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Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia with a significant

medical and socioeconomic impact (1). Current AF management is centered around

stroke-prevention, control of comorbidities and risk factors, and symptom management

by rate- and rhythm control. Recent work has suggested that rhythm control may even

improve clinical outcomes compared to rate control, particularly when initiated early,

as demonstrated by the pivotal EAST AFNET-4 trial (2). Nevertheless, current options

for rhythm-control therapy remain suboptimal due to the potential proarrhythmic

side-effects of antiarrhythmic drugs (3) and limited efficacy of both drugs and

catheter ablation, primarily attributable to a one-size-fits-most therapeutic approach

(3, 4). A better understanding of the mechanisms underlying AF in an individual

patient is expected to improve therapeutic success. However, identifying patient-specific

mechanisms through cardiac mapping is challenging, invasive, time-consuming, and

only gives partial information about the underlying electrophysiology under specific

conditions (4). It is likely that novel approaches providing more detailed information

on the underlying mechanisms will facilitate a more accurate localization of AF drivers,

thereby enabling more personalized and better treatments.
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Computer models offer perfect control and observability,

facilitating a detailed investigation of arrhythmia mechanisms.

In general, computer models can be divided into data-

driven models and mechanistic models (3). Data-driven

models use techniques like machine learning to identify

complex relationships between datapoints to predict specific

outcomes. For example, Attia et al. employed a neural

network (NN) trained on a large dataset of electrocardiogram

(ECG) recordings in sinus rhythm to identify patients with

a diagnosis of AF (5). On the other hand, mechanistic

models incorporate biophysical laws (typically as a system of

differential equations) to simulate the dynamics of cardiac

electrophysiology at the cellular-, tissue-, and/or organ-level (3).

Mechanistic models have a long history and are increasingly

being used in clinical and industry applications. For example, the

“comprehensive in-vitro proarrhythmia assay” (CiPA) initiative

from the pharmaceutical industry and regulatory agencies

includes cellular mechanistic models to perform in-silico

safety pharmacology screening for drug-induced ventricular

arrythmias (3, 6). In addition, patient-specific organ-level

models (“digital twins”) are starting to be used in clinical

decision making. For example, Boyle et al. (7) used an

organ-level modeling approach with patient-specific fibrotic

patterns for preprocedural identification of AF ablation targets.

The clinical value of such personalized simulation-guided AF

ablation strategies is currently evaluated in a randomized clinical

trial (ClinicalTrials.gov identifier NCT04101539).

Both mechanistic and data-driven modeling have pros and

cons: data-drivenmodels are, in theory, more easily applicable to

clinical practice, since they use clinical parameters as inputs and

outputs, and are hypothesis-free. However, the black-box nature

of many algorithms hampers model interpretability and the

models can only identify associations, which may not be causal.

By contrast, mechanistic models are inherently causal and, in

principle, could be personalized to reflect pathophysiology in an

individual patient. However, at present, these models typically

cannot predict clinically relevant outcomes. Furthermore, the

tremendous computational power, together with the complex

integration of imaging and cardiac mapping required for organ-

level modeling, hampers its clinical application. Finally, both

data-driven and mechanistic models require large amounts of

(pre)clinical electrophysiological data from humans, which are

challenging to obtain.

EP-PINNs

Recently, a novel “hybrid” modeling approach, called

physics-informed NNs (PINNs), has been proposed, which

incorporates biophysical knowledge (i.e., mechanistic models

of ordinary- and partial differential equations) to constrain

the NN (4). In particular, PINNs are trained to minimize

a loss function containing terms for the data mismatch, the

FIGURE 1

Potential future application of EP-PINNs. EP-PINNs use a neural

network that integrates mechanistic models with its associated

biophysical laws as constraints, while simultaneously fitting the

observed mapping data. The estimated electrophysiological

parameters can be used to identify ablation targets, thereby

facilitating personalized therapy. *The dotted line highlights

potential future additions of other data sources such as cardiac

imaging.

concordance with physical laws, as well as initial and boundary

conditions (Figure 1). The concordance with physical laws is

defined as agreement with the differential equations of the

model (i.e., the difference between the actual change in a

model variable and its predicted change according to the

differential equations). The training of this PINN requires fewer

experimental data, since the solution space is constrained by

the known relationships embedded in the differential equations,

and ultimately provides parameters for both the NN and the

mechanistic model, enabling identification of local properties

captured by the mechanistic model. The latter could be

particularly important for gaining a better understanding of the

patient-specific mechanistical underpinnings of arrhythmias.

In cardiac electrophysiology, PINNs have previously been

used to estimate activation times and conduction velocities

(CVs) to overcome the limited spatial resolution of clinical

measurements, but the performance was suboptimal and could

not easily be extended to other electrophysiological parameters

(4, 8–10).

Recently, Herrero Martin et al. introduced “EP-PINNs”

wherein the Aliev-Panfilov model of action-potential generation

and propagation was used to constrain a NN fed with

2D simulation or experimental optical mapping data (4).

The Aliev-Panfilov model uses two differential equations and

six parameters to model action-potential propagation and

refractoriness, enabling estimation of local electrophysiological
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parameters like action potential duration and CV. The EP-

PINN was trained and evaluated on 1D and 2D in-silico

data, whereafter it could reproduce a variety of spatio-

temporal activation patterns (e.g., planar, centrifugal, and

spiral waves). Proarrhythmic electrical heterogeneities (e.g.,

fibrosis, ischemic lesions) were incorporated by lowering the

conductivity of a specific region. Importantly, the EP-PINN

model could estimate the electrophysiological parameters (i.e.,

action-potential duration, excitability, and conductivity) related

to these heterogeneities, albeit with lower accuracy than the

homogeneous data, particularly in the presence of spiral waves.

To further validate the findings from the in-silico data, the

model’s performance was evaluated on optical mapping data

from neonatal rat ventricular cardiomyocytes in response to

pharmacological interventions.

Discussion

The main strengths of the EP-PINNs are the ability to

predict, with varying accuracies, action-potential dynamics and

parameters, even though the input data were noisy and sparse.

Indeed, the in-vitro validation of the model shows that the

model still performs well with noisy experimental data, although

it required more training data. Moreover, the fact that the

EP-PINNs performed well on a more complex canine atrial

cardiomyocyte model suggests that the results are robust and

that the model can be applied in a variety of settings. In the

future, alternative, more complex mechanistic models could be

integrated. Since the EP-PINNs approach provides estimates

for model parameters that cannot be measured directly, these

models may inform on specific remodeling processes. However,

combined estimation of multiple parameters, particularly

excitability combined with CV, proved challenging in the present

study (4), highlighting potential difficulties for simultaneous

parameter estimates in more complex models.

The use of biophysical laws for regularization also increased

the computational efficiency tremendously, while still ensuring

realistic behavior. Nonetheless, EP-PINNs remain complex

and computationally expensive models due to their fully

connected architecture and intricate training protocol, where

higher-dimensional simulations will increase the training time

substantially, particularly when more complex mechanistic

models are going to be used.

Identification of spatial heterogeneities in underlying

electrophysiological parameters, some of which cannot be

measured directly experimentally, suggests that EP-PINNs could

be used in the future to identify personalized ablation targets.

However, in the study by Herrero Martin et al. (4) the EP-

PINNs were trained on 2D spatio-temporal points from in-silico

tissue simulations or optical mapping experiments, whereas the

arrhythmogenic substrate in patients is 3D. It is not known

whether EP-PINNs can resolve the complex 3D patterns of AF in

clinical practice, which input data would be needed for this task,

and what the computational requirements would be, although

this could be investigated using available 3D mechanistic

computational models. Moreover, the flexible structure of

EP-PINNs in theory makes it possible to include additional

constraints, e.g., based on mechanical or structural information

from imaging data (Figure 1). Of note, for mechanical data,

several mechanistic models operating on different scales are

also available, which could be used in conjunction with

electrophysiological models.

Taken together, Herrero Martin et al. showed that EP-PINNs

are a potentially promising tool for integrating mechanistic

modeling andmachine learning. Although significant additional

work is needed, EP-PINNs could ultimately aid personalized

AF therapy by identifying local electrophysiological targets

for ablation therapy based on patient-specific mapping and

imaging data, combined with state-of-the-art understanding of

AF pathophysiology captured by mechanistic models (Figure 1).

The EP-PINNs’ code is publicly available, which facilitates the

first steps toward future clinical applications, e.g., by applying

the EP-PINNs to more complex mechanistic models, simulate

more chaotic arrhythmogenic patterns like multiple wavelets,

and improve the computational efficiency of the model.
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