preparation of FA images
Mid-phase frames (2–4  min) were considered for the 
FA images. FA frames in this phase depict retinal perfu-
sion details and areas of retinal edema before masking 
by excessive fluorescein leakage can occur. The selected 
frame of each eye is a digit named after the correspond-
ing OCT map name and resized to correct for the dif-
ference in magnification between the fundus camera 
and OCT machine images. All left eye frames were 
then mirror-imaged to look like the right eye frames. 
To automatically segment the FAZ, the FA frames were 
converted into grayscale, and then binary thresholding 
was applied over a selected squared area slightly shifted 
to the left half of the image. This was done to minimize 
possible segmentation errors by dark frame outlines and 
reduce unnecessary computational costs. The segmen-
tation algorithm converts the image to black and white 
while adjusting the threshold to highlight the FAZ and 
facilitate contour detection. Thresholding turns the bor-
der of the FAZ, with all contained pixels having the same 
intensity into a white area. The algorithm can detect the 
borders of the FAZ from these white pixels. The black 
pixels, having a value of 0, were perceived as background 
pixels and ignored. The coordinates of the FAZ contour 
points are detected by an OpenCV function (findCon-
tours() function). This allowed the localization of the cen-
troid of the FAZ, which was presumed to be the foveal 
location. As FA images were previously corrected for 
magnification difference, the centroid of the FAZ was 
then used as the reference point for cropping the origi-
nal FA frame to a square equivalent in dimensions to the 
final cropped OCT macular thickness colored square and 
saved as 512 × 512 pixels JPEG image. We also prepared 
a separate reference folder (named "reader’s folder") for 
each eye FA frame containing four images: the first shows 
the colored fundus photograph, the second shows the 
FA frame used, the third is the same FA frame with the 
position of the foveal mark, and the fourth is the binary 
threshold abstract image showing the segmented FAZ as 
a white area over a black background with the centroid 
mark used as the reference point for the presumed foveal 
location.

Preparation of paired training and test dataset
Each OCT image is paired with its respective FA and 
concatenated, giving a 1024 × 512 twin image that 
represents the same macular area centered on the 
fovea. This image registration is mandatory during 
the implementation of the pix2pix GAN. The con-
catenated image of each eye was added to the corre-
sponding reader’s folder. Images in each reader’s folder 
were used to revise the quality of the automated fovea 
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localization algorithm by one of two experienced OCT 
image readers (MS and WS).The readers reviewed the 
images in each reader’s folder and were asked to sub-
jectively evaluate the overall quality of the centration 
of cropped images on a scale of 1–5 (1 = excellent, 
2 = good, 3 = normal, 4 = poor, and 5 = very poor). 
The readers were also asked to isolate image pairs 
with poor or very poor cropping quality (non-identi-
cal macular areas or eccentric fovea location). These 
images were cropped manually, concatenated, and the 
resulting pairs were reviewed by a third party (HA) 
until the desired quality of image pairs was reached 
using all available images.

The preprocessing step yielded 1195 paired images 
as the original dataset. At this point, we manually 
selected 110 paired images that equally represented 
all DR stages available in the original dataset to be 
used as a test set, and the remaining images were used 
for training the pix2pix network(1085 images). Each 
image in the test set was saved in a digit-named folder 
that contains a copy of the original unprocessed image. 
Figure  1 shows the preprocessing steps for preparing 
the dataset used in this study.

Image synthesis
Pix2pix GAN architecture
Pix2pix is a conditional GAN in which a target image 
is generated conditional on a given input image. In this 
case, the pix2pix GAN changes the loss function such 
that the generated image is plausible in the content of the 
target domain and is a plausible translation of the input 
image. The network is made up of two main pieces known 
as the generator and discriminator. The generator trans-
forms the input image to obtain an output image. The 
discriminator measures the similarity of the input image 
to an unknown image (either a target image from the 
dataset or an output image from the generator) and tries 
to guess if it is produced by the generator. The genera-
tor is updated to minimize the loss predicted by the dis-
criminator for the generated images [11]. The adversarial 
loss influences whether the generator model can output 
sharp images that are plausible in the target domain; 
using this loss function alone introduces visual artifacts, 
whereas the use of the mean absolute pixel difference loss 
between the generated translation of the source image 
and the expected target image (L1 loss) alone processes 
blurry images. As such, the combination of L1 loss and 
adversarial loss is controlled by a new hyperparameter 
lambda (generator loss = adversarial loss + lambda × L1 

Fig. 1 Image preprocessing pipeline: A Area scanned for detection of the foveal avascular zone outline in fluorescein angiography frames. B 
Binary image of the foveal avascular zone (white) with its centroid marked (red dot). C Original fluorescein angiography frame cropping centered 
at the centroid location. D The cropped, resized fluorescein angiography frame. E Area scanned for detection of colored pixels of optical coherence 
tomography colored-coded macular thickness map. F Cropped macular thickness map square. D + F The final concatenated image
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loss), which is set to 100, giving 100 times the importance 
of the L1 loss than the adversarial loss to the generator 
during training. This combination of loss functions can 
effectively reduce these artifacts.

More details about the model architecture are men-
tioned in our previous published work [12].

We implemented the same pix2pix model architecture 
originally proposed by Isola et  al. [9] with minor modi-
fications needed to generate color images of 512 × 512 
pixels.

We used Keras 2.3.1 a and Tensorflow 2.0.0. [13]; the 
proposed model architecture is illustrated in Fig. 2.

Pix2pix GAN training
Two identical pix2pix GAN models were trained using 
all available images of the training set (the test set images 
were set aside from the original dataset as described). 
One model was trained for FA to OCT macular thickness 
map translation, and the other was trained in the reverse 
direction to synthesize FA images from the correspond-
ing OCT macular thickness maps. The model with its 
weights were saved regularly each 10 training iterations 
to generate sample images for quality assessment. Conse-
quently, we obtained 20 saved generator model files with 
their weights for each model task.

Selection of synthesized images with the best quality
Each of the 20 saved generator models was loaded and 
used to make an ad-hoc translation of source images in 
the training dataset for subjective or objective assess-
ment [12]. To select the generator epoch that produced 
the best image quality, we used the Fréchet inception dis-
tance (FID) score, [14] which is a metric that calculates 
the distance between feature vectors calculated for origi-
nal and generated images. A lower score indicates better 
performance. The saved trained generators were used to 
synthesize image samples in each direction (from OCT 
to FA and the reverse) using all test set images after crop-
ping each image pair to obtain each image class sepa-
rately. The FID score was calculated for images obtained 
by each of the 20 saved generators per image class. The 
best performing generator was used for image synthesis, 
and the synthesized image quality was evaluated subjec-
tively and objectively.

Subjective visual quality analysis
All test set images were used to obtain synthesized 
images using the selected trained model epoch in each 
direction of image translation (from true FA to synthe-
sized OCT macular thickness map, and from true OCT 
macular thickness map to synthesized FA frame) using 
the relevant model trained for each translation task. 

Fig. 2 A simplified plot of the proposed composite pix2pix model outlining its main components and workflow (created by Hazem Abdelmotaal). 
1: Generated image. 2: Discriminator (L1) loss. 3: Adversarial loss. 4: Composite loss function (generator loss = adversarial loss + lambda (100) × L1 
loss). L1 Loss = mean absolute error between the generated image and the target image
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The resulting synthesized image was saved with its cor-
responding ground-truth counterpart in a separate 
folder. Each of these images was visually evaluated for 
global consistency and content by the same experienced 
observers (SK and EW). They subjectively evaluated the 
overall quality of the synthesized images on a scale of 
1–5 (1 = excellent, 2 = good, 3 = average, 4 = poor, and 
5 = very poor). The quality of the original images was 
used as the standard for a score of 1. They were also 
asked to report the overall features and clinical useful-
ness of each class of synthesized images compared to the 
corresponding ground truth images. We also indepen-
dently supplied two other image readers (WS and MS) 
with a patch of 11 ground-truth test set OCT images(10% 
of the test set volume) and the corresponding shuffled 
synthesized FA frames and asked them to combine each 
image with its probable synthesized counterpart. The 
readers’ accuracy and the time needed to submit their 
answers were recorded. This was repeated using the 
remaining test set volume and the corresponding synthe-
sized images in 10 image patches until all the test images 
were provided to the readers. The process was repeated 
after shifting to the ground-truth test set FA frames and 
the corresponding synthesized OCT images.

Hand Crafted features (HCFs) refer to properties 
derived using various algorithms using the information 
present in the image itself such as edges and corners [15]. 
HCFs were commonly used with "traditional" machine 
learning approaches for object recognition and computer 
vision like Support Vector Machines. Convolutional 

neural networks (CNNs) typically do not have to be sup-
plied with such handcrafted features, as they can "learn" 
the features from the image data. Instead, we suggested 
the use of HFCs as a testing tool for obtaining deeper 
subjective insight into the model performance during 
FA to OCT macular thickness map image translation. 
We supplied the chosen trained model with three mac-
ular diagrams prepared by PIL that represent abstract 
diagrammatic drawings of the right macula with dots 
representing hyperfluorescent microaneurysms with 
increasing degrees of surrounding hyperfluorescence 
mimicking leakage. The diagram was designed so that the 
presumed microaneurysms were distributed in equidis-
tant concentric zones around the presumed FAZ to help 
understand the model behavior. These virtual FA maps 
were subjected to cropping in the same steps in the pre-
processing before feeding them to the FA to OCT genera-
tor. The synthesized virtual thickness maps are presented 
in this paper. The virtual FA images are shown in Fig. 3.

Objective evaluation metrics for synthesized images
To objectively assess the synthesized image quality, all 
synthesized images of each class using the test set were 
quantitatively evaluated using the following metrics:

Peak signal‑to‑noise ratio (PSNR) [16]
The PSNR measures image distortion and noise level 
between images; a higher PSNR value indicates higher 
image quality. PSNR calculates the PSNR ratio in deci-
bels from the two images. This ratio is used to measure 

Fig. 3 The proposed virtual fluorescein angiography frames for testing the optical coherence tomography macular thickness map generator. 
(created by Hazem Abdelmotaal). A Dotted hyperfluorescence simulating the appearance of microaneurysms without leakage. a Image (A) after 
preprocessing similar to the original dataset. B Dotted hyperfluorescence simulating the appearance of microaneurysms with surrounding focal 
leakage. b Image (B) after preprocessing similar to the original dataset. C Dotted hyperfluorescence simulating the appearance of microaneurysms 
with surrounding diffuse leakage. c Image (C) after preprocessing similar to the original dataset
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the quality of the original image and the resultant image. 
To calculate the PSNR, the mean squared error (MSE) 
was used to compare the “true” pixel values of the origi-
nal image with respect to the synthesized image. The 
MSE represents the average of the squares of the "errors" 
between the actual image and the noisy image.

Structural similarity index (SSIM) [17]
The SSIM index is a perceptual metric that quantifies 
image quality degradation by measuring the structural 
information similarity between images, where 0 indi-
cates no similarity and 1 indicates complete similarity. 
The SSIM extracts three key features from an image, 
luminance, contrast, and structure; then, the compari-
son between the two images is performed based on these 
three features. This metric differs from PSNR, which esti-
mates the absolute errors.

Hamming distance (HD) [18]
HD can be used to determine the similarity of two 
images. The HD between two strings of equal length is 
typically defined as the number of positions at which the 
corresponding symbols are different. The value of the 
string (hash value) is derived from each image by image 
hashing based on the visual contents of an image. This 
involves examining the contents of an image and con-
structing a hash value that uniquely identifies an input 
image based on its visual content. This simple crypto-
graphic image hashing cannot be used directly to com-
pare the contents of two images, because if the images 
are slightly different, even a couple of pixels will result 
in a completely different hash. For most human eyes, 
images that differ by a couple of pixels are essentially the 
same. To be able to compare images in a way that is more 
similar to human eyes, we used perceptual hashing algo-
rithms so that the more similar the images, the more sim-
ilar their hashes are. The perceptual hashing algorithms 
used in our work involve scaling the original image to an 
8 × 8 grayscale image, and then performing calculations 
on each of the 64 pixels. The result is a fingerprint of the 
image that can be compared to other fingerprints. We 
used the image-hash library in Python to compute the 
hash of an image, and then compared it to find the HD. 
A value of 0 indicates a similar result. A value between 1 
and 10 is potentially a variation. A value greater than 10 
is likely to be a different image.

Learned perceptual image patch similarity metric (LPIPSM) 
[19]
As visual patterns of images are high-dimensional and 
highly correlated, the notion of visual similarity is often 
subjective. Aiming to mimic human visual perception, 
the most widely used perceptual metrics today, such as 

PSNR and SSIM, are classic per-pixel shallow measures 
that assume pixel-wise independence and fail to account 
for many nuances of human perception. In addition, HD 
is best suited for comparing binary patterns. LPIPSM is 
a novel metric used to compute the distance between 
two images in the CNN feature space using the network’s 
internal activation after being trained for image clas-
sification tasks. This amounts to the use of pre-trained 
weights when training the network, to aim for percep-
tuality, and is demonstrated to exhibit a high correla-
tion with human perceptual similarity. A higher LPIPSM 
value means more different images, and a lower value 
indicates more similarity. We used the LPIPS metric to 
evaluate the mean distance between pairs of ground-
truth images in the test set and their corresponding syn-
thesized images and to plot the distance between some 
image samples from both domains. We used the trained 
AlexNet net to compute the distance, as recommended in 
the original paper, as it provides the fastest and best per-
formance. For the LPIPSM estimation, we used PyTorch 
1.0 + and torchvision libraries [20].

Statistical analysis, computer hardware, and software
All statistical analyses were performed using Scipy (Sci-
entific Computing tools for Python) and scikit-learn 
(version 0.21.3) [21]. Scikit-learn is a Python module for 
machine learning built on top of Scipy. Patient data are 
presented as the mean and standard deviation. A t-test 
was used to compare the means of the image group met-
rics. The Mann–Whitney U-test was used for the analysis 
of the means of the five-point assessment score given by 
the two readers, and a value of p ≤ 0.05 was considered 
significant. The ability of readers to link true with syn-
thesized images was estimated by accuracy (number of 
correct decisions made divided by the total number of 
test examples). Inter-rater agreement was estimated with 
Cohen’s к. Deep-learning computations were performed 
on a graphics processing unit (GPU) composed of a per-
sonal computer with a GeForce RTX 2060 SUPER graph-
ics card powered by an Nvidia Turing architecture with a 
CUDA 11.0.126 drive.

Results
A total of 1195 simultaneous, good-quality FA/ OCT 
examinations (487 bilateral) met the inclusion criteria. 
Only one examination was performed in the same patient 
during the study period. Table 1 presents the characteris-
tics of the study population, DR grading, and treatment 
details. Inter-rater agreement for DR grading was 0.90 
(Cohen к 0.84). This trivial ground-truth grade conflict 
ensured the presence of robust characteristics that the 
pix2pix GAN can use for the image features-specific style 
transfer in the synthesized images.
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Dataset preprocessing
After preprocessing, we obtained 1195 paired images 
as the original dataset. The training set comprised 1085 
paired images, and the test set comprised 110 paired 
images that equally represented all DR stages available 
in the original dataset. The process of automated crop-
ping of identical macular areas in FA and OCT color-
coded macular thickness maps based on the location 
of the FAZ centroid was not successful, as expressed 
by the five-point assessment score reported by the 
two readers. The mean of the scores given by the first 
reader was 3.38 ± 0.72, and by the second reader was 
3.66 ± 0.68. Manual cropping was needed to correct 
178 paired images (14.9% of the original images).

Pix2pix GAN training and generator selection
Pix2pix GAN training for 200 epochs took an average of 
14  h for each image class training direction. FID scores 
tended to improve as training progressed; however, the 
best FID score was reached at the 13th saved model for 
both classes of image generation (Fig. 4). The training of 
generators beyond this point produced lower FID scores, 
highlighting the importance of this metric for defining 
the best generator epoch for image synthesis. Therefore, 
the 13th generator (saved at the 130th training epoch) 
were selected for further per-class image synthesis in this 
study.

Subjective image analysis
Figures  5 and 6 display examples of the synthetically 
generated images. The images were globally consist-
ent because the model learned to introduce visual con-
tent related to linking areas of leakage in FA frames to 
color codes representing abnormal macular thickening 
in OCT images. The color code distribution also showed 
acceptable plausibility. It is also noticeable that the model 
learned to generate ghost background vessels in the 
generated OCT maps that were not consistent with the 
macular vascular tree in the corresponding FA frame. In 
the other direction, synthesized FA frames lacked back-
ground vascular tree and showed no evidence of dotted 
hyperfluorescence characteristic of microaneurysms but 
could define areas of focal and diffuse leakage and outline 
the FAZ.

In the five-point assessment of the overall image 
quality and clinical usefulness compared to the ground-
truth corresponding images, the means of the scores 
given by the first reader were 2.84 ± 0.31, 2.62 ± 0.96 
and by the second reader 2.98 ± 0.55, 2.74 ± 0.29 for 
the OCT and FA synthesized images respectively. This 
reflects the good quality of the synthesized images 
in both classes. There was no significant difference 
between the classes’ average scores given by both read-
ers (p = 0.082). This indicates that the models generated 
plausible expected target image features based on the 
ground-truth corresponding class features efficiently. 
Concerning the readers’ ability to recombine syn-
thetic and ground-truth images of the other class, they 
showed robust performance, correctly inferring most 
of the linking image characteristics in the presented 
images. When ground-truth FA images were used, 
the readers achieved correct pairing predictions in 88 
images (80%) and 92 images (83.63%) of all 110 chal-
lenge images. The average time required by the read-
ers before submitting their answers in the 11-image 
pairing challenge was 247 ± 45 s and 291 ± 33 s by the 
first and second reader, respectively. Using the original 

Table 1 Demographics of the study population

anti-VEGF Anti-vascular endothelial growth factor, CME Cystoid macular 
edema, DME Diabetic macular edema, DRT Diffuse retinal thickening, ETDRS 
Early treatment diabetic retinopathy study, NPDR Non-proliferative diabetic 
retinopathy, OCT Optical coherence tomography, PPV Pars plana vitrectomy, PRP 
Pan-retinal photocoagulation, SRD Subretinal detachment

Clinical characteristics Population

Subjects/eyes (n) 708/1195

Mean age (y) ± SD 60.3 ± 8.22

Gender (male/ female ratio) 14:11

Duration of diabetes mellitus (y) ± SD 17.3 ± 6.2

Side (right eye/ left eye) 24 / 22

No retinopathy n (%) 143 (12)

ETDRS severity: n (%)

 • Mild NPDR 383 (32)

 • Moderate NPDR 191 (16)

 • Severe NPDR 251 (21)

 • PDR 227 (19)

OCT morphology: n (%)

 • No edema 215 (18)

 • DRT 550 (46)

 • CME 335 (28)

 • SRD 95 (8)

Maculopathy treatments: n (%)

 • No treatments 263 (22)

 • Intravitreal anti-VEGF only 526 (44)

 • Intravitreal anti-VEGF and steroids 60 (5)

 • Macular laser alone 191 (16)

 • Macular laser and intravitreal drug(s) 155 (13)

PDR treatments: n (%)

 • PRP only 132 (58)

 • Intravitreal anti-VEGF only 31 (14)

 • PRP and intravitreal anti-VEGF 41 (18)

 • PPV 23 (10)
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OCT images, the reader accuracy scores were lower (86 
correct pairs [78.18%] and 74 correct pairs [67.27%]), 
with a statistically significant longer mean time needed 
to submit the 11 images combining task compared to 
using the original FA images (395 ± 55 s and 382 ± 16 s, 
p = 0.038 and p = 0.014 for the first and the second 
reader, respectively). The readers reported difficulty 
in inferring the right pair due to lack of background 
vascular landmarks in synthetic FA frames and the 

presence of some areas of unexpected retinal thicken-
ing in synthetic OCT images.

When the virtual FA drawings were used to feed the 
FA to the OCT model, the synthesized OCT maps 
showed plausible results, as depicted in Fig.  7. The 
trained model output images showed progressively 
wider areas of increasing retinal thickness surround-
ing the presumed leakage. We also noted that the 
model could map a virtual background vascular tree; 

Fig. 4 The Fréchet inception distance (FID) score changes during training. The arrows point to the generator models with the best-generated 
image FID score per class

Fig. 5 Synthetic fluorescein angiography image examples with various modes of presentation. A and B Ground-truth cropped optical coherence 
tomography color-coded macular thickness maps; a and b = generated fluorescein angiography frames; A + a and B + b = generated fluorescein 
angiography images pasted on their corresponding true red-free optical coherence tomography fundus images; A: a and B:b = generated 
fluorescein angiography images pasted with transparency on their corresponding true red-free optical coherence tomography fundus images
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Fig. 6 Synthetic optical coherence tomography color-coded macular thickness maps examples with various modes of presentation. A Twin image 
showing the original unprocessed fluorescein angiography frame (left) concatenated with synthetic optical coherence tomography color-coded 
macular thickness map (right). The synthesized map was pasted on the corresponding optical coherence tomography fundus image provided by 
a diagrammatic conventional color bar. B and b Two examples of synthetic optical coherence tomography color-coded macular thickness maps 
pasted on the corresponding ground-truth fluorescein angiography frames provided by a diagrammatic conventional color bar. C and c Two 
other examples of synthetic optical coherence tomography color-coded macular thickness maps pasted with transparency on the corresponding 
ground-truth fluorescein angiography frames provided with a diagrammatic conventional color bar

Fig. 7 The outcome of feeding virtual fluorescein angiography drawings to optical coherence tomography color-coded macular thickness maps 
generator model. A, B, C = preprocessed diagrammatic image showing virtual microaneurysms with no or variable leakage; a, b, c = generated 
thickness maps; A + a, B + b, C + c = synthetic thickness map pasted on unprocessed virtual fluorescein angiography drawing with conventional 
color bar; A: a, B:b, C:c = generated thickness maps pasted with transparency on unprocessed virtual fluorescein angiography drawing with 
conventional color bar
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additionally, in the mild focal leakage (2nd) frame, the 
model paid more attention to translating leakage into 
a greater retinal thickness in the nasal macular region 
than other macular quadrants despite the symmetric 
distribution of virtual leaking spots in all quadrants. 
This may reflect a deep feature in our training data-
set or a unique feature that warrants more interest in 
explaining this attention preference when translating 
leakage.

Objective image evaluation metrics
All available ground truth test set image samples in each 
class were used for pairwise comparison with an equiva-
lent number of synthesized images of the same class by 
calculating the PSNR, SSIM, HD, and LPIPSM scores. As 
all the quality scores had a normal distribution according 
to the Kolmogorov‒Smirnov test, data were expressed 
as mean ± standard deviation (Fig. 8, Table 2). The gen-
erated OCT thickness maps showed a significantly 

Fig. 8 Box-plot of peak signal-to-noise ratio, structural similarity index, Hamming distance and learned perceptual image patch similarity 
metric between the generated image sample and an equivalent sample of all available test images. Images were synthesized by best generator 
performance according to the best Férchet Inception Distance score. The notches in the box plot represent the confidence interval around the 
median. The mean is marked by a triangle. All synthetic images; FA, synthetic fluorescein angiography images; OCT, synthetic optical coherence 
tomography color-coded macular thickness maps



Page 12 of 17Abdelmotaal et al. BMC Ophthalmology          (2022) 22:355 

higher (p = 0.01) PSNR value, indicating less distortion 
and lower noise when compared to the synthesized FA 
images. The SSIM showed that the generated OCT maps 
also had better structural information similarity with 
their original counterparts when compared to gener-
ated FA images; however, this difference was not statisti-
cally significant. The values of HD indicate the presence 
of variation that was clinically significant in the OCT 
thickness maps synthesized images (p = 0.05). The LPIPS 
metric showed that the mean distance between pairs of 
ground-truth images in the test set and their correspond-
ing synthesized images in both image groups was gener-
ally below 0.5, with no statistically significant difference, 
indicating a tendency toward image similarity. In addi-
tion, we plotted the ground truth and the correspond-
ing synthesized image samples from each image domain 
to show the distance map between some image features 
as perceived by the Alex Net CNN feature space using 
the network’s internal activation after being trained for 
image classification tasks (Figs.  9 and 10). The figures 
demonstrate the perceptual efficiency of this metric in 
determining the image differences. In addition, it con-
firms that our model generalized properly and did not 
trivially memorize the training set samples. However, the 
synthetic images showed areas of unrealistic leakage or 
retinal thickening compared to the ground-truth images.

Discussion
Both FA and OCT are complementary in diagnosing 
the type and extent of DME [22]. FA has been shown to 
improve the accuracy of photocoagulation treatment 
planning for clinically significant macular edema [23]. 
Also, OCT macular thickness maps have been widely 
used as a guide for macular laser therapy for DME [24].

The present study showed that applying the pix2pix 
GAN to either the original FA or original OCT color-
coded macular thickness maps can efficiently generate 
images with plausible quality in the other image domain. 

To date, no previous study has reported the use of pix-
2pix GAN in this type of image translation task. The basic 
pix2pix framework has been used for medical image 
denoising, reconstruction, segmentation, and amplifica-
tion of the original dataset [12, 15, 25, 26]. In our study, 
we developed and evaluated the use of this network to 
obtain synthetic, clinically useful OCT and FA images 
that when used in concert, can assist the retinal special-
ist in decision making while treating patients with DME 
in case of machine failure/unavailability (either OCT or 
FA) or situations such as the presence of limited pupil-
lary dilatation or significant media opacity that prevent 
performance or compromise the quality of FA, while 
OCT can still be performed with satisfactory image qual-
ity. The generated FA images are also useful in patients 
with multiple comorbidities in whom fluorescein injec-
tion may be precluded because of its potentially serious 
side effects. The potential application of this technique 
is promising after evaluation of the generated images by 
retina specialists and many image metrics, including dif-
ference detection by trained CNN.

The state-of-the-art in multi-modal retinal images reg-
istration is combining feature-based and intensity-based 
image features [27]. Even the most recently reported 
hybrid registration framework [28] cannot be used in 
the preparation of our paired dataset due to the obscu-
ration of the vascular tree by the destructive overlay of 
color codes in macular thickness maps. We used the FAZ 
centroid localization algorithm to minimize human effort 
and errors in the automated preparation of our dataset, 
permitting preprocessing of any number of image pairs 
with the least need for manual assistance. The outcome 
of this preprocessing algorithm was satisfactory after 
reviewing the image pairs by human readers and allowed 
automated preprocessing of 84.1% of the original dataset. 
As different reference standards were used, our preproc-
essing algorithm cannot be directly compared to other 
multimodal fundus imaging registration techniques [29].

Fujioka et al. demonstrated that, with increasing epoch 
number during training of a deep convolutional GAN, 
the final image quality increased. However, they pos-
tulated that overlearning may occur if learning extends 
beyond the ideal number of learning iterations, decreas-
ing image quality [30]. Our observations corroborate 
these results. Many studies used subjective scores by 
experienced image readers to select best image genera-
tors [30–32]. However, inter-and intra-individual image 
reader variations may introduce estimation bias. We used 
the FID score as an objective metric to assess the gener-
ated image quality during training. Monitoring the FID 
score periodically facilitated accurate selection of the 
best performing generator epoch.

Table 2 Characteristics of generated image samples compared 
to their corresponding original images of the same class using 
the test set

Data are presented as mean ± standard deviation. Bold entry denotes a 
significant P-value

HD Hamming distance, LPIPSM Learned perceptual image patch similarity 
metric, PSNR Peak signal-to-noise ratio, SSIM structural similarity index

Image class OCT macular 
thickness map

Fluorescein 
angiography

P‑ value

PSNR 18.47 ± 2.70 17.10 ± 2.55 0.01
SSIM 0.77 ± 0.05 0.56 ± 0.11 4.33

HD 0.48 ± 0.06 0.43 ± 0.33 0.05
LPIPSM 0.45 ± 0.14 0.48 ± 0.75 0.25
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De Carlo et al. [33] used an overlay technique to simu-
late vascular leakage in optical coherence tomography 
angiography (OCTA) in eyes with DME by overlying 
OCT angiograms with the corresponding OCT thickness 
maps, using FA as the comparative norm. Their tech-
nique showed low sensitivity for the detection of leaking 
microaneurysms (26.1%). Their overlay technique man-
dates the availability of the OCTA imaging modality and 
cannot provide FA frames from the OCT domain. Our 
method could provide synthetic OCT color-coded mac-
ular thickness maps and FA images with plausible sub-
jective and objective qualities in FA and OCT domains, 
comparable to other studies implementing pix2pix net-
works for other image datasets [31, 32].

To eliminate possible concerns that the model gener-
ated images that were too similar to or simply averag-
ing the original training image features, and to ensure 
the generalizability of the model, we implemented all 
subjective and objective analyses on the independent 
test set [34]. The overall subjective evaluations of the 

synthesized OCT and FA images were acceptable by both 
readers. Our results demonstrated that, although retina 
specialists reported difficulty in identifying original OCT 
macular thickness maps that correspond to synthetic FA 
images due to the lack of vascular trees in the synthesized 
FA images, these images can still convey clinically useful 
information about possible areas of leakage and outline 
of FAZ. Dmuchowska et al. [35] stated that it is not pos-
sible to detect the FAZ outline or size based solely on the 
measurement of thickness and retinal structure evalua-
tion using OCT. However, in our generated FA images, 
the outline/size of the FAZ can be depicted. The validity 
of these synthetic FAZ plots requires further assessment, 
which is beyond the scope of our work.

Kozak et al. [36] noticed some discrepancies in the find-
ings between OCT and FA in the detection of microaneu-
rysms. They observed cases in which FA showed obvious 
patterns of macular leakage but lacked any correspond-
ing changes in retinal thickness on OCT (3.85% of eyes). 
They also reported the reverse phenomenon in which, in 

Fig. 9 Three examples showing plots of ground-truth and the corresponding synthesized optical coherence tomography color-coded macular 
thickness maps to show the distance map between some image features as perceived by the Alex Net CNN feature space using the network’s 
internal activation after being trained for image classification tasks. The figures demonstrate the perceptual efficiency of learned perceptual image 
patch similarity metric in finding image differences
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some cases, FA can miss intraretinal fluid, especially sub-
retinal fluid apparent by OCT (1.17% of eyes). Theoreti-
cally, this may not interfere with the mutual translation 
of information between both image modalities because 
of the low prevalence of both phenomena. On the other 
hand, they reported a high agreement between the two 
techniques for cystoid macular edema detection (almost 
95%). We also excluded cases with tractional DME in the 
original cohort, as in this patient category, fluorescein 
leakage is often minimal or absent, which does not cor-
relate with findings on OCT [37].

Targeting microaneurysms using focal photocoagula-
tion is a strong tool for improving macular edema [38]. 
Based on synthetic FA findings, microaneurysms could 
not be defined as dots with hyperfluorescence, instead, 
the model produced areas of focal and diffuse hyperfluo-
rescence without dotted hyperfluorescence characteris-
tic of microaneurysms. This may be caused by the use of 
mid-phase FA frames in the preparation of our dataset, in 
which the dotted hyperfluorescence of microaneurysms 

is relatively masked by hyperfluorescence caused by pro-
gressive leakage. However, the authors suggested that 
the location of microaneurysms and leaking vascular 
anomalies could be determined in relation to the path of 
the macular vessels, guided by using the colored or red-
free OCT fundus image with the generated FA frame in 
concert. The merging of information from both imag-
ing modalities may assist in the localization of leaking 
vascular abnormalities. In addition, previous reports 
have shown that some microaneurysms with dye leak-
age shown by FA did not completely overlap with retinal 
thickening on OCT [39, 40]. The combination of FA and 
OCT thickness maps is informative in determining the 
microaneurysms that are responsible for retinal swelling 
and treating focal DME.

The presence of artifacts may be partially due to the 
low amount of data and the transposed convolutions 
used in the generator architecture that are responsible 
for concatenating low-level features in the encoding path 
with symmetrical high-level features in the decoder path 

Fig. 10 Three examples showing plots of ground-truth and the corresponding synthesized fluorescein angiography images to show the distance 
map between some image features as perceived by the Alex Net CNN feature space using the network’s internal activation after being trained for 
image classification tasks. The figures demonstrate the perceptual efficiency of learned perceptual image patch similarity metric in finding image 
differences,
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[41]. Also, the absence of vascular trees in synthesized FA 
images and the presence of unrealistic vascular trees in 
generated OCT images are partly due to the destructive 
nature of the color-code overlay that obscures the under-
lying vasculature in the background red-free OCT image 
domain. Obscuration of vascular markings prevents the 
model from high-dimensional mapping of macular ves-
sels into the latent space where high-level features are 
extracted from individual pixels. Consequently, when 
this latent space is used to morph the original images into 
new analogous images, the new images appear devoid of 
blood vessels. When FA frames are used as the source 
domain, the blood vessels can always be depicted in syn-
thesized OCT images showing evidence that the net-
work always tries to hallucinate missing information in 
the target domain [42]. This finding can be identified in 
all model output OCT images, including diagrammatic 
macular drawings. The model output of diagrammatic 
macular drawings showed increased retinal thickening 
corresponding to the expected leaking area surround-
ing the virtual microaneurysms, with especially remark-
able macular thickening in response to perifoveal nasal 
macular microaneurysms. This response may be related 
to general findings in training data and/or may reflect a 
deep feature extracted by the network, thus document-
ing a clinical finding. We surmised that perifoveal nasal 
macular microaneurysms are generally more prone to 
leakage or are more resistant to treatment modalities 
than aneurysms elsewhere. This finding is consistent with 
the zone-specific response reported by Vemala et al. [43] 
who reported that clinically significant macular edema 
and the inferior perifoveal zone are the most responsive 
and the parafoveal superior and nasal being the least 
responsive to macular laser photocoagulation, which was 
used to treat 29% of our cases.

Yu et al. [32] documented better PSNR and SSIM when 
using the pix2pix framework than the Cycle-GAN. We 
also postulate that unpaired training with the Cycle-GAN 
does not have a data fidelity loss term; therefore, preser-
vation of small abnormal regions during the translation 
process is not guaranteed.

Because we were interested in generating images with 
clinically useful quality rather than synthetic image data 
augmentation, the use of Alex Net to create the LPIPS 
distance map and metric was more informative to pinch-
mark network performance and detect the differences 
in generated image features compared to ground-truth 
fellows instead of the traditional use of the classification 
performance alone into original and synthesized image 
classes. Additionally, DR staging was used to ensure the 
diversity of our original dataset and allow equal represen-
tation of all DR stages during the manual selection of the 
test set to ensure generalizability.

Our study had some limitations. Generative models 
are always limited by the information contained within 
the training set and how they capture the variability of 
the underlying real-world data distribution. Generaliza-
tion of the generator output could be further improved 
by including more training images. In addition, our 
method to prepare registered pairs of OCT and FA 
images was not completely successful, and manual cor-
rection of errors was needed. This can be avoided by 
using the same machine to obtain simultaneous FA and 
OCT images, which guarantees simple and accurate co-
localization of images. Additionally, the dependence of 
scan placement by the operator at the presumed foveal 
center during OCT acquisition may cause potential 
errors in poorly cooperative patients or patients with 
significant retinal disease. Finally, we did not investigate 
the impact of changing the value of the hyperparameter 
lambda, which combines the L1 loss with the adversar-
ial loss. Modulation of this hyperparameter may have 
limited blurring noticed in synthetic FA images and 
could also help to translate the image of tiny blood ves-
sels present in the background of the color-coded OCT 
maps to the synthetic FA domain.

The feasibility of obtaining synthetic FA frames from 
original OCT macular thickness maps or the reverse 
may provide a helpful image translation platform in sit-
uations in which either imaging modality is inaccessible 
or inconvenient. Future modifications of our work may 
theoretically allow this image translation platform to 
find its place in this niche. These modifications include 
the construction of more customized models (differ-
ent generator architectures or the use of an ensemble 
model that combines the output of multiple generator 
architectures and investigating different combinations 
of the discriminator and generator losses). Additionally, 
we recommend experimenting with the use of early and 
late FA frames and performing image acquisition simul-
taneously using the same machine capable of precise 
co-localization of both imaging modalities.
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