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Different biomarkers based on genomics variants have been used to predict the

response of patients treated with PD-1/programmed death receptor 1 ligand

(PD-L1) blockade. We aimed to use deep-learning algorithm to estimate clinical

benefit in patients with non-small-cell lung cancer (NSCLC) before

immunotherapy. Peripheral blood samples or tumor tissues of 915 patients

from three independent centers were profiled by whole-exome sequencing or

next-generation sequencing. Based on convolutional neural network (CNN)

and three conventional machine learning (cML) methods, we usedmulti-panels

to train the models for predicting the durable clinical benefit (DCB) and

combined them to develop a nomogram model for predicting prognosis. In

the three cohorts, the CNN achieved the highest area under the curve of

predicting DCB among cML, PD-L1 expression, and tumor mutational burden

(area under the curve [AUC] = 0.965, 95% confidence interval [CI]: 0.949–

0.978, P< 0.001; AUC =0.965, 95% CI: 0.940–0.989, P< 0.001; AUC = 0.959,

95% CI: 0.942–0.976, P< 0.001, respectively). Patients with CNN-high had

longer progression-free survival (PFS) and overall survival (OS) than patients

with CNN-low in the three cohorts. Subgroup analysis confirmed the efficient

predictive ability of CNN. Combining three cML methods (CNN, SVM, and RF)

yielded a robust comprehensive nomogram for predicting PFS and OS in the
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three cohorts (each P< 0.001). The proposed deep-learning method based on

mutational genes revealed the potential value of clinical benefit prediction in

patients with NSCLC and provides novel insights for combined machine

learning in PD-1/PD-L1 blockade.
KEYWORDS

deep learning, durable clinical benefit, non-small cell lung cancer, PD-1/PD-L1
blockade, prognosis
Introduction

Immune checkpoint blockade (ICB) therapy has been

proven to be successful as a treatment for non-small cell lung

cancer (NSCLC) (1, 2), and different biomarkers, such as PD-L1

expression (3), tumor mutational burden (TMB) (4, 5), and gene

expression profile (GEP) (6), have been recently associated with

ICB response. However, the predictive values of these

biomarkers are relatively limited because of the low predictive

accuracies. Thus, the search for useful and precise biomarkers

for predicting ICB response is critical.

Increasing studies have reported that mutated genes carrying

single nucleotide variants (SNVs) are significantly related with

the ICB response (7, 8). For example, STK11, B2M, and EGFR

mutations or MDM2 amplification were associated with poor

responsiveness or even hyper-progressive disease (HPD) (9, 10),

whereas TP53, KRAS, and POLEmutations or KP (co-mutations

of KRAS and TP53) molecular sub-type were positively related

with ICB response in advanced NSCLC (11, 12). Patients with

KL (co-mutations of KRAS and STK11) showed poor responses

(13, 14). Moreover, NSCLC patients with mutations or co-

mutations of DDR and Notch pathways had clinical benefit

from ICB (15–17). These findings reveal the potential values of

exploiting a novel method for predicting clinical benefit using a

mutational database.

Deep learning, especially as convolutional neural network

(CNN), has frequently been applied to medical images for the

diagnosis, predictive prognosis, and therapy response assessment

of patients with cancer (18–20). However, there is unclear

whether the CNN based on SNV database could predict the

clinical outcome of immunotherapy in the patients with NSCLC.

Therefore, we sought to use CNN algorithm based on a panel

of genomic mutations to develop a robust model for selecting

patients with advanced NSCLC who are responsive to ICB

therapy. CNN based on next-generation sequencing (NGS)

and whole-exome sequencing (WES) databases was used to

predict ICB benefit in patients with NSCLC from three large

cohorts. The CNN model showed a better predictive ability than

PD-L1, TMB, and conventional machine learning (cML)

models. Moreover, we combined CNN and cML models to
02
build a nomogram for predicting the prognosis of

immunotherapy. A robust comprehensive classification of

genomic panels would facilitate the selection of patients who

would benefit from ICB.
Materials and methods

Patients treated with immunotherapy

POPLAR/OAK cohort: A total of 287 patients with advanced

or metastatic NSCLC were recruited in the POPLAR study

(NCT01903993) (21). The exclusion criteria were as follows:

second or third-line standard therapy of docetaxel (n=143),

treatment with atezolizumab (n=144), and no blood TMB

(bTMB) data (n=39). Finally, 105 patients were retained and

unchosen for PD-L1 expression status. The OAK study

(NCT02008227), a randomized phase III trial, recruited 850

patients with metastatic NSCLC to compare atezolizumab with

docetaxel in the primary analysis population (22). A total of 425

patients who received second or third-line standard therapy of

docetaxel, 425 patients who were treated with atezolizumab, and

101 patients who had no bTMB data were excluded. Finally, 324

patients were retained and unchosen for PD-L1 expression

status. The POPLAR and OAK cohorts had 429 patients in

total as a training cohort.

UCMC cohort: Patients with locally advanced or metastatic

NSCLC who were treated with only anti-PD-1 or a combination

of chemo-immunotherapy treatment in the University of

Chicago Medical Center (UCMC) were investigated (23). The

patients had undergone tumor NGS test prior to the initiation of

ICB therapy. Between 2016 and 2020, of the 426 patients treated

with ICB, 139 who undergone tumor NGS test prior to the

initiation of ICB therapy were deemed eligible to participate in

this study. Two patients without TMB database were excluded.

Finally, the tumor samples of 137 patients were evaluated for

PD-L1 expression or EGFR/ALK mutational status, and results

were validated using deep learning and cML algorithms.

MSKCC cohort: The Memorial Sloan Kettering Cancer

Center (MSKCC) cohort of patients with advanced NSCLC
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receiving anti-PD-1 treatment were derived from three clinical

studies. In the first cohort, 75 patients with stage IV NSCLC were

treated with a combination of nivolumab and ipilimumab in the

CheckMate-012 clinical trial (NCT01454102) between February

2013 and March 2015 (24). In the second cohort, 34 patients

with metastatic NSCLC treated with anti-PD-1 treatment were

derived from the MSKCC (n=29) and University of California at

Los Angeles (n=5) (NCT01295827) studies (25). In the third

cohort, the data of 240 patients treated with only anti-PD-1 or a

combination of anti-CTLA-4 and anti-PD-1 between April 2011

and January 2017 were retrospectively collected (10). A total of

349 patients were considered as another validation cohort.

This study was approved by the institutional review board of

the Second Affiliated Hospital of Guizhou Medical University

and was conducted in accordance with the tenets of the

Declaration of Helsinki.
Study design

The flowchart of the proposed CNN and cML models for

predicting DCB and prognosis is shown in Figure 1A. The SNV

databases of sequencing results of tumor or blood samples from
Frontiers in Immunology 03
the patients with NSCLC before ICB treatment were collected. In

the POPLAR/OAK cohort, the optimal genomic features were

selected by RF algorithm based on a five-fold cross-validation as

previously described (26). The selected genes were input into

CNN, logistic, support vector machine (SVM), and random forest

(RF) models and were used to train for DCB prediction. After

adjusting the parameters, the four machine learning models were

validated for DCB in the UCMC and MSKCC cohorts. The

associations between the predictive scores of four models and

prognosis were analyzed. CNN model was further trained on the

data of the clinical subgroups. After multivariate analysis, the

CNN and cML models were combined to build a nomogram for

predicting PFS and OS in the above mentioned three cohorts.
DCB, PFS, and OS

The primary outcome measures of this study were durable

clinical benefit (DCB), progression-free survival (PFS), and

overall survival (OS). The Response Evaluation Criteria in

Solid Tumors (RECIST) version 1.1 were used to evaluate

complete response (CR), partial response (PR), stable disease

(SD), and progressive disease (PD). We defined DCB as CR, PR,
A

B

FIGURE 1

Flowchart of the proposed CNN and cML models for predicting DCB and prognosis. (A) SNV databases were collected from NSCLC patients
before ICB treatment. In the POPLAR/OAK cohort, RF based on a five-fold cross-validation was used to select the optimal genomic features.
Then, the selected genes were inputted into CNN, logistic, SVM, and RF models. The four machine learning models were validated for DCB in
the UCMC and MSKCC cohorts. After multivariate analysis, the CNN and several cML models were combined to build a nomogram for
predicting PFS and OS in the above mentioned three cohorts. (B) The detailed architecture of one-dimensional CNN is presented.
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or SD lasting ≥ 6 months, whereas no durable benefit (NDB) was

defined as either SD lasting< 6 months or PD. We defined PFS as

the time from the start of PD-1/PD-L1 blockade therapy to death

or the first confirmation of PD based on RECIST version 1.1. OS

was defined as the time from the start of PD-1/PD-L1 blockade

therapy until the last contact or death.
WES, targeted NGS, TMB, and
PD-L1 analysis

WES and targeted NGS of tumor and blood samples were

performed before ICB. DNA and circulating tumor DNA

(ctDNA) were separately extracted from formalin-fixed paraffin-

embedded (FFPE) tumor masses and peripheral blood samples

from the patients. The different sequencing assays, includingWES

and targeted NGS (MSK-IMPACT and OncoPlus), were

performed as described in Supplementary Methods.

Based on the results of WES and targeted NGS profiling, we

defined a high TMB as ≥20/Mb or total somatic nonsynonymous

as ≥ 200, and low TMB as<20/Mb or total nonsynonymous

mutations as<200. The E1L3N (Cell Signaling, Danvers, MA,

USA), 22C3 (DAKO), and 28-8 (DAKO) were used to determine

the PD-L1 expression of tumor cells. Positive PD-L1 expression

was defined as > 1% staining.
Selection of genomics features and
construction of conventional machine
learning models

The genomics features of the SNVs were selected by RF

function and five-fold cross-validation sampling. Three cML

algorithms, including SVM, logistic, and RF, were employed.

Based on the selected genomics features, three cML models were

built by R packages (“randomForest”, “caret”, and “e1071”).
CNN architecture

As shown in the Figure 1B, the architecture of the one-

dimensional CNN included a one-dimensional convolution

layer, with a convolution kernel of 16, a spatial domain of

convolution kernel of 128, and a stride of 1. Firstly, the input

information was processed as embedded. Secondly, we used the

tanh activation function, followed by the Maxpooling method to

reduce the dimension. After the first dimensionality reduction,

one-dimensional convolution calculation was carried out for the

vector, with a convolution kernel of 32 and a spatial domain of

convolution kernel of 3. Then, batch normalization (BN) was

carried out. Similarly, tanh activation function was used, and

dimensionality was reduced by Maxpooling. Adam was used as

deep neural network optimization, the gradient descent method
Frontiers in Immunology 04
was SGD, and the learning rate was 0.01. On the basis of the

above, the fully-connected feed forward network (FCN) of dense

and the output result of the Softmax activation function were

used as previously described (27).

Zl+1(i, j) = ½Zl ⊗wl+1�(i, j) + b

=oKi
k=1of

x=1of
y=1½Zl

k(s0i + x, s0j + y)wl+1
k (x, y)� + b

(i, j) ∈ 0, 1,⋯, Ll+1f g Ll+1 =
Ll + 2p − f

s0
+ 1

The summation part in the above formula is equivalent to

solving a cross correlation, where b is the deviation; Zl and Zl+1

represent the convolution input and output of layers l+1,

respectively, also known as feature map; Ll+1 is the dimension

of Zl+1; K is the number of channels; and f, s0, and p are the

convolution layer parameters corresponding to the size of

convolution kernel, convolution stride, and the number of

padding layers, respectively.

The tanh activation function is shown below:

f xð Þ = ex − e−x

ex + e−x

The Softmax activation function is expressed as follows:

Si =
evi

Sc
i e

vi

where Vi is the output of the output unit of the front stage of the

classifier, i represents the category index, C is the total number of

categories, and Si represents the ratio of the index of the current

element to the sum of the indexes of all elements.

Cross Entropy Loss was calculated as below:

loss = − ylogŷ + 1 − yð Þlog 1 − ŷð Þ½ �
where y is the real value, and ŷ is the predicted value.
CNN implementation

The selected 55 genomics features were input to the CNN

model. To ensure adequate performance of training process, the

maximum number of epochs was set to 600. Implementation of

deep learning was based on the TensorFlow-1.14 in Python

(https://www.python.org/). The experiment was performed in a

Windows environment with a 3.7 GHz Intel i7-12700KF CPU,

NVIDIA GeForce RTX 3090, and 32 GB of RAM.
Statistical analysis

The ROC curves were plotted and evaluated for accuracy

using the “pROC” package. The area under the curve (AUC) and

the corresponding 95% confidence interval (CI) were calculated
frontiersin.org
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in the three cohorts. PFS and OS curves were analyzed by

Kaplan–Meier method and plotted by the survminer package.

Multivariate Cox regression of the CNN, logistic, SVM, and RF

models was analyzed, and significant variables (P< 0.01) were

used to build the nomogram using “rms” package. The HRs for

PFS and OS in the CNN-low and CNN-high subgroups were

analyzed and visualized by the “Forestplot” package. KEGG

(Kyoto Encyclopedia of Genes and Genomes) and Gene

Ontology (GO) were analyzed in DAVID (https://david.ncifcrf.

gov/home.jsp). All statistical analyses were conducted in R

version 3.5.1 (https://www.r-project.org/) and GraphPad Prism

7.01 (https://www.graphpad.com/). P< 0.05 was defined as

statistically significant.
Results

Characteristics of patients who received
ICB therapy

The basic clinical characteristics of the patients with NSCLC

in the POPLAR/OAK, UCMC, and MSKCC cohorts are

presented in Supplementary Table 1. A total of 275 (64.10%),

61 (44.53%), and 171 (49.00%) patients were men in the

POPLAR/OAK, UCMC, and MSKCC cohorts, respectively. In

the three cohorts, there were 265 (61.77%), 92 (67.15%), and 222

(63.61%) patients aged >60 years old. Majority (82.05%, 87.59%,

and 80.51%) of the patients were current or ever smokers.

Patients with no-squamous NSCLC comprised 70.86% and

94.26% of the POPLAR/OAK and MSKCC cohorts. We found

that 15 (3.50%), 20 (14.60%), and 71 (20.34%) patients had high

TMB (≥200 or >20/Mb) in the three cohorts and that the TMB

status is a stratifying variable in the different populations. In the

POPLAR/OAK, UCMC, and MSKCC cohorts, 59 (13.75%), 45

(32.84%), and 43(12.33%) patients had positive PD-L1 expression

(>1%), respectively. There were 286 (31.27%) patients in the three

cohorts who were not tested for PD-L1 expression. In the

POPLAR/OAK, UCMC, and MSKCC cohorts, 134 (31.24%), 57

(41.61%), and 131 (37.54%) patients achieved DCB, respectively.
Landscape of selection genomics and
building of cML for DCB

Based on the five-fold cross-validation, the RF was used to

select the optimal mutational genomics from the POPLAR/OAK

cohort, and 55 somatic mutations were finally chosen. The

importance and Gini coefficients of the top 30 somatic mutations

are shown in Supplementary Figure 1. The ARID1A and ERBB4

showed the important roles of the 55 genomics features. We

summarized the clinical and somatic mutations in the three

patient cohorts with NSCLC (Figure 2A). Seven mutational

subtypes (nonsense mutation, missense mutation, frame shift del,
Frontiers in Immunology 05
frame shift ins, splice site, inframe del, and multi hit) were detected

in the three cohorts, and the frequencies of the 55 selected genes in

each case are shown as a heatmap.TP53,KRAS, and STK11 showed

high mutational frequency (55.30%, 22.62%, and 15.19%) in the

total cohort (n = 915). The correlations among 55 somatic

mutations are presented in Figure 2B. Notch1 and POLE had a

positive correlation (r = 0.133, P< 0.001), whereas KRAS and EGFR

showed a negative correlation (r = −0.150, P< 0.001).

KEGG revealed 55 mutational genes that are associated with

different cancer pathways, such as the glioblastoma signaling

pathway, head and neck squamous cell carcinoma, and

melanoma (FDR P< 0.001; Figure 2C). GO analysis showed

that theses genomics are related with development growth,

regulation of protein kinase activity (PKA), and response to

radiation. Modular analysis revealed 55 genes that could be

classified into three groups. Model1 consisted of ERBB2, ERBB4,

NRAS, EGFR, PIK3CA, NOTCH1, CBL,MET, CDH1, PTEN, and

KDR (Figure 2D). Based on the three cML algorithms, we used

the panel of 55 mutational genes to train the model to predict

DCB. The training process of RF is shown in Supplementary

Figure 2, with the number of trees set at 100. The RF model

showed a better and more stable prediction than the logistic and

SVM methods in the POPLAR/OAK, UCMC, and MSKCC

cohorts (Supplementary Table 2).
Convolutional neural network was
trained and tested for DCB in the three
ICB cohorts

The deep-learning model of CNN was implemented in the

TensorFlow platform as the set parameters. The POPLAR/OAK

cohort was trained, and the UCMC cohort was validated in the

process of 600 epochs (Figure 3A). The curves of training accuracy

and loss had consistent trend with the validating curves. Then, the

MSKCC cohort was tested using the trained CNNmodel. We found

significant associations between the three cML (logistic, SVM, and

RF) models and the CNN model (each P< 0.001) (Figure 3B), with

the strongest correlation between the CNN and SVM models (r =

0.905, 95% CI: 0.886–0.920, P< 0.001). The CNN model had the

highest AUCs in the POPLAR/OAK, UCMC, and MSKCC cohorts

(AUC= 0.965, 95%CI: 0.949–0.978, P< 0.001; AUC =0.965, 95%CI:

0.940–0.989, P< 0.001; AUC = 0.959, 95% CI: 0.942–0.976, P< 0.001,

respectively; Figure 3C). Comparing the predictive accuracy of TMB,

PD-L1, logistic, SVM, RF, and CNN, the CNN had the highest

AUCs in the three cohorts, and we found that TMB and PD-L1 had

similar AUCs (Figure 3D). The CNN model also had significantly

higher sensitivity and specificity than TMB and PD-L1 in the

POPLAR/OAK cohort (sensitivity = 97.01, 95% CI: 92.53–99.18,

P< 0.001; specificity = 76.95, 95% CI: 71.72–81.63, P< 0.001), the

UCMC cohort (sensitivity = 94.74, 95% CI: 85.38–98.90, P< 0.001;

specificity = 85.00, 95% CI: 75.26–92.00, P< 0.001), and the MSKCC

cohort (sensitivity = 83.97, 95%CI: 76.55–89.79, P< 0.001; specificity
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= 90.37, 95% CI: 85.65–93.94, P< 0.001; Supplementary Table S3). A

case with a positive PD-L1 expression and a low TMB showed a

significant response. The somatic mutations included TP53, KRAS,

EPHA5, ARID1A, and POLE. The CNN and the three cML models

showed different scores in this patient (Figure 3E).
Convolutional neural network and
conventional machine learning predict
PFS and OS in NSCLC patients with ICB

According to the cut-off value (0.31) of CNN scores as the

biggest Youden Index (YI), the patients with NSCLC treated with

ICB were stratified into CNN-high (> 0.31) or CNN-low (≤ 0.31)

groups. The CNN-high group had a longer median PFS than that of

the CNN-low group (mPFS: 1.41 vs 9.29 months) (HR = 3.67

[2.94–.57], P< 0.001; Figure 4A) in the POPLAR/ OAK cohort with

anti-PD-1 therapy. In the UCMC and MSKCC cohorts, the CNN-

high group also showed better PFS than that by the CNN-low group

(both P< 0.001; Figures 4B, C). We then validated the predictive OS

of the CNNmodel in the POPLAR/OAK cohort and found that the

CNN-high group had a longer median OS (mOS: 6.70 vs 22.04

months) (HR = 3.20 [2.52–4.06], P< 0.001) than that of the CNN-

low group (Figure 4D). The CNN-high group had better OS than
Frontiers in Immunology 06
that of the CNN-low group in both the UCMC and MSKCC

cohorts (both P< 0.001; Figures 4E, F). PD-L1 expression was a

significant predictor of PFS in the MSKCC cohort (P< 0.001), and

TMB was a significant biomarker for PFS in the POPLAR/OAK

and MSKCC cohorts (P = 0.004 and P< 0.001; Supplementary

Table 4). PD-L1 expression was a significant predictor of OS in the

POPLAR/OAK andMSKCC cohorts (P = 0.005 and P = 0.022), and

TMB was a significant predictor of OS in the MSKCC cohort (P =

0.049, Supplementary Table 5). The three cML models accurately

predicted the OS and PFS in the three cohorts (Supplementary

Tables 4, 5). We analyzed the prediction of CNN in the clinical

subgroups across different variables. Combining the three cohorts,

the CNN model showed a good prediction as a biomarker of PFS

and OS (Figures 4G–H).
Nomogram of combining CNN,
SVM, and RF predicts PFS and OS
in patients with ICB

In the POPLAR/OAK cohort, we used six variables (including

logistic, SVM, RF, CNN, TMB, and PD-L1) for the multivariate

analysis of PFS and OS. The SVM, RF, and CNN models were

identified as significant independent factors for PFS (P< 0.001,
A B

D

C

FIGURE 2

Summary characteristics of somatic mutations and construction of cML models. (A) The clinical factors and frequency of the 55 selected genes
are presented in the heatmap. (B) The relationships among each genomic feature are shown. (C) The KEGG, GO analyses of the 55 mutational
genes. (D) Three clusters are presented as module1, module 2 and module 3.
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0.014, and< 0.001) and SVM, CNN, and PD-L1 (P< 0.001,< 0.001,

and 0.005) were significant independent factors for OS

(Supplementary Table 6).

Considering the low predictive ability of PD-L1 expression

for prognosis, we used the SVM, RF, and CNN models to

develop a comprehensive nomogram for predicting PFS

(herein, EMN; Figure 5A). According to the two cut-off values

(0 and 0.8), we stratified the three cohorts into EMN-low (≤0),

EMN-intermediate (0< and ≤ 0.8), and EMN-high (> 0.8)

groups. The EMN-low had a longer median PFS and OS than

the EMN-intermediate and EMN-high groups (mPFS: 13.37 vs

2.72 vs 1.41 months, P< 0.00; mOS: not reached [NR] vs 12.41 vs

6.66 months, P< 0.001) (Figures 5B, E) in the POPLAR/OAK

cohort. Similarly, the patients with EMN-low had better PFS and

OS than those with EMN-intermediate and EMN-high in the

UCMC and MSKCC cohorts (mPFS: 20.41 vs 8.94 vs 2.79

months, P< 0.001; 18.90 vs 3.60 vs 2.10 months, P< 0.001;

mOS: NR vs 20.42 vs 7.36 months, P< 0.001; NR vs 18.00 vs 8.00

months, P< 0.001; Figures 5C–E, G).
Discussion

In this study, we used deep learning and cML methods based

on the NGS or WES data to develop predictive models for
Frontiers in Immunology 07
DCB in 915 patients with NSCLC treated with ICB from

three independent cohorts. To our knowledge, this is the

largest study conducted to predict ICB response based on the

sequencing data of patients with NSCLC. To avoid overfitting of

the training model, the RF algorithm was first used to reduce the

genomics features, and 55 somatic mutations were finally

selected. After tuning the parameters, the CNN and cML

models showed high prediction accuracies for DCB in the

POPLAR/OAK, UCMC, and MSKCC cohorts. In the four

models, namely CNN, SVM, RF, and logistic, a significant

association with PFS and OS in the above three cohorts was

noted. Subgroup analysis of CNN revealed that deep learning

had robust prediction in different clinical variables. After

multivariate analysis, we used SVM, RF, and CNN to build a

nomogram for predicting PFS and found that this nomogram

could stratify patients into three groups. The three groups of

patients had different PFS and OS in the POPLAR/OAK,

UCMC, and MSKCC cohorts.

Although WES, WGS, and NGS databases from blood or

tumor tissue samples have been increasingly and extensively

used in cancer research, most studies have frequently focused on

several gene panels or sole driver mutational gene, resulting in

the inefficient use of large sequencing data, especially in somatic

mutations (28–30). In this study, we mainly sought to use a

relatively small panel of mutational genes to develop a robust
A B

D

E

C

FIGURE 3

CNN training and validation for DCB in the three cohorts. (A) The accuracy and loss are plotted for the training and validation processes. (B) The
correlations of predictive scores among CNN, logistic, SVM, and RF models. (C) The ROCs were plotted in the three cohorts. (D) AUCs of the
PD-L1, TMB, logistic, SVM, and CNN models are shown. (E) A representative NSCLC case treated with ICB is shown, and the evaluation of the
PD-L1, TMB, logistic, SVM, and CNN models are presented.
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FIGURE 5

Development and analysis of a nomogram for PFS and OS in the three cohorts. (A) A nomogram was constructed using SVM, RF, and CNN
methods in the POPLAR/OAK cohort. (B–D) PFS curves were compared among the EMN-low, EMN-intermediate, and EMN-high subgroups of
patients from the three cohorts. (E–G) OS curves were compared among the EMN-low, EMN-intermediate, and EMN-high subgroups of
patients from the three cohorts.
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FIGURE 4

CNN was used to predict prognosis and analyzed in clinical subgroups. (A–C) Kaplan–Meier survival curves showing PFS between the CNN-low
and CNN-high groups in patients from the three cohorts. (D–F) Kaplan–Meier survival curves showing OS between the CNN-low and CNN-
high groups in three cohorts. (G, H) Subgroup analysis of CNN for PFS and OS from the combination cohorts (n = 915) according to basic
clinical variables.
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predicting model for ICB response. Comparing the different

cML models (SVM, RF, and logistic), we found that the CNN

model had the highest precision for DCB prediction. This was

the first study that used CNN to train somatic mutations but not

routine images. More research should be conducted to

determine whether CNN can potentially perform on

classification of predicting DCB from large WES, NGS, or

WGS data but not use a simple TMB. We also found CNN

had a higher and more stable ability for predicting DCB than

TMB and PD-L1 expression status. Because our genomics

sequencing data were collected from circulating tumor DNA

(ctDNA) and analysis in the training model (POPLAR/OAK)

were validated from the other two cohorts (UCMC andMSKCC)

with tumor tissue sequencing, these findings reveal that our

CNN model could be potentially used as a non-invasive method

to predict ICB response of patients with NSCLC.

Previous studies have reported that patients with various

cancers who are responsive to ICB treatment frequently have a

better prognosis than nonresponsive patients (31, 32). The CNN,

SVM, logistic, and RF models for predicting DCB were

significantly associated with PFS and OS. The patients with

CNN-high had significantly better PFS and OS than those with

CNN-low in the POPLAR/OAK, UCMC, and MSKCC cohorts.

This finding revealed that the CNN model for predicting DCB

could effectively assess the clinical prognosis of ICB therapy in

patients with NSCLC. In contrast, TMB and PD-L1 expression

showed unsatisfactory results for predicting PFS and OS in the

three cohorts. We speculated that the different cut-off values or

detection platform for TMB could have contributed to the

uncertain predictive effect. New method of tumor mutational

burden on cytological samples from a pilot study could be

feasible and the application was unclear (33). PD-L1 is

becoming a fundamental data for patient management and the

role of pathologist and immunohistochemical assessement

should be emphasized (34). The testing results of the PD-L1

assay varied across various reagents from several manufacturers

(35). New evidences regarding clones, platforms, reporting

system are issues (36). Additionally, PD-L1 expression from

different areas of the tumor may also differ (37). Therefore, using

PD-L1 as a prognostic and predictive marker of response to

therapy was insufficient. This suggests that our CNN model is a

feasible tool and could supplement the limitations of PD-L1

expression and TMB for predicting the PFS and OS in patients

with NSCLC who were treated with ICB.

In the combination of three cohorts, subgroup analysis of

patients with CNN-high also had significantly longer PFS and

OS than those with CNN-low. These results support that the

CNN model had a good prognostic prediction and was not

affected by clinical variables. Combining deep learning and cML

methods based on radiology images was suggested in previous

studies and using this combination could improve the predictive
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abilities of various models (38–40). Interestingly, this is the first

study to integrate CNN and cML methods based on WES and

NGS databases to construct a nomogram for the stratification of

patients treated with ICB. We found that patients in the EMN-

low, EMN-intermediate, and EMN-high groups had different

PFS and OS. This finding indicated that ensemble models, such

as CNN, SVM, and RF, are promising and precise tools for

predicting clinical benefit (for example, DCB, PFS, and OS) in

patients undergoing immunotherapy.

However, this study had some limitations. First, although the

number of patients was relatively large, the POPLAR/OAK,

UCMC, and MSKCC cohorts were obtained from the

American population. Thus, the molecular characteristics of

these NSCLC patients may differ from those of East Asian

descent, thus affecting clinical treatment outcomes (41). The

CNN model should be trained with large international multi-

center datasets to further improve prediction performance.

Second, a panel of genomic variants based on the WES or

NGS data was used in this study; however, DNA methylation,

mRNA expression, radiology, and pathology were not used to

predict the DCB. A multi-omics model, in addition to a

genomics model, should be studied. Third, although extraction

of the ctDNA of peripheral blood samples is a non-invasive

method, the predictive ability of the model requires

further investigation.

In summary, CNN classification based on a panel of 55

mutational genes serves as a novel and robust model for

predicting DCB from ICB therapy in patients with NSCLC. A

combination model that integrated CNN, SVM, and RF

algorithms could better predict the PFS and OS. These

findings may contribute to the discovery of a new strategy for

patients with NSCLC treated with PD-1/PD-L1 blockade. Our

method based on NGS andWES databases provides new insights

for predicting clinical outcome in pan-cancer immunotherapy.
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