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A B S T R A C T   

Boosting or suppressing our immune system represents an attractive adjunct in the treatment of infections 
including SARS-CoV-2, cancer, AIDS, malnutrition, age related problems and some inflammatory disorders. Thus, 
there has been a growing interest in exploring and developing novel drugs, natural or synthetic, that can 
manipulate our defence mechanism. Many of such studies, reported till date, have been designed to explore effect 
of the therapeutic on function of macrophages, being a key component in innate immune system. Indeed, 
RAW264.7, J774A.1, THP-1 and U937 cell lines act as ideal model systems for preliminary investigation and 
selection of dose for in vivo studies. Several bioassays have been standardized so far where many techniques 
require high throughput instruments, cost effective reagents and technical assistance that may hinder many 
scholars to perform a method demanding compilation of available protocols. In this review, we have taken an 
attempt for the first time to congregate commonly used in vitro immune-modulating techniques explaining their 
principles. The study detected that among about 40 different assays and more than 150 sets of primers, the 
methods of cell proliferation by MTT, phagocytosis by neutral red, NO detection by Griess reaction and esti-
mation of expression of TLRs, COX-2, iNOS, TNF-α, IL-6 and IL-1β by PCR have been the most widely used to 
screen the therapeutics under investigation.   

1. Introduction 

In human, the immune system is equipped to fight off invading wide 
array of potential pathogens that may cause diseases. For the last 70 
years, the health sector has heavily relied on antimicrobial drugs that 
has now resulted in generation of multiple-drug-resistant bacteria [1]. In 
that note, therapeutic strategies based on improving the defence 
mechanism have several advantages over the use of traditional antibi-
otics [2]. In fact, administration of immune boosters may circumvent the 
problem of rapid emergence of resistant variety. The therapeutics may 
also expand treatment options for immunocompromised patients such as 
people suffering from certain types of cancer, AIDS, malnutrition, 
chronic granulomatous disease or age-related problems as well as in the 
advent of a novel pathogen [3]. As of March 2020, the world is currently 
dealing with a global outbreak of Coronavirus disease 2019 (COVID-19) 
caused by SARS-CoV-2, a new and different virus, and thus the existing 
vaccines are ineffective against it [4]. Scientists have suggested few 
approaches to counteract the infection where boosting the immune 

response in phase 1 has been found to be appropriate in addition to 
symptomatic treatment [5]. However, massive production of inflam-
matory cytokines by aberrant immune activation may in turn cause 
damage to host tissues. The situation emerges in the late stage of coro-
navirus disease where cytokine storm is a major reason for disease 
progression and eventual death [6]. Thus, administration of powerful 
anti-inflammatories that can suppress immune system along with anti-
viral drug could be effective in phase 2 [5]. The efficacy of nonsteroidal 
anti-inflammatory medications has also been documented in a number 
of clinical disorders, including rheumatoid arthritis, psoriasis, Crohn’s 
disease, ulcerative colitis, gout, ankylosing spondylitis, dental pain, 
dysmenorrhea and headache [7]. 

On the whole, immunotherapy or biological therapy is the treatment 
of diseases, designed either to amplify an immune response, called 
immune-stimulation or reduce the response, called suppression immu-
notherapies [8]. Currently, there is a greater interest in natural com-
pounds, such as dietary supplement and herbal remedies, which have 
been used for centuries as immune-modulators. Marine sources with 
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diverse constituents (sulphated polysaccharide, terpenes, cyclic dep-
sipeptide, polysaccharides, bioglycan, polyhydroxylated lactone, 
macrocyclic lactones, cyclic tripeptide) and medicinal plants with 
various active components (flavonoids, curcumin, saponin, carotenoids, 
alkaloid, tannic acid, tocopherol, polyphenol, ascorbate, poly-
saccharides) have proved their innate immune boosting abilities [8,9]. 
Fungi have also emerged as potential source of body defence enhancers 
where polysaccharides (in particular β-D-glucans), poly-
saccharopeptides and proteins have been recognized as bioactive com-
pounds. Indeed, several mushroom derived macromolecules namely 
Schizophyllan, Lentinan, Krestin and polysaccharide-protein complex 
are now available as biological response modifiers in market [10]. On 
the other hand, alkaloids, glycosides, terpenoids, polyphenols, resins, 
essential oil, flavonoids, phenolic compounds, cannabinoids, steroids, 
fatty acids, lignans and glycoproteins isolated from various 
bio-resources have shown significant anti-inflammatory activities [11]. 
Numerous metal and metal oxide nanoparticles such as gold, silver, ti-
tanium dioxide, zinc oxide and selenium have also demonstrated to 
possess the medicinal prospect [12]. Most of these ingredients have been 
evaluated using in vitro system where macrophage cell lines are popu-
larly used as an experimental model [13]. The monocytes can effort-
lessly be maintained; as a result, they are gradually being recognized as 
an ideal system for studies of immunomodulation and immuno-
mechanics [14]. 

To date, a variety of in vitro immune modulating assays have been 
standardized to determine effect of a drug on specific function of mac-
rophages, as published in our previous articles [15–20]. One-dimension 
approach can provide unequivocal result; thus, performing various 

methods is the best solution to reach the conclusion. However, most of 
these techniques are associated with instrumental, technical and prac-
tical limitations hindering researchers to perform an assay. It is thus 
important to have a complete knowledge about alternative methods 
targeting the same output. Therefore, a compiled description of all 
available in vitro models is an extreme requirement. In this regard, we 
intended to congregate the most commonly performed assays, suitable 
to estimate either immune-stimulatory or anti-inflammatory potency, as 
they execute opposite responses of the same method (Supplementary 
Fig. 1). The present review is expected to be highly beneficial not only to 
all immunologists to design new methods but also to pharmacists and 
biologists to develop novel drugs by selecting convenient assays. 

2. Detection of lipopolysaccharide (LPS) contamination 

The major contaminant found in biological substances is endotoxin, 
also called LPS, derived from cell membrane of Gram negative bacteria. 
Lipopolysaccharide is known to activate the immune system specifically 
macrophages with release of different pro-inflammatory mediators; as a 
result, LPS (generally at 5 μg/ml concentration) is used as a positive 
control in all immune-stimulation assays [17,21]. Thus, it is essential to 
detect presence of endotoxin in pharmaceutical products to understand 
sole effect of the drug. The commonly followed technique in this context 
is Limulus Amoebocyte Lysate (LAL) assay based on clotting ability of 
Limulus polyphemus blood upon exposure to endotoxin [22]. Briefly, 100 
μl of test sample (10 mg/ml) or standard (positive control) or 
endotoxin-free water (negative control) are mixed with 100 μl of LAL for 
1 h at 37 ◦C [23]. Gel is formed in proportional to endotoxin sensitivity 

Table 1 
Overview of some commonly used cell lines in immunomodulatory research [13,29–31]. The publication numbers were derived by searching in PubMed (https:// 
www.ncbi.nlm.nih.gov/pubmed/) on November 18, 2021 using the following criteria: (i) RAW 264.7 AND immune activation; (ii) RAW 264.7 AND anti inflam-
mation; (iii) J774 AND immune activation; (iv) J774 AND anti inflammation; (v) THP-1 AND immune activation; (vi) THP-1 AND anti inflammation; (vii) U937 AND 
immune activation; (viii) U937 AND anti inflammation; (vi) THP-1 AND anti inflammation; (ix) HL-60 AND immune activation; (x) HL-60 AND anti inflammation.  

Cell lines RAW264.7 J774.A1 THP-1 U937 HL-60 

Source BALB/c Mouse BALB/c Mouse Human Human Human 
Establishing year 1978 1968 1980 1976 1977 
Gender of the 

source 
Male Female Male Male Female 

Disease Abelson murine leukemia 
virus-induced tumor 

Reticulum sarcoma Acute monocytic 
leukemia 

Histiocytic lymphoma Acute myeloid leukemia 

Doubling time ~11 h ~17 h ~26 h 48–72 h 20–45 h 
Growth mode Semi-adherent Semi-adherent Suspension Suspension Suspension 
Morphology Loosely adherent, slightly 

spindle-shaped cells. Cells 
pile and become round 
shaped, when the culture is 
dense. 

Round shaped cell with a 
large nucleus 

Large, round single-cell 
morphology 

Round shaped with short 
microvilli and a large 
beam-shaped nucleus 

Round or ovoid, heterogeneous in 
size, occasionally express 
pseudopods 

Other characters High expression of iNOS in 
comparison with J774.A1 

Gene expression profile is 
closer to mice peritoneal 
macrophages than RAW 
264.7. 

High phagocytic ability 
and expression of cell 
surface markers such as 
TLR-2, CD36, CD-14, and 
CR3 163 (CD11b/CD18) 

Bears t (10; 11) (p13; 
q14) translocation, 
constitutively express 
high level of cell-surface 
HLA class I molecules 

Contains an amplified c-myc proto- 
oncogene; c-myc mRNA level is 
high in undifferentiated cells and 
declines after differentiation. 
Expression of surface markers 
changes based on differentiation. 

Commonly used 
assays 

Cell viability, phagocytosis, 
measurement of NO, ROS and 
cytokines production, 
morphological analysis, 
estimation of gene and 
protein expression 

Cell viability, 
phagocytosis, 
measurement of NO and 
cytokines production, 
morphological analysis, 
immunoblotting 

Cell viability, 
phagocytosis, 
measurement of NO, ROS 
and cytokines production, 
estimation of gene and 
protein expression 

Cell viability, 
phagocytosis, 
measurement of NO and 
cytokines production, 
estimation of gene and 
protein expression 

Cell viability, measurement of NO, 
ROS and cytokines production, 
western blotting 

No. of 
publications in 
immune- 
stimulatory 
field 

2674 450 2519 1338 881 

No. of 
publications in 
anti- 
inflammatory 
field 

3843 175 1403 446 226 

HLA: Human leucocyte antigen; NO: Nitric oxide; PMA: Phorbol-12-myristate-13-acetate; ROS: Reactive oxygen species; TLR: Toll-like receptor. 
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and 0.5 endotoxin unit (EU)/ml concentration is considered as the 
threshold level [22]. 

3. Cell culture 

Murine macrophage cell lines such as RAW264.7 and J774A.1 are 
well-established typical systems in immunology and cell biology for 
their multi-tasking aptitude (Table 1). J774A.1 cell line was established 
from a female BALB/c/NIH mouse with a reticulum cell sarcoma [24]. 
These cells are cultured in Dulbecco’s Modified Eagle’s Medium 
(DMEM) or Roswell Park Memorial Institute (RPMI)-1640 medium 
supplemented with 10% fovin serum albumin (FBS), 100 μg/ml strep-
tomycin and 100 units/ml penicillin at 37 ◦C in 5% CO2 humidified 
atmosphere cultivator. The same condition can be used for culturing 
RAW264.7 macrophage cells. The cell line was constituted by SW Rus-
sell from ascites of a male BALB/c mouse bearing a tumor induced by 
Abelson murine leukemia virus [13]. Generally, the cells are cultivated 
for 36–48 h to reach the logarithmic phase and then used for experi-
ments. Another option could be THP-1 (human acute monocytic leuke-
mia derived cell line) or U937 (human myelomonocytic tumor), which 
differentiate into macrophages after exposure to 
phorbol-12-myristate-13-acetate (PMA) or a combination of PMA and 
LPS [25]. Next to these cells is HL-60 (human myelogenous leukemic cell 
line) that can be induced to differentiate in vitro into 
monocyte/macrophage-like cells, granulocyte-like cells and eosinophils 
after treatment with definite chemicals. As such, the cells are known to 
be differentiated into maturing macrophages in exposure with various 
differentiation-inducing agents such as 1,25-dihydroxyvitamin D3, 
phorbol esters and sodium butyrate. While, dimethyl sulfoxide (DMSO) 
or all trans retinoic acid treatment induces HL-60 cells to differentiate to 
neutrophil-like cell [26]. Another less commonly used cell line is 
PLB-985, established in 1985, which was later identified as a sub-line of 
HL-60 and thus exhibit similar properties [27]. Comparatively, most of 
the experimentations have been performed using murine monocytes 
which might be due to fast growth rate and less variability of macro-
phages from Mus musculusis than that of Homo sapiens [28]. 

4. Determination of cell density by trypan blue dye exclusion 
test 

Confluency of cells in culture causes slowdown of metabolism, 
decrease in cell division and contact inhibition of growth. As a result, the 
condition may lead to loss of linearity between cell number and effect of 
drug. So, starting an investigation with definite number of viable cells is 
vital to perform successful experiments. In this context, trypan blue dye 
exclusion test is the most commonly utilized assay to distinguish live and 
dead cells selectively [32]. This negatively charged diazo stain interacts 
with cells only when the membrane is disrupted. Indeed, the dye is 
capable to penetrate the cytoplasm of dead cells only. As a result, these 
cells appear with distinctive blue colour when observed under a mi-
croscope. In contrast, live cells with intact membrane exclude such stain 
allowing discrimination with non-viable cells [33]. However, the pro-
cess cannot be used to differentiate healthy cells and cells that are alive 
but losing functions. To perform the assay, 0.4% (w/v) trypan blue so-
lution is prepared in phosphate buffered solution or PBS (pH 7.2). In a 
microtube, 20 μl of the solution is mixed with 20 μl of cell suspension 
and 10 μl is loaded onto a haemocytometer. Viable and non-viable cells, 
represented as transparent and blue colour respectively, are counted 
following standard manner within 5 min of mixing [34]. For healthy 
log-phase culture, cell viability should be at least 95% and these cells 
can be used for further experimentation. 

5. Cytotoxicity/cell proliferation assay 

Cell viability and cytotoxicity studies are valuable tools for sensi-
tivity testing of chemicals that also provide preliminary information for 

in vivo studies. A variety of methods have been developed so far to 
determine proliferation in mammalian cells. These techniques are 
established on measurement of cellular DNA content, direct counting of 
viable cells by trypan blue dye or estimation of metabolic activity [35]. 
The latter procedure is based on mitochondrial dehydrogenase activity 
and hence is reliable, accurate, easy-to-use, safe and far superior to other 
assays. In this note, a range of stains have been developed that produce a 
specific colour (Fig. 1). Generally, the monocytes are cultured at a 
density of 1 × 104 cells/well in 96-well plate overnight and then treated 
with stimulus. Following incubation, substrate is added and the ultimate 
colour intensity is measured by enzyme-linked immune sorbent assay 
(ELISA) plate reader. The cell viability can be calculated by using 
following equation:  

Index of proliferation = (A – B)/(C – B)                                                   

Where A is optical density (OD) of the treated cells; B is OD of control 
wells (culture medium without cells); and C is OD of negative control 
(culture medium with cells). Non-cytotoxic concentrations of sample are 
selected to conduct downstream immune-stimulating assessments. 

5.1. MTT 

The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium 
bromide) assay was first described in 1983 and gradually has been 
modified by different authors. The method is based on reduction of 
yellow coloured water soluble MTT by mitochondrial succinate dehy-
drogenase activity in living cells into insoluble dark blue or purple 
formazan product [35–38]. The technique thus has great applicability 
for detection of metabolically active cells; even if they are not dividing. 
However, the disadvantage of the method is that the final product, 
formazan crystals injure cells and requires an organic solvent (DMSO or 
HCl/isopropanol) for solubilisation [38]. To perform the assay, 20 μl 
from MTT solution (5 mg/ml prepared in media or PBS) is added to each 
well to make final concentration of 0.5 mg/ml. After 4 h incubation at 
37 ◦C, the supernatant is discarded and 150 μl DMSO is added. The plate 
is incubated for 10 min with frequent shaking to ensure complete sol-
ubilisation and absorbance is measured at 570 nm [39]. Else, 50 μl MTT 
stop solution (10% SDS in 10 mM HCl) can be added instead of DMSO 
followed by incubation for 24 h and measurement of absorbance at 540 
nm [40]. 

5.2. MTS 

MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- 
(4-sulfophenyl)-2H-tetrazolium), also called as Owen’s reagent, is a 
weakly acidic inner salt closely related to MTT. This less toxic compo-
nent is a negatively charged compound that cannot readily penetrate 
cells. So, the reagent is applied in combination with electron acceptor 
either phenazine methyl sulfate (PMS) or phenazine ethyl sulfate (PES). 
These intermediates can enter cell surface and exit cells to convert MTS 
to formazan product which is highly soluble in culture media. This 
transformation is thought to be accomplished by NADP(H)-dependent 
dehydrogenase enzyme in metabolically active cells [38]. Generally, 
20 μl of MTS containing PES reagent is added in each well at the final 
concentration of 0.33 mg/ml. After 2 h incubation, the absorbance is 
determined at 490–500 nm using microplate reader [41]. 

5.3. WST 

Recently, a new generation of water soluble tetrazolium salts has 
been developed of which WST-1 (4-[3-(4-iodophenyl)-2-(4-nitro-
phenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) is the prototype [42]. 
WST-1 is a negatively charged disulfonated inner salt containing an 
iodine residue that yields a highly water soluble formazan extracellu-
larly in presence of NADH and an electron mediator such as 1-methoxy 
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PMS [43]. With the advantage over conventional tetrazolium salts that 
both WST-1 and its formazan are very stable in solution and they have 
extremely low cytotoxicity. Till date, several other tetrazolium salts 
have been developed in WST series, perhaps the most useful being 
WST-8 and is being marketed independently as Cell Counting Kit-8 
(CCK-8). Since, WST-8, formazan product and mPMS have no cytotox-
icity in cell culture media, additional experiments may be carried out 
using the same cells from the previous assay [38]. In general, 20 μl of 
WST-1 or 10 μl in case of CCK-8 solution is added to 200 μl reaction 
mixture in each well and optical density is measured at 450 nm after 4 h 
incubation at 37 ◦C [44]. 

5.4. XTT 

XTT (sodium 3-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4- 
methoxy-6-nitro) benzene sulfonic acid hydrate) cell proliferation 
assay was first described in 1988 as an effective method to measure cell 
growth and drug sensitivity in tumour cell lines. The compound contains 
two sulfonate groups giving them a net negative charge that allows 
excluding them from cells. Thus, XTT dye reduction occurs at the cell 
surface facilitated by trans-plasma membrane electron transport and the 
colourless or slightly yellow compound is converted to brightly orange, 
soluble formazan product. This colour change is accomplished by 
breaking apart the positively charged quaternary tetarzole ring [45]. To 
perform the assay, 50 μl of XTT solution is added to each well for 10 h at 
37 ◦C in 5% CO2 incubator and the optical density is measured at 490 nm 
[46]. 

5.5. Alamar blue 

Resazurin (7-hydroxy-10-oxido-phenoxazin-10-ium-3-one) is a 
redox dye that has been applied to assess microbial contamination in 
milk and biological fluids since 1950s [45]. The assay is based on entry 
of resazurin (non-fluorescent blue coloured) into cytosol where it ac-
cepts electron from NADH, NADPH, FMNH, FADH and cytochromes. As 
a result, the dye is reduced to red coloured, highly fluorescent com-
pound namely resorufin. The result can be depicted using a fluorescence 

detector with 545/15 nm excitation and 580/10 nm emission wave-
length [37]. Major advantage of the method is non-toxicity to cells and 
high stability in culture media allowing continue monitoring of cultures 
over time. Consequently, the dye became commercially available since 
1993 in the name of AlamarBlue or vibrant or UptiBlue. At first, Resa-
zurin solution is prepared by dissolving the reagent in PBS (0.001% w/v) 
or in DMEM (10%) in dark and sterile filtered (0.22 μm). Then, the 
treated media is aspirated, replaced with 100 μl of resazurin solution in 
each well and resultant fluorescence is measured after 1–2 h incubation 
[47,48]. 

5.6. CellTiter-Glo 

CellTiter-Glo utilizes the ability of metabolically active cells to ca-
talyse luciferase reaction by its own ATP, yielding a measurable product. 
The reagent has ability to lysis cell membranes to release ATP and 
inhibit endogenous ATPases so that no further ATP is synthesized. The 
chemical also provides luciferin and luciferase to initiate bioluminescent 
reaction with the help of ATP discharged from cells; whereby intensity 
of final product directly signifies the number of living cells [36]. To 
perform the assay, cells are allowed to equilibrate for 30 min at room 
temperature (RT) after treatment. Then, substrate is added and samples 
are analysed with a Fluoroscan [49]. 

5.7. Crystal violet 

The technique was initially established for cell number measurement 
in monolayer cultures. It is a simple, non-enzymatic assay for quick 
analysis of quantity of viable adherent cells and colonies. The assay 
takes advantage of affinity between dye and external surface of DNA 
double helix [36]. While, disadvantage of the assay is that if all dead 
cells are not removed from well before staining, they will be regarded as 
viable cells because of non-specific staining by crystal violet [37]. The 
generalised protocol is that, macrophages are washed with PBS and 
incubated with 0.2% (w/v) crystal violet containing 2% (v/v) ethanol in 
PBS at 37 ◦C for 30 min. Finally, macrophages are washed with PBS and 
the crystal violet is solubilized with 33% (v/v) acetic acid in water. 

Fig. 1. Schematic representation of assays available for the detection of cell viability/proliferation of macrophage.  
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Absorbance at 540 nm is measured in a microplate reader [50]. 

5.8. Cell cycle analysis 

Macrophage cells (1 × 106 cells/ml) are seeded in 6-well plates and 
exposed to stimuli. After treatment, cells are washed in PBS and 
collected. They are then fixed in 70% glacial ethanol, washed in PBS, 
resuspended in 1 ml of PBS containing 50 U/ml RNase and 50 μg/ml 
propidium iodide (PI) and then incubated in dark for 40 min at 4 ◦C. Cell 
cycle analysis is performed by flow cytometry and the population of cells 
in various phases are calculated [51]. 

6. Morphological observation 

After encountering stimuli, macrophages are induced to undergo 
morphodynamics such as increase in cell size, production of thin sheets 
of cell edges called filopodia (contains actin filaments) or lamellopodia 
(bears actin spikes) [21]. Change in morphological contour hence rep-
resents a clear indication of macrophage functionality activation or 
repression. 

6.1. Bright field light microscopy 

Cells are seeded on round glass coverslips at a density of 2 × 105 

cells/well in 24-well plate. Following treatment with a stimulus, the 
supernatant is discarded and replaced with 4% paraformaldehyde fixa-
tive (300 μl/well). The plate is incubated at 8 ◦C for 2 h, wells are 
washed thoroughly with PBS (300 μl/well) to remove fixative and 
adherent cells are serially dehydrated in an ethanol series at 70, 80, 90 
and 95% (5 min each bath). For cell staining, Harris hematoxylin (300 
μl/well) is added for 1 min and the excess stain is removed by washing 
the coverslips with distilled water. Afterwards, 300 μl/well aqueous 
eosin is added for 30 s and rinsed. The glass coverslips are allowed to 
dry, mounted with Entellan on clean slide and analysed under bright 
field microscope [52]. 

6.2. Fluorescence microscopy 

Macrophage cells are cultured in presence of sample on cover slides 
in 12-well plate or directly in 6-well plate for definite period of time. 
After incubation, cells are washed with PBS and incubated with DAPI 
(4′,6-diamidino-2-phenylindole) (1 μg/ml in PBS) for 15 min [20,21, 
53]. The cells may also be stained with DiOC6 (3,3′-dihexylox-
acarbocyanine iodide) along with DAPI as shown in Supplementary 
Fig. 2. Alternatively, cells are fixed in 4% (v/v) paraformaldehyde for 
15 min and stained with DAPI (300 nmol/l) for 30 min at RT. Then 
cellular and nuclear morphology can be visualized, examined, and 
photographed by fluorescence microscopy [54]. 

6.3. Scanning electron microscopy (SEM) or transmission electron 
microscopy (TEM) 

Treated and untreated macrophages are cultured on 6-well plate or 
glass coverslips in 24-well plates. After incubation, cells are washed with 
PBS, fixed overnight with 2–2.5% glutaraldehyde in 0.1 M cacodylate 
buffer and followed by post fixation with 1% osmium tetroxide for 2 h. 
Subsequently, the fixed cells are dehydrated through a graded series of 
alcohol and dried under a Critical Point Dryer. Further the cells are 
sputter-coated with gold. The morphological changes can be observed 
under an electron microscope and photographed [55]. 

7. Determination of phagocytic uptake 

The term phagocytosis is used to define the cellular engulfment of 
particles larger than 0.5 μm in diameter. In immune response, the first 
and imperative defence function of macrophages is represented by 

phagocytosis that causes ingestion as well as elimination of pathogenic 
or inflammatory particles [56]. At first, antigens are recognized directly 
by pathogen-associated molecular patterns (PAMPs) by pattern-recog-
nition receptor (PRR) of innate immune system or indirectly by a process 
called opsonisation [57]. After PRR engagement, the foreign particles 
are internalized via protrusions of cell membrane forming a vesicle 
called phagosome. These phagosomes are transported within cytosol 
and its content becomes gradually acidified. After complete maturation, 
phagosome fuses with lysosome that bears a range of hydrolytic en-
zymes and anti-microbial peptides. This highly oxidative and acidic 
environment causes oxidative burst and subsequent elimination of its 
contents by exocytosis [58]. Thus, increase in phagocytic activity can 
definitely help to boost immunity and also signals for macrophage 
stimulation. Currently, there are a number of methods available to assess 
in vitro phagocytic activity. Most of these techniques use latex minibeads 
(0.75 mm), zymosan, Escherichia coli or yeast particles and some of these 
components are available in market labelled with fluorescein isothio-
cyanate (FITC). 

7.1. Zymosan particles 

Zymosan is an insoluble β-1,3-glucan polysaccharide, extracted from 
Saccharomyces cerevisiae and has been widely used for more than 50 
years as a perfect model for microbial particle in studies on immune 
response. Since the preparation contains PAMP, they are easily recog-
nized by innate immune recognition receptors stimulating phagocytosis 
and inflammatory cytokine production [59]. To perform the assay, 
macrophages are cultured in 24-well plate containing glass coverslips 
(13 mm diameter). After treatment with sample, they are allowed to 
phagocytose zymosan (1 × 106 particles/well) for 1 h at 37 ◦C. The cells 
are washed with PBS to remove non-digested particles, coverslips are 
fixed with 4% paraformaldehyde, stained with May-Grünwald reagent 
or Wright’s stain [50]. The engulfment power can be investigated 
microscopically by counting individual cells and calculating average 
number of particles internalized per 100/200 macrophages for each 
experimental treatment. Phagocytic index (PI) is used to express overall 
effect and determined by using the following formula [60]:  

PI = Percentage phagocytosis × mean number of particles per cell                 

7.2. Killed yeast cells 

Commercial baker’s yeast (10–30 mg) is mixed in 10 ml PBS and 
heat-killed (80 ◦C for 15 min). Hundred μl of yeast cell suspension 
(around 1 × 108 cells/ml) are flooded onto macrophage cells on slide or 
24-well plate. After incubation at 37 ◦C for 1.5–2 h, the cells are washed 
thrice with PBS to remove non-phagocytosed cells and air dried. Finally, 
macrophages are fixed in 100% methanol, stained with Giemsa dye or 
0.1% crystal violet for 3–5 min (Supplementary Fig. 3). Cells are dried 
and counted without any predetermined pattern to calculate phagocy-
tosis percentage and phagocytic index [61].  

Phagocytosis percentage (P%) = Macrophages showing phagocytosis/ Total 
no. of macrophages × 100%                                                                     

Phagocytic index (PI) = Total no. of yeast cells phagocytosed/ macrophages 
showing phagocytosis × P%                                                                     

7.3. Live bacterial cells 

After treatment, supernatant is removed and macrophage cells, 
cultured in 24-well plate, are flooded with 100 μl of freshly prepared 
E. coli cell suspension (2 × 106 cells/ml) and incubated at 37 ◦C. After 
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90 min, each well is washed to remove non-phagocytosed bacterial cells. 
Then cells can be lysed with 0.1% SDS and the lysates are plated on agar. 
After overnight incubation at 37 ◦C, colonies are counted [61]. 

7.4. FITC labelled particles 

Cells are cultured in 6-well plate or 35 mm dish or on glass coverslips 
in 24-well plate. After incubation, treated medium is replaced with 1 ml 
PBS containing 100 μl FITC labelled beads (diameter: 2 μm) and incu-
bated at 37 ◦C for 30 min to 2 h in dark. Finally, the adherent cells are 
washed thrice with PBS, fixed with paraformaldehyde (4% in PBS) for 
30 min or 100 μl of 10% Triton X-100 and finally excess beads are 
removed by washing. Phagocytosis can also be stopped by repeated 
washing with cold PBS. Otherwise, the cells can be centrifuged for 5 min 
at 400×g at RT. The supernatant is removed and the cells are washed 
two times with 1 ml of PBS. Finally, cells are suspended in 500 μl of PBS 
and immediately analysed by flow cytometer [62]. 

8. Determination of pinocytic activity by neutral red assay 

Pinocytosis is another type of endocytotic process by which macro-
phages take up fluid from surrounding medium along with molecules 
contained in it. To detect the potentiality, macrophages are seeded in 96- 
well plate at 2 × 104 cells/well and after 6 h, incubated with stimuli. 
Following treatment, 100 μl of 0.075%–0.1% neutral red prepared in 10 
mM PBS or culture medium is added in each well. The reaction is 
incubated for one–two h followed by washing cells by PBS for three 
times to remove residual natural red solution. Then, 100–200 μl of cell 
lysis buffer (1:1 of ethanol:acetic acid v/v or ethanol: 1 mol/l acetic acid 
= 1:1 or 1% glacial acetic acid:ethanol = 1:1 or 1% acetic acid solution: 
50% ethanol = 1:1) is added in each well and the mixture is incubated at 
RT for 4 h or overnight. Absorbance is read at 540 nm using ELISA plate 
reader. Pinocytic activity is expressed as pinocytic index and calculated 
as described in NBT assay at the phagocytosis section [20,56,63]. 

9. Intracellular calcium assay 

Calcium ion is a ubiquitous second messenger that controls multiple 
processes in immune cells, including chemotaxis, adhesion, and secre-
tion of pro- and anti-inflammatory cytokines. Resting cells have a Ca2+

concentration around 100 nM which may quickly reach up to 1 μM when 
cells are stimulated [38]. Release of Ca2+ from endoplasmic reticulum 
(ER) activates store-operated Ca2+ entry channels in plasma and/or 
phagosomal membrane, leading to elevations in cytosolic Ca2+ con-
centration. The phenomenon helps in efficient ingestion of foreign 
particles by some phagocytic receptors, controls subsequent steps 
involved in maturation of phagosome, solubilisation of surrounding 
actin meshwork, fusion of phagosomes with granules containing lytic 
enzymes and activation of superoxide generating NADPH oxidase 
complex [64]. This elevated level of cytosolic calcium, in turn, triggers 
transcription factors (TFs) such as activator protein-1 (AP-1; a hetero-
dimeric protein constituted of c-Fos and c-Jun) and signal transducer 
and activator of transcription (STAT)1, STAT3; subsequently increasing 
transcription of pro-inflammatory target genes [65]. The change in 
intracellular Ca2+ concentration signifies activation state of macro-
phages which can be detected by using certain stains. 

9.1. Fluo-4 dye 

Fluo-4 (C36H30F2N2O13) is a dynamic single-wavelength fluorescent 
Ca2+ indicator and an increase in fluorescence intensity reflects a rise in 
the cytoplasmic Ca2+ level [66]. To execute the technique, macrophage 
cells are seeded in 96-well plates and after treatment the media is 
removed. Then, cells are incubated with 100 μl of dye loading solution 
for 30 min and fluorescence intensity is determined spectrofluoro-
metrically with excitation and emission filters of 485 nm and 535 nm 

respectively [65]. 

9.2. Fura-2 dye 

Fura-2 (C44H47N3O24) represents another fluorescent Ca2+ indicator 
that is widely used to monitor cytoplasmic Ca2+ levels. Upon Ca2+

binding, the fluorescence excitation spectrum is shifted toward shorter 
wavelength. Usually, the intensity of fluorescence induced by 340 nm 
and 380 nm excitation and emitted at 510 nm is measured, and therefore 
Fura-2 is a ratiometric dye that minimizes effects of photobleaching, 
leakage and uneven loading. The ratio of F340/F380 fluorescence in-
tensity is proportional to the cytoplasmic Ca2+ level [66]. The gener-
alised protocol is that, after treatment macrophages are incubated with 
5 μM of Fura-2 for 45 min at 37 ◦C. They are then washed twice with 
Hank’s Balanced Salt Solution (HBSS) buffer (pH 7.2). Ratiometric cal-
cium imaging is performed with an inverted fluorescence microscope 
[67]. 

10. Measurement of NO production 

Nitric oxide is a membrane-permeable inorganic gas as well as free 
radical. It is synthesized from L-arginine by nitric oxide synthase and 
released by macrophages in response to pathogens. Therefore, increase 
in NO production is considered as an indication of macrophage activa-
tion [68]. However, this gaseous molecule is extremely short lived and 
rapidly oxidized to nitrate and/or nitrite by oxygen. Thus, measurement 
of stable and non-volatile breakdown product of NO like nitrite (NO2

− ) 
is the best-known mean to investigate NO formation [69]. 

10.1. Griess reagent (iNtRON) 

In Griess reaction, established in 1879, NO2
− is first treated with 

sulphanilamide, a diazotizing agent, in acidic environment to form a 
diazonium salt. This transient intermediate is then allowed to react with 
N-[1-napnthyl]-ethylenediamide dihydrochloride (NED) to generate 
purple coloured stable azo compound [69]. To perform the assay, 
macrophage cells in 96-well plates (1 × 105 cells/well) or 24-well plates 
(3 × 105 cells/well) are pre-incubated for 12 h. Following treatment, 
100 μl of Griess reagent (1% w/v sulphanilamide, 0.1% w/v NED in 5% 
phosphoric acid) is mixed with 100 μl of culture supernatant. The 
mixture is incubated at RT for 15 min and optical density is measured 
spectrophotometrically at 540 nm. The nitrite concentration is calcu-
lated from a standard curve derived from a reaction with sodium nitrite 
(0–100 μM) [40]. 

10.2. DAF2-DA 

The assay is a fluorescence-based method that uses a cell permanent 
4,5-diaminofluorescein diacetate (DAF2-DA) as NO detector. Diacetate 
(DA) part of the dye is hydrolysed in presence of cellular esterases to 
produce DAF2 compound that reacts with NO to produce a fluorescent 
triazolofluorescein (DAF-2T). To follow the assay, cells are seeded on 
coverslips in 6-well plates overnight and then treated with sample for 
desired time. Thereafter, cells are stained with 10 μM/ml DAF2-DA for 
20–30 min at RT, washed with PBS and then fluorescence intensity is 
recorded at ex/em 480/535 nm [70]. 

11. Analysis of ROS production 

The term ROS describes a group of molecules with at least one ox-
ygen atom and with higher reactivity than O2 [71]. They play an 
important role for antimicrobial activity of macrophages. In fact after 
pathogen recognition and phagocytosis, cytosolic subunits of NADPH 
oxidase (NOX) are phosphorylated and migrate to the phagosome 
membrane to form a functional enzyme with membrane-bound subunits. 
Following NADPH oxidase assembling, formation of superoxide radical 
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(O2
•− ) takes place inside the phagosome for up to 2 h approximately and 

the phenomenon is called oxidative burst. Eventually NO is produced in 
the cytosol of macrophages and readily diffuses across phagosome 
membrane due to its hydrophobic nature [72]. Nitric oxide then reacts 
with superoxide anion resulting in reactive nitrogen species (RNS) 
including peroxynitrite (ONOO− ). These oxidants induce nitrosative 
stress that promotes ROS production and are capable to kill microor-
ganisms [73]. Release of ROS by the inflammatory cells can be quanti-
fied by various methods such as electron spin resonance spectroscopy, 
spectrophotometric measurements and chemiluminescence. 

11.1. L-012 

L-012, (8-amino-5-chloro-7-phenylpyrido [3,4-d]pyridazine-1,4 
(2H,3H)dione) is a luminol-derivative chemiluminescence probe and 
highly sensitive for ROS. To carry out an assay for ROS detection, culture 
supernatant of treated and untreated macrophage cells is removed and 
replaced by an equal volume of HBSS supplemented with 25 μM L-012 
and 5 μg/ml horseradish peroxidase (HRP) with or without PMA. Re-
actions are monitored on a Fluoroscan microtiter plate reader at 37 ◦C. 
Chemiluminescence is measured every 2 min for 2 h and is expressed as 
the integrated response over the time [49]. 

11.2. DCHFDA 

The fluorogenic probe 2′,7′-dichlorofluorescein-diacetate (DCHFDA) 
is able to diffuse into cell and deacetylated by cellular esterase. The 
resulting product is a non-fluorescent compound which is then oxidized 
by ROS into 2′,7′-dichlorofluorescein (DCF). The resulting compound is 
highly fluorescent; hence can be detected by fluorescence spectroscopy 
[18]. To perform the assay, cells are washed with DMEM after treatment 
and stained with 10 μM of DCFDA at 37 ◦C for 20 min. Cells are washed 
with PBS twice and the fluorescence intensities can be measured at 
485/20 nm excitation wavelength and 528/20 nm emission wavelength 
using a multimode microplate reader [74] or flow cytometry [20]. 

11.3. CM-DCFH 

Intracellular ROS can also be measured by detecting the fluorescent 
intensity of carboxyl-2′,7′-dichlorofluorescein diacetate (CM-DCFH) 
oxidized product, CM-DCF. After treatment, cells are harvested and 
washed with cold PBS. Washed cells are further incubated with 10 mM 
CM-DCFH at RT for 30 min. Relative fluorescent intensity of the fluo-
rophore can be detected at ex/em 485/530 nm or using a fluorescence 
microscope [75]. 

11.4. Dihydrorhodamine123 

Dihydrorhodamine 123 is a nonfluorescent and uncharged ROS in-
dicator that can diffuse passively across membranes. The molecule in 
presence of ROS is oxidized to cationic rhodamine 123 which is trapped 
in mitochondria and exhibits green fluorescence [76]. The dihydro-
rhodamine123 is added to each well (10 μM/well) containing treated or 
untreated macrophage cells and incubated for 15–30 min at RT. The 
fluorescent intensity is analysed by spectrofluorometer with excitation 
and emission wavelengths of 485/15 and 535/10 nm respectively [65]. 

11.5. Reduction of NBT 

Macrophage cells (2 × 105 cells/ml) are plated on 96-well plates and 
cultured with sample. The cells are further incubated with 200 μl of PBS 
containing 0.1% of nitro-blue tetrazolium (NBT) and 2 μg/ml PMA at 
37 ◦C for 30 min. This membrane permeable, water-soluble, yellow- 
coloured NBT reacts with superoxide anion produced inside phagocytic 
cells and is reduced to blue coloured formazan. The reaction is termi-
nated with 80 μl of 70% methanol and cells are dried. The blue formazan 

produced is then dissolved in 2 M KOH (120 μl) and DMSO (140 μl) and 
absorbance is measured by a spectrophotometer at 620/10 nm against 
KOH/DMSO [77]. 

12. Measurement of H2O2 production 

Hydrogen peroxide (H2O2), a primary component of ROS, is an un-
charged, stable and freely diffusible second messenger. The agent is 
commonly produced from superoxide by superoxide dismutase (SOD) 1 
and 2 during oxidative stress generated in phagocytic cells [73]. While 
superoxide crosses cell membrane poorly, H2O2 diffuses easily between 
extra- and intracellular environments. Indeed, H2O2 diffuses into bac-
terial cytoplasm and potentially causes damage of a variety of molecules 
[78]. Intracellular H2O2 is also capable of triggering downstream signal 
pathways inducing pro-inflammatory cytokines production [79]. 
Generally, the treated and untreated macrophages are subjected to 100 
μl of phenol red buffer containing peroxidase (5 mM glucose, 0⋅56 mM 
phenol red solution and 8⋅5 UI/ml HRP). Following incubation for 1 h at 
37 ◦C, the reaction is stopped by addition of 10 μl of 1 M NaOH. 
Absorbance is then determined at 620 nm using a microplate reader. The 
concentration of H2O2 is determined based on the standard curve for 
H2O2 [80]. 

13. Acid phosphatase activity/cellular lysosomal enzyme 
activity 

During phagocytosis, macrophage cells acquire acid phosphatase by 
fusion with lysosomes. Thus, acid phosphatase functions as a signal 
enzyme for macrophage activation. To investigate the activity, treated 
cell supernatant is thoroughly removed and 25 μl of Triton X-100 (1%) 
along with 150 μl of p-nitrophenyl phosphate solution (1 mg/ml) are 
added. The mixtures are incubated for 1 h and 50 μl of NaOH solution (3 
M) is added to terminate the reaction. Finally, absorbance is detected at 
405 nm. The index of acid phosphatase activity is obtained according to 
the following equation [56]:  

Index of acid phosphatase activity = Absorbance of treatment/Absorbance of 
blank                                                                                                    

14. Recognition of membrane receptors 

To eradicate pathogens, macrophages must be able to distinguish 
between self-particles and infectious materials. The molecules mainly 
responsible for making this pivotal distinction are those of family of 
transmembrane glycol-protein receptors called TLRs. These receptors 
were named after the fruit-fly receptor Toll, which was recognized as 
contributing to innate immunity in adult flies [81]. To date, total 13 
mammalian TLRs have been recognized, of which 12 functional TLRs 
(TLR1–TLR9, TLR11–TLR13) have been identified to be expressed in 
mice and 10 (TLR1–TLR10) in humans where TLRs 1–9 are conserved in 
both. Typically TLRs 1, 2, 4–6 and 10 are displayed in cell surface and 
the rest are localized to intracellular compartments such as ER, endo-
some, lysosome, or endolysosome. Cell surface TLRs recognize mainly 
microbial membrane components including lipoproteins, lipids and 
proteins [82]. Activation of TLR-4 results in triggering two dissimilar 
cascades such as myeloid differentiating primary response gene 88 
(MyD88) dependent and MyD88 independent pathway. Stimulation of 
MyD88 led to generation of pro-inflammatory cytokines via triggering of 
a TF, NF-κB, (Fig. 2). Stimulation MyD88-independent pathway, on the 
other hand, led to synthesis of type 1 interferons (IFN)s [83]. Apart from 
TLRs, macrophages also contain mannose receptor (MR) that binds to 
microbial structure bearing mannose, N-acetylglucosamine and fucose 
on surface triggering endocytosis and phagocytosis [84]. Dectin-1 is 
another PRR that is expressed on macrophage surface and recognizes 
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β-glucans in cell walls of fungi. Activation of the receptor results in 
phagocytosis, ROS production, synthesis of inflammatory cytokines and 
chemokines that in turn influences development of adaptive immunity 
[85]. Several other receptors such as scavenger receptor (SR), gluco-
corticoid receptor (GR) and complement receptor 3 (CR3) also play an 
important role in inflammation, innate immunity and host defence. To 
detect the involved receptor, polymerase chain reaction (PCR), western 
blotting and RNA interference (RNAi) techniques are the most prevalent 
methods. 

14.1. RNA isolation, cDNA preparation, reverse transcriptase-PCR 

After treatment, macrophage cells are lysed by 1 ml TRIzol reagent. 
Then 200 μl chloroform is added, lysates are shaken vigorously by hand 
for 15 s and incubated at RT for 2–3 min. After centrifugation for 15 min, 

the aqueous phase is transferred to a fresh tube. RNA is washed thor-
oughly with isopropyl alcohol and 75% ethanol. The pellet is briefly 
dried and dissolved in RNase-free water. Total RNA yield is measured by 
260 nm absorbance and its quality can be assessed by agarose gel 
electrophoresis [86]. Reverse transcription of RNA is carried out using 
reverse transcriptase, oligo (dT) 16 primer, dNTP and RNase inhibitor. 
The generated cDNA is amplified by PCR using primer set for specific 
gene (Table 2 and Table 3) where β-actin or GAPDH are used as 
housekeeping genes. The cDNA is generally amplified by 35 cycles of 
denaturing at 94 ◦C for 45 s, annealing for 45 s, extension at 72 ◦C for 1 
min and finally extended at 72 ◦C for 5 min. The products can be 
separated in 1.5% (w/v) agarose gels and visualized with UV light 
[393]. For each gel, ImageJ software (http://rsbweb.nih.gov/ij/index. 
html) might be applied for quantitative estimation of band intensity. 

Fig. 2. Schematic representation of TLRs pathway in macrophage cells based on previous studies [15,17,44,70,82].  
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Table 2 
List of mouse specific primers to test immunomodulatory activity.  

Gene Primer sequences Tm 
(◦C) 

References 

TLR-2 F: 5′ AGCATCCGAATTGCATCACC 3′

R: 5′ ACCCCAGAAGCATCACATGA 3′

55 [86] 

F: 5′ CACCACTGCCCGTAGATGAAG 3′

R: 5′ AGGGTACAGTCGTCGAACTCT 3′

NM [75] 

F: 5′ GGGGCTTCACTTCTCTGCTT 3′

R: 5′ AGCATCCTCTGAGATTTGACG 3′

NM [87] 

TLR-3 F: 5′ GATACAGGGATTGCACCCATA 3′

R: 5′ TCCCCCAAAGGAGTACATTAGA 3′

NM [87] 

TLR-4 F: 5′ TGTATTCCCTCAGCACTCTT 3′

R: 5′ GCATCATAGATGCTTTCTCC 3′

NM [88] 

F: 5′ CGCTCTGGCATCATCTTCAT 3′

R: 5′ GTTGCCGTTTCTTGTTCTTCC 3′

NM [89] 

F: 5′ GGTGTGAAATTGAGACAATTGAAAAC 
3′

R: 5′ GTTTCCTGTCAGTACCAAGGTTGA 3′

NM [90] 

F: 5′ TTGCTGCCAACATCATCCAG 3′

R: 5′ GGTCCAAGTTGCCGTTTCTT 3′

55 [86] 

F: 5′ CAGCTTCAATGGTGCCATCA 3′

R: 5′ CTGCAATCAAGAGTGCTGAG 3′

NM [91] 

F: 5′ GCCTTTCAGGGAATTAAGCTCC 3′

R: 5′ GATCAACCGATGGACGTGAAA 3′

NM [73] 

F: 5′ GGACTCTGATCATGGCACTG 3′

R: 5′ CTGATCCATGCATTGGTAGGT 3′

NM [87] 

Dectin-1 F: 5′ ACAGTACACCAGACACAGGG 3′

R: 5′ TGGCCAGACAGCATAAGGAA 3′

NM [86] 

CR3 F: 5′ CCATGACCTTCCAAGAGAATGC 3′

R: 5′ ACCGGCTTGTGCTGTAGTC 3′

NM [73] 

MYD88 F: 5′ GCCAGAGTGGAAAGCAGTGT 3′

R: 5′ CGTTGGGGCAGTAGCAGATA 3′

55 [17] 

F: 5′ TGGCCTTGTTAGACCGTGA 3′

R: 5′ AAGTATTTCTGGCAGTCCTCCTC 3′

NM [87] 

TRIF F: 5′ TGGCAAACACCTTCAAGACA 3′

R: 5′ GCGCTTTCTTCCAGCGTA 3′

NM [87] 

NF-κB F: 5′ ATGGCAGACGATGATCCCTAC 3′

R: 5′ CGGAATCGAAATCCCCTCTGTT 3′

NM [92] 

F: 5′ CAGACGATGATCCCTACGGAA 3′

R: 5′ TCCCCTCTGTTTTGGTTGCT 3′

60 [93] 

F: 5′ AGAAGGCTGGGGTCAATCTT 3′

R: 5′ CTCAGGCTTTGTAGCCAAGG 3′

NM [90] 

IRG1 F: 5′ GCTTTTGTTAATGGTGTTGCTG 3′

R: 5′ GGCTTCCGATAGAGCTGTGA 3′

NM [87] 

iNOS F: 5′ AGGGACTGAGCTGTTAGAGACA 3′

R: 5′ AAGAGAAACTTCCAGGGGCAAG 3′

55 [94] 

F: 5′ CTGCAGCACTTGGATCAGGAACCTG 3′

R: 5′ GGGAGTAGCCTGTGTGCACCTGGAA 3′

57 [44,95,96] 

F: 5′ CCCTTCCGAAGTTTCTGGCAGCAGC 3′

R: 5′ GGCTGTCAGAGCCTCGTGGCTTTGG 3′

56–60 [97] 

F: 5′ CGGCAAACATGACTTCAGGC 3′

R: 5′ GCACATCAAAGCGGCCATAG 3′

NM [9,98] 

F: 5′ CATGCTACTGGAGGTGGGTG 3′

R: 5′ CATTGATCTCCGTGACAGCC 3′

NM [99,100] 

F: 5′ TTCCAGAATCCCTGGACAAG 3′

R: 5′ TGGTCAAACTCTTGGGGTTC 3′

NM [89] 

F: 5′ TTGTGCATCGACCTAGGCTGGAA 3′

R: 5′ GACCTTTCGCATTAGCATGGAAGC 3′

NM [88] 

F: 5′ GGTAGTAGTAGAATGGAGATAGG 3′

R: 5′ CTACCTAAGATAGCAGTTGATG 3′

NM [76] 

F: 5′ ATGGCTTGCCCCTGGAA 3′

R: 5′ TATTGTTGGGCTGAGAA 3′

NM [92] 

F: 5′ TCCCTTCCGAAGTTTCTGGC 3′

R: 5′ CTCTCTTGCGGACCATCTCC 3′

NM [101] 

F: 5′ CCTCCTCCACCCTACCAAGT 3′

R: 5′ CACCCAAAGTGCTTCAGTCA 3′

60 [102] 

F: 5′ GCCCTGCTTTGTGCGAAGTGTCAG 3′

R: 5′ GCACCTGGAACAGCACTCTCTTG 3′

NM [90] 

F: 5′ GAGCGAGTTGTGGATTGTC 3′

R: 5′ GGAGGAGCTGATGGAGT 3′

55 [15,103] 

F: 5′ AATGGCAACATCAGGTCGGCCATCACT 
3′

R: 5′ GCTGTGTGTCACAGAAGTCTCGAACTC 
3′

NM [104] 

F: 5′ CACCTTGGAGTTCACCCAGT 3′

R: 5′ ACCACTCGTACTTGGGATGC 3′

NM [73]  

Table 2 (continued ) 

Gene Primer sequences Tm 
(◦C) 

References 

F: 5′ ACGCTGAGTACCTCATTGGC 3′

R: 5′ AGCTCCTCCCAGGACCACAC 3′

62 [46,104] 

F: 5′ CTGGGACAGCACAGAATG 3′

R: 5′ GCCTTGTGGTGAAGAGTGTC 3′

55 [51] 

F: 5′ GAGCGAGTTGTGGATTGTC 3′

R: 5′ CCAGGAAGTAGGTGAGGG 3′

55 [105] 

F: 5′ CAACCAGTATTATGGCTCCT 3′

R: 5′ GTGACAGCCCGGTCTTTCCA 3′

55 [106] 

F: 5′ GTCTTGCAAGCTGATGGTCA 3′

R: 5′ GGCCTCAGCTTCTCATTCTG 3′

52 [107] 

F: 5′

CAAATCCTACCAAGTGACCTGAAAGAG 3′

R: 5′

GGTTCCTGTTGTTTCTATTTCCTTTGTTAC 
3′

56 [40] 

F: 5′ GTGCTGCCTCTGGTCTTGCAAGC 3′

R: 5′ AGGGGCAGGCTGGGAATTCG 3′

55–60 [108] 

F: 5′ CCCTCCTGATCTTGTGTTGGA 3′

R: 5′ TCAACCCGAGCTCCTGGAA 3′

NM [87] 

F: 5′ TGGGAATGGAGACTGTCCCAG 3′

R: 5′ GGGATCTGAATGTGATGTTTG 3′

NM [91] 

TNF-α F: 5′ ACCTGGCCTCTCTACCTTGT 3′

R: 5′ CCCGTAGGGCGATTACAGTC 3′

55 [94] 

F: 5′ ATGAGCACAGAAAGCATGATC 3′

R: 5′ TACAGGCTTGTCACTCGAATT 3′

56 [20,89,95] 

F: 5′ GGGGATTATGGCTCAGGGTC 3′

R: 5′ CGAGGCTCCAGTGAATTCGG 3′

NM [9,98] 

F: 5′ AGTTCTATGGCCCAGACCCTC 3′

R: 5′ GCTACAGGCTTGTCACTCGAA 3′

60 [93] 

F: 5ʹ TGGAACTGGCAGAAGAGGCA 3ʹ 
R: 5ʹ TGCTCCTCCACTTGGTGGTT 3ʹ 

NM [88] 

F: 5′ AGTGACAAGCCTGTAGCC 3′

R: 5′ AGGTTGACTTTCTCCTGG 3′

NM [109] 

F: 5′ CACGCTCTTCTGTCTACTG 3′

R: 5′ ACTTGGTGGTTTGCTAC 3′

NM [76] 

F: 5′ CATCCTCTCAAAATTCGAGTGACA 3′

R: 5′ TGGGAGTAGACAAGGTACAACCC 3′

NM [110] 

F: 5′ AGCCCCCAGTCTGTATCCTT 3′

R: 5′ CTCCCTTTGCAGAACTCAGG 3′

NM [111] 

F: 5′ CAGGCGGTGCCTATGTCTC 3′

R: 5′ CGATCACCCCGAAGTTCAGTAG 3′

NM [92] 

F: 5′ ATAGCTCCCAGAAAAGCAAGC 3′

R: 5′ CACCCCGAAGTTCAGTAGACA 3′

NM [99] 

F: 5′ GAACTGGCAGAAGAGGCACT 3′

R: 5′ AGGGTCTGGGCCATAGAACT 3′

NM [101] 

F: 5′ GTGGAACTGGCAGAAGAGGC 3′

R: 5′ AGACAGAAGAGCGTGGTGGC 3′

60 [102] 

F: 5′ ACTTCGGGGTGATCGGTC 3′

R: 5′ TGTCTTTGAGATCCATGCCG 3′

60 [112] 

F: 5′ TGCCTATGTCTCAGCCTCTTC 3′

R: 5′ GAGGCCATTTGGGAACTTCT 3′

55 [113] 

F: 5′ AGCACAGAAAGCATGATCCG 3′

R: 5′ CCTGATGAGAGGGAGGCCATT 3′

NM [73] 

F: 5′ ACAAGCCTGTAGCCCACG 3′

R: 5′ TCCAAAGTAGACCTGCCC 3′

NM [104] 

F: 5′ CACCCTTATTCTCGCTCAC 3′

R: 5′ CCCGCTTACAGTTCCTCT 3′

53 [105] 

F: 5′ GGACTAGCCAGGAGGGAGAA 3′

R: 5′ CGCGGATCATGCTTTCTGTG 3′

55 [51] 

S: 5′ TGAGGCTGGATAAGATCTCAG 3′

A: 5′ CAGAGGTTCAGTGATGTAGCG 3′

60 [39,114] 

F: 5′ GGGCTACAGGCTTGTCACTCG 3′

R: 5′ ACTCCAGGCGGTGCCTATGTC 3′

NM [90] 

F: 5′ AGCACAGAAAGCATGATCCG 3′

R: 5′ CTGATGAGAGGGAGGCCATT 3′

NM [100] 

F: 5′ CCTGTAGCCCACGTCGTAGC 3′

R: 5′ TTGACCTCAGCGCTGAGTTG 3′

55 [96] 

F: 5′ ATCAGTTCTATGGCCCAGAC 3′

R: 5′ AGGAGGTTGACTTTCTCCTG 3′

54 [40] 

F: 5′ TTGACCTCAGCGCTGAGTTG 3′

R: 5′ CCTGTAGCCCACGTCGTAGC 3′

55–62 [46,97] 

F: 5′ CGGGATCCATGAGCACAGAAAGCAT 3′

R: 5′ CCCAAGCTTTCACAGAGCAATGACTCC 
3′

NM [85] 

NM [91] 

(continued on next page) 
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Table 2 (continued ) 

Gene Primer sequences Tm 
(◦C) 

References 

F: 5′ AACTTCGGGGTGATCGGTCC 3′

R: 5′ CAAATCGGCTGACGGTGTGGG 3′

COX-2 F: 5′ CCACTTCAAGGGAGTCTGGA 3′

R: 5′ AGTCATCTGCTACGGGAGGA 3′

60 [115] 

F: 5′ CCCCCACAGTCAAAGACACT 3′

R: 5′ GAGTCCATGTTCCAGGAGGA 3′

57 [20,100] 

F: 5′ GTACTGGCTCATGCTGGACGA 3′

R: 5′ CACCATACACTGCCAGGTCAGCAA 3′

NM [88] 

F: 5′ GGTGCCTGGTCTGATGATG 3′

R: 5′ TGCTGGTTTGGAATAGTTGCT 3′

NM [92] 

F: 5′ TCTGGAACATTGTGAACAACATC 3′

R: 5′ AAGCTCCTTATTTCCCTTCACAC 3′

NM [99] 

F: 5′ AGAAGGAAATGGCTGCAGAA 3′

R: 5′ GCTCGGCTTCCAGTATTGAG 3′

NM [89] 

F: 5′ AGGAGACATCCTGATCCTGGT 3′

R: 5′ GTTCAGCCTGGCAAGTCTTT 3′

60 [102] 

F: 5′ CACTACATCCTGACCCACTT 3′

R: 5′ ATGCTCCTGCTTGAGTATGT 3′

55 [113] 

F: 5′ CCCCCACAGTCAAAGACACT 3′

R: 5′ CTCATCACCCCACTCAGGAT 3′

NM [104] 

F: 5′ TCTCAGCACCCACCCGCTCA 3′

R: 5′ GCCCCGTAGACCCTGCTCGA 3′

55–60 [108] 

F: 5′ TGGTGCCTGGTCTGATGATG 3′

R: 5′ GTGGTAACCGCTCAGGTGTTG 3′

NM [87] 

F: 5′ TGGACGAGGTTTTTCCACCAG 3′

R: 5′ CAAAGGCCTCCATTGACCAGA 3′

NM [116] 

F: 5′ TGATCGAAGACTACGTGCAAC 3′

R: 5′ GCCAAAGTTGTCATGGATG 3′

NM [117] 

IFN-α F: 5′ CCTGTGTGATGCAGGAACC 3′

R: 5′ TCACCTCCCAGGCACAGA 3′

NM [99] 

IFN-β F: 5′ ACTAGAGGAAAAGCAAGAGGA 3′

R: 5′ CTGGTAAGTCTTCGAATGATG 3′

NM [99] 

IFN-γ F: 5′ GATGCTCTTCGACCTCGAAACAGCAT 
3′

R: 5′

ATGAAATATACAAGTTATAATCTTGGCTTT 
3′

NM [95] 

F: 5′ CTCAAGTGGCATAGATGT 3′

R: 5′ GAGATAATCTGGCTCTGCAGGATT 3′

NM [89] 

F: 5′ CCTCAAACTTGGCAATACTCA 3′

R: 5′ CTCAAGTGGCATAGATGTGGA 3′

NM [90] 

F: 5′ CCAAGTTTGAGGTCAACAAC 3′

R: 5′ CTTATTGGGACAATCTCTTCC 3′

55 [49] 

IL-1β F: 5′ GCCACCTTTTGACAGTGATGAG 3′

R: 5′ AGTGATACTGCCTGCCTGAAG 3′

55 [94] 

F: 5′ AAGGAGCTATCACTTGACCAC 3′

F: 5′ CTTCATCTTTTGGGGTCCGTC 3′

60 [93] 

F: 5′ ATGGCAACTATTCCAGAACTCAACT 3′

R: 5′ CAGGACAGGTATAGATTCTTTCCTTT 
3′

NM [95] 

F: 5′ GGCAGGCAGTATCACTCATT 3′

R: 5′ CCCAAGGCCACAGGTATTT 3′

NM [88] 

F: 5′ ATCTCGCAGCAGCACATC 3′

R: 5′ CCAGCAGGTTATCATCATCATC 3′

NM [76] 

F: 5′ AAATACCTGTGGCCTTG 3′

R: 5′ TTAGGAAGACACGGATTC 3′

NM [109] 

F: 5′ AAGGGCTGCTTCCAAAC 3′

R: 5′ CTCCACAGCCACAATGA 3′

NM [92] 

F: 5′ ACCTGCTGGTGTGTGACGTT 3′

R: 5′ TCGTTGCTTGGTTCTCCTTG 3′

NM [99] 

F: 5′ CCTTGGGCCTCAAAGGAAAGAATC 3′

R: 5′ GGAAGACACAGATTCCATGGTGAAG 
3′

NM [101] 

F: 5′ GGGCCTCAAAGGAAAGAATC 3′

R: 5′ TACCAGTTGGGGAACTCTGC 3′

NM [89] 

F: 5′ AAGGAGACCAAGCAACGACAAAA 3′

R: 5′ TGGGGACTCTGCAGACTCAAACT 3′

NM [111] 

F: 5′ CCTCGTGCTGTCGGACCCAT 3′

R: 5′ CAGGCTTGTGCTCTGCTTGTGA 3′

57–60 [99,105] 

F: 5′ GAGCTTCAGGCAGGCAGTAT 3′

F: 5′ TGGGTGTGCCGTCTTTCATT 3′

60 [111] 

F: 5′ ATGGCAACTGTTCCAGAACTCAACT 3′

R: 5′ CAGGACAGGTATAGATTCTTTCCTTT 
3′

NM [44] 

NM [104]  

Table 2 (continued ) 

Gene Primer sequences Tm 
(◦C) 

References 

F: 5′ ATGGCAACTGTTCCTGAACTCAACT 3′

R: 5′ GTGCTGCCTAATGTCCCCTTGAATC 3′

F: 5′ TGCAGAGTTCCCCAACTGGTACATC 3′

R: 5′ GTGCTGCCTAATGTCCCCTTGAATC 3′

55 [96] 

F: 5′ TGCTTCCAAACCTTTGACCTGGGC 3′

R: 5′ CAGGGTGGGTGTGCCGTCTTTC 3′

NM [108] 

F: 5′ AAGAAGAGCCCATCCTCTGT 3′

R: 5′ CGCTTTTCCATCTTCTTCTT 3′

55 [40] 

F: 5′ CAAGGAGAACCAAGCAAC 3′

R: 5′ GGGGAAGGCATTAGAAAC 3′

60 [39,114] 

F: 5′ TACAAGGAGAACCAAGCAACGACA 3′

R: 5′ TGTCGTTGCTTGGTTCTCCTTGTA 3′

NM [91] 

IL-6 F: 5′ TACTCGGCAAACCTAGTGCG 3′

R: 5′ GTGTCCCAACATTCATATTGTCAGT 3′

NM [9,98] 

F: 5′ CAACGATGATGCACTTGCAGA 3′

R: 5′ TCTCTCTGAAGGACTCTGGCT 3′

55 [94] 

F: 5′ TTCCTCTCTGCAAGAGACT 3′

R: 5′ TGTATCTCTCTGAAGGACT 3′

56 [20,44,95] 

F: 5′ GTCGGAGGCTTAATTACACA 3′

R: 5′ TTCATACAATCAGAATTGCCAT 3′

60 [96] 

F: 5′ GAGGATACCACTCCCAACAGACC 3′

R: 5′ AAGTGCATCATCGTTGTTCATACA 3′

NM [88] 

F: 5′ AATTAAGCCTCCGACTTGTG 3′

R: 5′ CACGCTCTTCTGTCTACTG 3′

NM [76] 

F: 5′ CCGGAGAGGAGACTTCACAG 3′

R: 5′ GGAAATTGGGGTAGGAAGGA 3′

NM [110] 

F: 5′ GGAGTACCATAGCTACCTGG 3′

R: 5′ CTAGGTTTGCCGAGTAGATC 3′

NM [109] 

F: 5′ ATGAAGTTCCTCTCTGCAA 3′

R: 5′ AGTGGTATCCTCTGTGAAG 3′

NM [92] 

F: 5′ TGGAGTCACAGAAGGAGTGGCTAAG 
3′

R: 5′ TCTGACCACAGTGAGGAATGTCCAC 3′

NM [99] 

F: 5′ TCCATCCAGTTGCCTTCTTG 3′

R: 5′ GGTCTGTTGGGAGTGGTATC 3′

NM [101] 

F: 5′ AGTTGCCTTCTTGGGACTGA 3′

R: 5′ CAGAATTGCCATTGCACAAC 3′

NM [89] 

F: 5′ CACTTCACAAGTCGGAGGC 3′

R: 5′ GCACTAGGTTTGCCGAGTAGA 3′

60 [112] 

F: 5′ CCGGAGAGGAGACTTCACAG 3′

R: 5′ CAGAATTGCCATTGCACAAC 3′

60 [102] 

F: 5′ GGAGTACCATAGCTACCTGG 3′

R: 5′ CTAGGTTTGCCGAGTAGATC 3′

NM [90] 

F: 5′ GTACTCCAGAAGACCAGAGG 3′

R: 5′ TGCTGGTGACAACCACGGCC 3′

NM [46,104] 

F: 5′ AGTTGCCTTCTTGGGACTGA 3′

R: 5′ CAGAATTGCCATTGCACAAC 3′

NM [104] 

F: 5′ TTCCTCTCTGCAAGAGACTTC 3′

R: 5′ GGTCTGTTGGGAGTGGTATC 3′

55 [51] 

F: 5′ TGCACTTGCAGAAAACAATC 3′

R: 5′ TTAGGAGAGCATTGGAAATTG 3′

54 [40] 

F: 5′ GCTGGAGTCACAGAAGGAGTGGC 3′

R: 5′ GGCATAACGCACTAGGTTTGCCG 3′

55–60 [108] 

F: 5′ TGAACAACGATGATGCACTT 3′

R: 5′ CGAAGAGAACAACATAAGTC 3′

NM [39] 

F: 5′ ATGAAGTTCCTCTCTGCAAG 3′

R: 5′ GGTTTGCCGAGTACATCTCA 3′

NM [85] 

F: 5′

GCCAGAGTCCTTCAGAGAGAGATACAG 3′

R: 5′ CCCAACATTCATATTGTCAG 3′

NM [91] 

IL-10 F: 5′ TGGCCCAGAAATCAAGGAGC 3′

R: 5′ CAGCAGACTCAATACACACT 3′

60 [115] 

F: 5′ TACCTGGTAGAAGTGATGCC 3′

R: 5′ CATCATGTATGCTTCTATGC 3′

NM [44] 

F: 5′ CCAAGCCTTATCGGAAATGA 3′

R: 5′ TTTTCACAGGGGAGAAATCG 3′

NM [92] 

F: 5′ GTGAAGACTTTCTTTCAAACAAAG 3′

R: 5′ CTGCTCCACTGCCTTGCTCTTATT 3′

NM [99] 

IL-12 F: 5′ CCACAAAGGAGGCGAGACTC 3′

R: 5′ CTCTACGAGGAACGCACCTT 3′

NM [44,95] 

F: 5′ AACCAGACCCGCCCAAGAAC 3′

R: 5′ GATCCTGAGCTTGCACGCAGA 3′

NM [88] 

IL-12p35 F: 5′ TCAGCGTTCCAACAGCCTC 3′

R: 5′ CGCAGAGTCTCGCCATTATG 3′

55 [39] 

55 [114] 

(continued on next page) 
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14.2. Quantitative PCR (qPCR) 

Quantitative PCR relies on real-time detection of amplified cDNA 
targets generated by successive rounds of PCR. Amplicons are detected 
based on fluorescence intensity which increases uniformly with the PCR 
product. However, the required equipment and reagents are more 
expensive than that of conventional PCR technology. To perform the 
assay, cDNA is prepared from each experimental set as described before 
and then amplified by using incorporation of SYBR green. Relative 
expression of specific genes can be calculated using 2− ΔΔCT method [9, 
17,18,40,74,99,101,105]. 

14.3. Receptor detection by inhibitor treatment 

Cells are adjusted to a concentration of 1 × 106 cells/ml in the 
exponential phase, loaded into 96-well plate (100 μl/well) and incu-
bated for 24 h. Cells are pre-treated with TLR4-IN-C34, a drug that in-
hibits TLR-4, for 30 min, followed by incubation with sample. After the 
incubation period, cell supernatant is analysed for NO content by using 
Griess reagent [17]. Otherwise, the cells can be pre-treated with anti-
bodies (5 μg/ml) of membrane receptors (SR, MR, GR, CR3, TLR-2, 
TLR-4 and Dectin-1) for 1–2 h to blockade the matched receptors. 
Then, above cells are cultured with sample at 37 ◦C in humidified 
chamber. The cells treated with sample in absence of antibody and the 
cells without any treatment are used as control groups. Then the activ-
ities of treated macrophages can be determined in terms of NO pro-
duction in culture supernatant [9,63,99]. 

14.4. Western blot analysis 

One of the disadvantages of transcriptome analysis is that presence of 
mRNA does not always precisely reflect protein level as many proteins 
are modified at post-translational level. The limitation can be overcome 
by performing western blotting method. For that, macrophage cells are 
grown in 6-well plate (1 × 106 cells/well) with stimuli or other treat-
ment. Cells are lysed using cell lysis buffer (100–300 μl/well) prepared 
by mixing 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) (pH 7.4), 2 mM ethylene glycol-bis(β-aminoethyl ether)-N,N, 

Table 2 (continued ) 

Gene Primer sequences Tm 
(◦C) 

References 

F: 5′ CTGCATCAGCTCATCGATGG 3′

R: 5′ CAGAAGCTAACCATCTCCTGGTTT 3′

IL-12p40 F: 5′ CAGAAGCTAACCATCTCCTGGTTT 3′

R: 5′ TCCGGAGTAATTTGGTGCTTCACAC 3′

55 [39,97] 

F: 5′ TCCGGAGTAATTTGGTGCTTCACA 3′

R: 5′ ACTGTACAACCGCAGTAATACGG 3′

55 [114] 

IL-18 F: 5′ ACTGTACAACCGCAGTAATACGG 3′

R: 5′ AGTGAACATTACAGATTTATCCC 3′

58 [39] 

F: 5′ TGAACAACGATGATGCACTT 3′

R: 5′ CGTAGAGAACAACATAAGTC 3′

58 [114] 

MKP-1 F: 5′ GCATCCCTGTGGAGGACAACC 3′

R: 5′ TCCAGCATCCTTGATGGAGTCTATG 3′

55 [118] 

MIP-2 F: 5′ GAACAAAGGCAAGGCTAACTGA 3′

R: 5′ AACATAACAACATCTGGGCAAT 3′

NM [99] 

MCP-1 F: 5′ ACTGAAGCCAGCTCTCTCTTCCTC 3′

R: 5′ TTCCTTCTTGGGGTCAGCACAGAC 3′

NM [99] 

F: 5′ GGAAAAATGGATCCACACCTTGC 3′

R: 5′ TCTCTTCCTCCACCACCATGCAG 3′

NM [88] 

NOX-2 F: 5′ ACCAGACAGACTTGAGAATG 3′

R: 5′ GCTGTGCTATGTTGCTCTAG 3′

NM [76] 

CCL3 F: 5′ TGCCCTTGCTGTTCTTCTCT 3′

R: 5′ GTGGAATCTTCCGGCTGTAG 3′

NM [87] 

PTGIS F: 5′ CAGACGACCACTCTCCCACAG 3′

R: 5′ GGAAGAGGAGGAGGCGGT 3′

60 [115] 

Granzyme- 
B 

F: 5′ AGATCGAAAGTGCGAATCTGA 3′

R: 5′ TTCGTCCATAGGAGACAATGC 3′

NM [95] 

Perforin F: 5′ AGTCCTCCACCTCGTTGTCCGTGA 3′

R: 5′ AAAGTCAGCTCCACTGAAGCTGTG 3′

NM [95] 

NKG2D F: 5′ GACTTCACCAGTTTAAGTAAATC 3′

R: 5′ CTGGGAGATGAGTGAATTTCATA 3′

NM [95] 

FasL F: 5′ CCAGAGAGAGCTCAGATACGTTGAC 3′

R: 5′ ATGTTTCAGCTCTTCCACCTACAGA 3′

NM [95] 

GPR120 F: 5′ GATGACAATGAGCGGCAGCG 3′

R: 5′ GATTTCTCCTATGCGGTTGGG 3′

NM [89] 

GM-CSF F: 5′ ACTCTGCTCACGAAGGAACTCAGC 3′

R: 5′ CACAGCTCGGAAGAGCATCGCA 3′

NM [108] 

LY96 F: 5′ AATACCATTCTCTTTCGAGG 3′

R: 5′ CTTTTCTTCAGTATCCCCA 3′

60 [93] 

18s rRNA F: 5′ TCGAGGCCCTGTAATTGGAA 3′

R: 5′ CCCTCCAATGGATCCTCGTT 3′

NM [92] 

F: 5′ CGCTCGCTCCTCTCCTACT 3′

R: 5′ ATCGGCCCGAGGTTATCTA 3′

55 [40] 

β-actin F: 5′ CGCCACCAGTTCGCCATGGA 3′

R: 5′ TACAGCCCGGGGAGCATCGT 3′

60 [115] 

F: 5′ TGGAATCCTGTGGCATCCATGAAAC 3′

R: 5′ TAAAACGCAGCTCAGTAACAGTCCG 3′

55– 
60 

[39,96, 
100,114] 

F: 5′ CATCTCTTGCTCGAAGTCCA 3′

R: 5′ ATCATGTTTGAGACCTTCAACA 3′

NM [95] 

F: 5′ GCTGTGCTATGTTGCTCTAG 3′

R: 5′ TCGTTGCCAATAGTGATGAC 3′

NM [76] 

F: 5′ TCACCCACACTGTGCCCATCTACGA 3′

R: 5′ GGATGCCACAGGATTCCATACCCA 3′

NM [99] 

F: 5′ CCACAGCTGAGAGGGAAATC 3′

R: 5′ AAGGAAGGCTGGAAAAGAGC 3′

NM [89] 

F: 5′ AGCCATGTACGTAGCCATCC 3′

R: 5′ CTCTCAGCTGTGGTGGTGAA 3′

NM [73,111] 

F: 5′ ATCACTATTGGCAACGAGCG 3′

R: 5′ TCAGCAATGCCTGGGTACAT 3′

NM [100,101] 

F: 5′ CCCTGTATGCCTCTGGTCGT 3′

R: 5′ CACCAGACAGCACTGTCTTGG 3′

60 [112] 

F: 5′ GCTGTCCCTGTATGCCTCT 3′

R: 5′ TTGATGTCACGCACGATTT 3′

55 [20,103] 

F: 5′ GACGTTGACATCCGTAAAG 3′

R: 5′ CAGTAACAGTCCGCCT 3′

NM [104] 

F: 5′ GTGGGCCGCCCTAGGCACCAG 3′

R: 5′ GGAGGAAGAGGATGCGGCAGT 3′

62 [46,104, 
108] 

F: 5′ AACTGGAACGGTGAAGGTGA 3′

R: 5′ GTGCAATCAAAGTCCTCGGC 3′

55 [49] 

F: 5′ AGGCATCCTGACCCTGAAGTAC 3′

R: 5′ TTCATGAGGTAGTCTGTCAG 3′

52 [107] 

F: 5′ GGAGAAGATCTGGCACCACACC 3′

R: 5′ CCTGCTTGCTGATCCACATCTGCTGG 
3′

55 [106] 

F: 5′ AACCGTGAAAAGATGACCCAGAT 3′

R: 5′ CACAGCCTGGATGGCTACGT 3′

NM [87]  

Table 2 (continued ) 

Gene Primer sequences Tm 
(◦C) 

References 

F: 5′ GGACAGTGAGGCCAGGATGG 3′

R: 5′ AGTGTGACGTTGACATCCGTAAAGA 3′

NM [116] 

GAPDH F: 5′ GGTGAAGGTCGGTGTGAACG 3′

R: 5′ CCCGTAGGGCGATTACAGTC 3′

55 [94] 

F: 5′ GGACTGTGGTCATGAGCCCTTCCA 3′

R: 5′ ACTCACGGCAAATTCAACGGCAC 3′

NM [88] 

F: 5′ AACGGATTTGGCCGTATTGG 3′

R: 5′ CTTCCCGTTCAGCTCTGGG 3′

NM [109] 

F: 5′ ACCAGAGTCCATGCCATCAC 3′

R: 5′ CACCACCCTGTTGCTGTAGCC 3′

NM [110] 

F: 5′ AGAGTGTTTCCTCGTCCCGTA 3′

R: 5′ AAATCCGTTCACACCGACCT 3′

60 [93] 

F: 5′ TGTGTCCGTCGTGGATCTGA 3′

R: 5′ TTGCTGTTGAAGTCGCAGGAG 3′

60 [102] 

F: 5′ ACAACTTTGGCATTGTGGAA 3′

R: 5′ GATGCAGGGATGATGTTCTG 3′

NM [90] 

F: 5′ TTTGTCAAGCTCATTTCCTGGTATG 3′

R: 5′ TGGGATAGGGCCTCTCTTGC 3′

NM [9,98] 

F: 5′ AACAGCAACTCCCACTCTTC 3′

R: 5′ CCTGTTGCTGTAGCCGTATT 3′

NM [73] 

F: 5′ CTCTGCTCCTCCCTGTTC 3′

R: 5′ CAATCTCCACTTTGCCACT 3′

52 [105] 

F: 5′ CACTCACGGCAAATTCAACGGCAC 3′

R: 5′ GACTCCACGACATACTCAGCAC 3′

60 [97] 

F: 5′ TGTGATGGGTGTGAACCACGAG 3′

R: 5′ TGCTGTTGAAGTCGCAGGAGAC 3′

NM [91] 

NM: Not mentioned. 
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N′,N’-tetraacetic acid (EGTA), 50 mM glycerophosphate, 1 mM sodium 
orthovanadate, 1% Triton X-100, 10% glycerol, and protease inhibitor. 
Else, RIPA (radioimmunoprecipitation assay) buffer [50 mM Tris-Cl (pH 
8.0), 5 mM EDTA, 150 mM NaCl, 1% NP-40, 0.1% SDS and 1 mM 
phenylmethylsulfonyl fluoride] can also be used. The supernatant is 
collected after centrifugation at 13,200×g for 20 min and can be assayed 
for protein content using bovine serum albumin (BSA) as a standard. 
After heat denaturation for 7 min, aliquots containing 40 μg of protein 
are separated on 8–16% (w/v) Tris/glycine/sodium dodecyl sulfate 
polyacrylamide (SDS-PAGE) gel. The separated proteins are then 
transferred to polyvinylidene difluoride (PVDF) membrane which is 
then blocked with 5% non-fat dry milk in Tris-buffered saline/Tween 
(TBS-T) (137 mM NaCl, 20 mM Tris-HCl (pH 7.4) and 0.1% Tween 20). 
The blots are then incubated with diluted primary antibody at 4 ◦C. 
Subsequently, the membrane is washed five times and incubated with an 
appropriate secondary antibody (HRP-conjugated goat anti-mouse or 
anti-rabbit IgG) (1:500) in 2% (v/v) PBS for 1–2 h. After washing the 
membrane with TBST three times for 10 min, the blots can be developed 
with chemiluminescence [95,123]. 

14.5. RNAi 

RNA interference involves double-stranded RNA-mediated degra-
dation of target mRNA. Such gene-specific suppression can be achieved 
by delivering of 21–23 nucleotide long interfering RNAs (siRNAs) [124]. 
To determine whether the mechanism of action of the investigating drug 
is mediated through TLR-4, MyD88 or TRIF, the mRNAs can be silenced 
using oligonucleotide sequences as described by Qi and Shelhamer 
[123]. The siRNA duplexes are transfected into macrophage cells which 
are then seeded at 0.2 × 106 cell/well in 24-well plate. After 24 h of 
transfection, the medium is changed with 1 ml of fresh DMEM and 
treated with stimuli. For RNA and protein extraction, the cells are har-
vested in TRIzol after 6 h and 12 h of treatment respectively [88]. The 
interference of TLR4, MyD88, and TRIF protein expression can be 
confirmed by immunoblotting using specific antibodies [123]. 

15. Assays on NF-κB protein 

Nuclear factor kappa-B is a key pro-inflammatory TF that regulates 
transcription of numerous regulatory receptors, cytokines, chemokines 
and enzymes. The protein is activated when macrophages sense patho-
gens through multiple classes of PRR pathways [125]. The protein 
consists of homo- and hetero-dimers of five subunits, p65/RelA, RelB, 
c-Rel, p50/NF-κB1 and p52/NF-κB2. In resting cells, NF-κB localizes in 
cytoplasm via association with cytosolic IκB (inhibitor of NF-κB) pro-
teins such as IκB-α, -β and -ε. Upon stimulation, IκB kinase (IKK) phos-
phorylates IκB which is then degraded by ubiquitin-proteasome system 
[126]. Subsequently, NF-κB dimer then translocates to nucleus, binds to 
its consensus sequence on promoter and enhancer of target genes and 
activates transcription of pro-inflammatory genes (Fig. 2). Monitoring 
NF-κB movement hence is a widespread method to measure activity of 
the TF. Two techniques have been developed to test the translocation: 1) 
Cell fractionation isolating cytoplasmic and nuclear fractions where 
NF-κB is quantified using anti-phospho–NF–κB p65 by western blotting 
[95]. 2) Image-based tracking of NF-κB where dynamics of the protein 
are monitored either by antibody staining or using a fluorescent protein 
fused to the TF [126,127]. 

15.1. Immunofluorescence study to visualize NF-κB nuclear localization 

Immunofluorescence assay (IFA) is a microscopic technique to detect 
and visualize any protein expressed in cells via antigen-antibody reac-
tion. To perform the assay, treated macrophage cells, grown on glass 
cover slips, are fixed with 4% paraformaldehyde in PBS for 15–20 min at 
RT. Cells are then repeatedly washed with PBS (5 min each) and per-
meabilized with 0.3–2% Triton X-100 in PBS for 5 min. Cells are again 
washed and then blocked with 1–5% BSA in PBS for 1 h. Cells are then 
incubated with primary antibodies against NF-κB p65 (1:200 or 1:400) 
overnight at 4 ◦C. After washing three times, cells are incubated with 
appropriate secondary antibodies (1:500) of fluorescent dye-conjugated 
anti-rabbit IgG or fluorescent dye conjugated goat anti-rabbit IgG plus 
10 μg/ml of Hoechst 33342 for 1–2 h at RT in dark. Cells are then 
washed three times with PBS and DAPI (1 μg/ml in PBS) is used to stain 
nuclei. Finally, sample on cover slips may be mounted with non- 
hardening, aqueous-based compound, available commercially, to pro-
vide a semi-permanent seal for storage of slide preparations. The ob-
servations can be performed on a fluorescence microscope with 100 ×
magnification capturing micrographs [128]. 

15.2. Inhibition of NF-κB using specific inhibitors 

BAY 11–7082 (BAY) is an inhibitor of NF-κB and thus used to verify 
action of the TF mediated signalling pathway. Research has established 
that BAY strongly suppresses production of NO, prostaglandin E2 
(PGE2), and tumor necrosis factor-α (TNF-α). It also reduces the trans-
location of p65 and its upstream signalling events such as 

Table 3 
List of human specific primers to test immunomodulatory activity.  

Gene Primer sequences Tm (◦C) References 

NF-κB F: 5′ GGTGCGGCTCATGTTTACAG 3′

R: 5′ GATGGCGTCTGATACCACGG 3′

60 [118] 

IL-1β F: 5′ TGATGGCTTATTACAGTGGCAATG 3′

R: 5′ GTAGTGGTGGTCGGAGATTCG 3′

60 [119] 

F: 5′ GGCTTATTACAGTGGCAATG 3′

R: 5′ TAGTGGTGGTCGGAGATT 3′

60 [120] 

F: 5′ GGGATAACGAGGCTTATGTGC 3′

R: 5′ AGGTGGAGAGCTTTCAGTTCA 3′

NM [121] 

F: 5′ CCCTCTGTCATTCGCTCCC 3′

R: 5′ CACTGCTACTTCTTGCCCCC 3′

NM [122] 

IL-4 F: 5′ TCTTTGCTGCCTCCAAGAAC 3′

R: 5′ GCGAGTGTCCTTCTCATGGT 3′

60 [118] 

IL-6 F: 5′ CCAGCCTGCTGACGAAGC 3′

R: 5′ TCAGGCTGGACTGCAGGAAC 3′

60 [118] 

F: 5′ CACACAGACAGCCACTCACC 3′

R: 5′ GCTCTGGCTTGTTCCTCACT 3′

60 [119] 

IL-8 F: 5′ ACCACCGGAAGGAACCATCTC 3′

R: 5′ AGCTGCAGAAATCAGGAAGGC 3′

60 [118] 

IL-10 F: 5′ TTTAAGGGTTACCTGGGTTGC 3′

R: 5′ CCTTGATGTCTGGGTCTTGG 3′

60 [118] 

IFN-α F: 5′ CAGCCTGGATAACAGGAGGA 3′

R: 5′ CTCCTGGGGAAATCCAAAGT 3′

60 [118] 

TGF-β F: 5′ CACTTCATCAACCCGGAAAC 3′

R: 5′ AGGATGACGTTGGAGCTGTC 3′

60 [118] 

TNF-α F: 5′ CCCGACTATCTCGACTTTGC 3′

R: 5′ AAGGTTGGATGTTCGTCCTC 3′

60 [118] 

F: 5′ CGAGTCTGGGCAGGTCTA 3′

R: 5′ GTGGTGGTCTTGTTGCTTAA 3′

NM [122] 

F: 5′ TGAGCACTGAAAGCATGATCC 3′

R: 5′ GGAGAAGAGGCTGAGGAACA 3′

NM [121] 

F: 5′ ATGAGCACTGAAAGCATGATCC 3′

R: 5′ GAGGGCTGATTAGAGAGAGGTC 3′

60 [119] 

CSF-1 F: 5′ GGAGACCTCGTGCCAAATTA 3′

R: 5′ GGCCTTGTCATGCTCTTCAT 3′

60 [119] 

CYP1A1 F: 5′ TCCTGGAGCCTCATGTATT 3′

R: 5′ TCTCTTGTTGTGCTGTGG 3′

61 [120] 

18srRNA F: 5′ CAGCCACCCGAGATTGAGCA 3′

R: 5′ TAGTAGCGACGGGCGGTGTG 3′

61 [120] 

β-actin F: 5′ CACTCTTCCAGCCTTCCTTCC 3′

R: 5′ GCACTGTGTTGGCGTACAGG 3′

60 [118] 

F: 5′ CACCATTGGCAATGA GCGGTTC 3′

R: 5′ AGGTCTTTGCGGATGTCCACGT 3′

NM [121] 

GAPDH F: 5′ GGTGGTCTCCTCTGACTTCAACAG 3′

R: 5′ GTTGCTGTAGCCAAATTCGTTGT 3′

60 [119] 

F: 5′ GGAGCGAGATCCCTCCAAAAT 3′

R: 5′ GGCTGTTGTCATACTTCTCATGG 3′

NM [122] 

NM: Not mentioned. 
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phosphorylation of IκB-α, IKK, and Akt [129]. Thus, to investigate the 
signal transduction pathway, macrophage cells are incubated with BAY 
(1 μM) for 2 h. The monocytes are then treated with sample for definite 
period of time. Afterwards, TNF-α content in the culture supernatant is 
determined using ELISA technique [63]. 

15.3. Transient transfection and luciferase reporter assay 

Macrophage cells are cultured in a 60-mm dish. After confluence, 
they are transfected with pNF-κB-Luc plasmid comprising NF-κB 
responsive region followed by receptor gene firefly luciferase along with 
certain antibiotic resistant gene. After 48 h, cells are cultured in medium 
supplemented with the antibiotic for at least one week. Clone revealing 
the strongest luciferase activity due to LPS treatment is seeded (4 × 105 

cells/well) in 24-well plate for overnight. After treatment with drug, 
cells are harvested and extracted with lysis buffer (100 μl). Twenty μl of 
the lysate is then mixed with 100 μl luciferin and the luminescence is 
measured. Results can be described as relative luciferase activity (fold 
difference in comparison with negative control) [75,92,114,128]. 

15.4. Electrophoretic mobility shift assay (EMSA) 

Electrophoretic mobility shift assay is classically used to detect DNA 
binding proteins. Principle of the technique is that protein-DNA complex 
moves more slowly through a polyacrylamide gel than the correspond-
ing free linear unbound DNA. This high sensitivity and simple to perform 
method can be used for studying DNA and protein interactions [130]. 
The assay traditionally requires radioactive probes; however, biotin or 
fluorescent probes are now available. To perform the assay, treated and 
untreated macrophage cells are centrifuged at 800×g for 5–10 min at 
4 ◦C. Cells are lysed with 300 μl pre-cold hypotonic buffer (5 μl phos-
phatase inhibitor, 10 μl phenylmethylsulfonyl fluoride (PMSF) and 1 μl 
dithiothreitol or DTT in 1 ml of buffer). The tube is flicked with finger, 
bathed on ice for 10 min and shaken for 10 s. The suspension is 
centrifuged at 800×g for 5 min and the supernatant is discarded 
immediately. The buffer (400 μl) is added to wash the pellet and the 
tubes are again centrifuged at 2,500×g for 5 min. The supernatant is 
discarded and the precipitate is saved. Lysis buffer (200 μl) (10 μl PMSF, 
5 μl phosphatase inhibitor and 1 μl DTT in 1 ml buffer) is added to the 
precipitate, bathed on ice for 20 min and centrifuged at 20,000×g for 10 
min or 14,500×g for 15 min. Precipitate is discarded and the superna-
tant is stored at − 80 ◦C as nuclear protein extract. The protein con-
centration can be measured using BSA. NF-κB or p65 
(5′AGTTGAGGGGACTTTCCCAGGC3′) probe is labelled with biotin or 
[γ-32P]-ATP. NF-κB probe (0.5 μl) and nuclear protein extract (40 μg 
protein) are incubated in binding reaction for 20 min at RT. 
Non-denaturing 6.5% PAGE is carried out and electrotransfer is carried 
out in TBE buffer. Gel is dried and subjected to autoradiography or 
chemiluminescence [23,95]. 

15.5. RelA translocation assay 

In order to interpret NF-κB activation, a nuclear translocation assay 
can be performed. The method is based on quantification of the amount 
of translocated p65 subunit or RelA in nucleus and comparison with that 
of remaining in the cytoplasm. Accordingly, treated and untreated 
macrophages are fractionated into nuclear and cytoplasmic fractions, 
supernatants are collected separately and p65 is quantified in each by 
Western blot technique [131]. 

16. Determination of cytokines and chemokines expression 

Cytokines are a diverse group of low molecular weight protein that 
act as pro- or anti-inflammatory factors at pico or nanomolar levels to 
regulate inflammation and cellular activities. Whilst, inflammatory 
chemokines are generated in response to an inflammatory stimulus and 

facilitate an immune response. Binding of a cytokine or chemokine 
ligand triggers a cascade of events regulating various cellular functions 
such as phagocytosis, cytokine secretion, cell activation and cell pro-
liferation, among others. These potent signalling molecules thus are a 
cornerstone of any investigation that deals with inflammation [132]. 
Following macrophage activation, NF-κB promotes gene expression of a 
wide variety of cytokines such as interleukin (IL)-1β, IL-2, IL-6, IL-12, 
TNF-α and granulocyte-macrophage colony-stimulating factor 
(GM-CSF); chemokines such as IL-8, macrophage inflammatory proteins 
(MIP)-1, monocyte chemoattractant protein-1 (MCP-1) or C–C motif 
chemokine ligand (CCL)2, regulated on activation normal T cell 
expressed and secreted (RANTES) or CCL5 and eotaxin; and inducible 
effector enzymes such as inducible nitric oxide synthase (iNOS) and 
cyclooxygenase-2 (COX-2) (Fig. 2) [133]. NF-κB activates its own in-
hibitor, IκB-α, as well which then translocates to the nucleus, binds to 
promoter bound NF-κB, and returns it to cytoplasm in an inactivate 
state. Such post-induction repression process eventually terminates 
transcription [134]. Overall, NF-κB serves as a ‘rapid acting’ primary TF 
which can regulate host’s early innate immune response to infection and 
also associated with chronic inflammatory states and multiorgan failure 
[133]. Several methods have been developed to measure cytokine levels; 
amongst them ELISA is routinely used. 

16.1. Quantitative analysis by ELISA 

The procedure exploits specificity of antibodies and uses them to 
quantify an analyte of interest with remarkable sensitivity. To perform 
the method, macrophage cells are seeded into 6 or 12-well plates (1 ×
106 cells/well). After treatment, culture media are transferred into 96- 
well plates coated with 100 μl of antibody solutions of cytokines at 
37 ◦C for 1 h. Following four washes, 100 μl of HRP solution is added and 
the plates are left to stand for 40 min. The solution is washed repeatedly 
and 3,3′,5,5′-tetramethylbenzidine (TMB) substrate solution (100 μl) is 
added. The reaction mixtures are incubated in the dark and a stop so-
lution is added after 15 min. After 5 min, the absorbance is read at 450 
nm on a microplate reader. The cytokine levels are computed according 
to standard curves and generally represented in picograms per milliliter 
[127]. 

16.2. Other methods 

Protein levels of IκB-α, p-IκBα (Ser32), STAT3, p-STAT3 (Tyr705), 
iNOS, COX-2, phosphor(p)-ERK1/2, SAPK/JNK, TNF-α, IL-1, IL-6, P38, 
p-p38, ERK1/2, JNK, p-JNK, α-Tubulin, c-jun, c-fos and β-actin expres-
sion can be measured by Western blotting [89,135–137]. Expression of 
DNA binding proteins such as p38, SAPK/JNK, c-src, AP-1, Ras and Akt 
can be detected by EMSA as described above [79]. 

17. Evaluation of expression of co-stimulatory molecules 

Macrophage cells play an important role as an interface between 
innate and adaptive immunity. Following activation, the cells express 
markers (CD68, CD86, CD80, F4/80, CD11b, CD40, B7-1 and B7-2) 
known as co-stimulatory molecules that are responsible for functions 
such as antigen processing and presentation to antigen-specific T cells. 
CD40 interacts with CD40L, which is known to play key roles in acti-
vation and differentiation of B cells. Thus, increase in expression of these 
surface molecules indicates enhanced immune response [95,138]. 

To perform the assay, cells are collected following treatment and 
then washed with PBS. The cell surfaces are blocked with 5% goat serum 
for 15 min or staining buffer comprising 10% normal mouse serum for 
20 min on ice and washed twice. Subsequently, the cells are incubated 
with monoclonal antibodies against CD80, CD40, CD86 and corre-
sponding fluorescent markers for around 30 min at 4 ◦C. Following 
washing, the cells are fixed by 1% paraformaldehyde in PBS. The fixed 
cells are subjected to flow cytometry and minimum 5000 cells are 
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analysed for each sample [95]. 

18. cDNA microarray 

cDNA microarray technology leads to identification of specific genes 
and allows researchers to compare profiles of gene expression in normal 
versus pathological conditions [139]. In brief, macrophage cells are 
placed at a density of 5 × 105 cells/ml in medium and treated with 
stimuli. The total RNA is extracted from each treatment and utilized for 
cDNA synthesis, labelling and microarray hybridization. The resulting 
localized concentrations of fluorescent molecules are noticed and 
quantitated [54]. 

19. Conclusion and future prospects 

In recent years, immunotherapy has become of great interest to re-
searchers, clinicians and pharmaceutical companies as it has the high 
potential to revolutionize treatment regimens. In that note, in vitro as-
says have shown their usefulness as an initial platform for drug devel-
opment elucidating mode of action. However, techniques related to 
transcriptome analysis, estimation of protein expression and detection 
of post-translational modification are comparatively expensive, hin-
dering many researchers to perform the assays. Thus, attempt should be 
taken to standardize more cost-effective and easier to perform proced-
ures to make way wider and smoother for testing and discovering novel 
therapeutic agents. 
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