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ABSTRACT: Ultrafiltration (UF) as one of the mainstream membrane-based technologies has
been widely used in water and wastewater treatment. Increasing demand for clean and safe water > =.ons
requires the rational design of UF membranes with antifouling potential, while maintaining high
water permeability and removal efficiency. This work employed a machine learning (ML) “ A v
method to establish and understand the correlation of five membrane performance indices as
well as three major performance-determining membrane properties with membrane fabrication
conditions. The loading of additives, specifically nanomaterials (A_wt %), at loading amounts of
>1.0 wt % was found to be the most significant feature affecting all of the membrane
performance indices. The polymer content (P_wt %), molecular weight of the pore maker
(M_Da), and pore maker content (M_wt %) also made considerable contributions to predicting
membrane performance. Notably, M_Da was more important than M_wt % for predicting
membrane performance. The feature analysis of ML models in terms of membrane properties
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(i.e., mean pore size, overall porosity, and contact angle) provided an unequivocal explanation of
the effects of fabrication conditions on membrane performance. Our approach can provide practical aid in guiding the design of fit-
for-purpose separation membranes through data-driven virtual experiments.
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B INTRODUCTION

One of the most prominent issues of our time is the increasing
supply—demand gap of clean and safe water due to
industrialization, population growth, and global climate
change. There is a critical need to develop sustainable water
treatment technologies. In this context, membrane technolo-
gies such as reverse osmosis (RO), nanofiltration (NF), and
ultrafiltration (UF) have emerged as promising alternatives to
traditional water treatment practices owing to their compelling
advantages such as high energy efficiency and fewer chemical
additives."” Of these, UF has been recognized as one of the
mainstream membrane-based separation technologies in water
and wastewater treatment applications, including the pretreat-
ment stage for RO processes, membrane bioreactors, and water
reclamation of effluent from wastewater treatment plants
(WWTPs).>~®

At the core of the UF separation process is the UF
membrane capable of rejecting large molecules [e.g., natural
organic matter (NOM)] and bacteria from impaired water
sources to produce a clean permeate. UF membranes can also
be tuned to target the removal of specific compounds such as
heavy metals and dyes, which makes it an attractive candidate
for the treatment of industrial effluents.””"" In the past several
decades, there has been a rapid growth in UF membrane
fabrication, including the exploration of membrane materials
and the development of fabrication approaches (e.g., phase
inversion, electrospinning, etc.).'”'* Notable examples include
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the emergence of adsorptive membranes'”'> and mixed matrix
membranes (MMM) involving the incorporation of additives
(e.g, nanomaterials) into the membrane matrix.'®™" How-
ever, due to the existence of various organic compounds (e.g.,
NOM and polysaccharides) and pathogenic microorganisms in
water streams, membrane fouling has always been a major
obstacle hampering the more widespread application of UF
membranes.

Generally, membrane fouling can be classified as reversible
fouling and irreversible fouling.””~** The impaired membrane
performance caused by reversible fouling can be recovered
through hydraulic backwashing. However, irreversible fouling
induced by the foulants bonded to membrane surface and
trapped in pores can be eliminated only by chemical
cleaning.”® Membrane fouling not only causes significant loss
of water permeation and a shorter membrane lifetime but also
increases operational cost and complexity.”*** Therefore,
fabricating UF membranes with desirable water permeance
and removal efficiency accompanied by high antifouling
potential is crucial. A polymeric membrane fabricated through
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a phase inversion method has been recognized as the state-of-
the-art UF membrane. However, most polymeric membranes
were fabricated using hydrophobic polymers such as
polysulfone (PSf), poly(ether sulfone) (PES), and polyvinyli-
dene fluoride (PVDF), suffering from poor water flux and
membrane fouling. Many efforts, including developing block
polymers, surface grafting, blending with hydrophilic polymers,
and incorporation of inorganic fillers, have been devoted to
developing high-performance UF membranes.”*”**> One
popular approach is to fabricate nanocomposite UF mem-
branes by embedding nanomaterials into a polymer matrix. A
wide variety of nanomaterials with different physical and
chemical properties, ranging from nonporous nanoparticles
(e.g, TiO,) and porous nanomaterials (e.g., carbon nano-
tubes) to two-dimensional (2D) materials (e.g., graphene
oxide), have been investigatecl.y’_35 With so much interest in
nanocomposite UF membranes, identifying the desirable
loading and properties of the nanomaterials as well as the
suitable membrane fabrication conditions to optimize mem-
brane performance is essential. As membrane performance is
mostly determined by membrane properties such as surface
hydrophilicity, surface roughness, effective pore size, and
porosity, the correlation of membrane properties with
fabrication conditions is also worth examining.

Due to the variety of membrane backbone materials and
available additives as well as the complexity of the fabrication
process, rationally designing UF membranes by developing
efficient methods to alleviate the time and resource constraints
posed by the iterative trial-and-error approach is pivotal.
Because of its powerful ability in processing and learning from
large, complex, and multidimensional data sets to develop
predictive models, machine learning (ML) as a data-driven
method has become increasingly important in chemistry and
material science communities for acceleratin(g the discovery of
new materials and chemical synthesis.*™*’ In most recent
years, ML has been employed to guide gas separation
membrane design.41_43 In addition, ML models such as tree-
based models (e.g., random forest, XGBoost, etc.) and artificial
neural networks (ANNs) have been developed to predict
permeance and rejection for RO and NF membranes in water
treatment and resource recovery, including but not limited to
solvent recovery.**~** Several studies have been acknowledged
for the application of ML models in ML-assisted UF
membrane fabrication.*”*° However, the performance of
these reported models was often limited by the incomplete
input variables and unclear classification of the input features.
Furthermore, previous work has mainly focused on prediction
of water flux and removal efficiency. Limited attention has
been paid to predicting membrane fouling-related performance
comprising the flux decline ratio, flux recovery ratio, reversible
fouling ratio, and irreversible fouling ratio. Additionally, the
quantitative relationship between fabrication conditions and
membrane performance-determining properties has not been
well established.

In this work, we developed tree-based ML models using
extreme gradient boosting (XGBoost) and categorical boosting
(CatBoost) as potential candidates to analyze a data set
containing input features associated with both fabrication and
operational conditions and to target membrane performance.
As for membrane performance, we considered water
permeability, removal efficiency, and indices associated with
membrane antifouling performance, such as the flux decline
ratio, flux recovery ratio, and reversible fouling ratio. The

relative importance and impact of each feature on the target
were evaluated using the Shapley additive explanations
(SHAP) method to provide guidance on fabricating UF
membranes with desirable water permeability, removal
efficiency, and antifouling potential. Moreover, we also
developed predictive ML models by correlating fabrication
conditions with membrane properties and carried out model
interpretations with the SHAP method. This interpretation
facilitated a better understanding of the underneath mechanics
in terms of the influence and contribution of each fabrication
parameter to membrane performance. This work demonstrated
the potential of ML methods in providing guidance to the fit-
for-purpose membrane development to meet challenges in
water and wastewater treatment and resource recovery.

B DATA SET AND METHODS

Data Collection and Data Set Construction. The
quantity and quality of collected data used to develop ML
models are crucial to the model prediction performance. To
develop ML models with accurate prediction, we mined data
from research articles associated with flat-sheet polymeric UF
membranes fabricated by the most used non-solvent-induced
phase separation (NIPS) method at room temperature to
construct the data sets with the total size of 320. The full data
sets can be found in the Supporting Information. Parameters
and descriptors used as input features were exhaustively
collected from tables, text, and graphical data. As summarized
in Table S1, on the basis of the empirical domain knowledge,
these input features were assembled into three categories
consisting of fabrication conditions (11 variables), operational
conditions (six variables), and membrane properties (four
variables). The ratio between variables and total data size was
calculated to be 6.6%. Features describing the fabrication and
operational conditions involved both numerical parameters
such as polymer concentration (P_wt %), pore maker content
(M_wt %), and the loading of the additives (A_wt %) and
categorical ones such as the types of pore makers and organic
solvents (as summarized in Table S1). The distribution of the
data of the numerical features is illustrated in Figure S1. In the
constructed data sets, the additives were specifically referred to
various types of nanomaterials (as categorized in Figure S2).
The categorical features were first converted into numeric ones
by the encoding methods. We screened eight encoding
methods (as listed in Table S2) and selected the optimum
one to convert these categorical features into numeric features.
Notably, features with insufficient information such as the
absence of molecular weights for polymers and pore makers
were designated as missing values rather than being excluded.
The base polymers were represented by molecular fingerprints
encoding the repeating unit as a binary vector (0, 1) by
converting its SMILES in Python’s RDKit package. The
obtained molecular fingerprints of the polymers combined with
other numerical features (including those from converted
categorical features) were used as the final input features to
develop ML models. Generally, three data sets were compiled,
one for the prediction of membrane performance from
fabrication and operational conditions, one for the prediction
of membrane performance with the combination of fabrica-
tion/operational conditions and membrane properties as input,
and the third for the prediction of membrane properties from
fabrication conditions.

Machine Learning Model Development and Evalua-
tion. As all of the features have their specific physicochemical
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meanings, the missing values present in the input features were
not imputed. The percentages of missing values for each
feature are listed in Table S3. Hence, it is necessary to employ
ML algorithms with the capability of processing missing values.
Tree-based algorithms have been reported to exbibit
satisfactory performance in handling missing values containing
data sets. Here, we utilized two tree-based ML algorithms, i.e.,
XGBoost and CatBoost, as candidates. The tree-based ML
model for each data set was developed in a similar manner with
some modifications depending on the specific data set.
Typically, the data set was randomly split into two parts:
80% of the whole data set as the training set and the remaining
20% of the data set as the test set for model evaluation. Five-
fold cross-validation was employed on the training set to
screen the ML algorithms, encoding methods, and hyper-
parameter tuning. After the optimum configuration of ML
algorithms and/or encoding methods had been screened
(Table S4), the hyperparameters of the ML algorithm were
then tuned by using the Bayesian optimization algorithm
(Table SS). The length and radius of the molecular fingerprint
were considered as hyperparameters, which were tuned
together with other hyperparameters of ML algorithms. After
obtaining the optimum hyperparameters, we retrained the ML
algorithm with the optimal hyperparameters on the whole
training set (without using S-fold cross-validation) to deliver
the final ML models. The predictive performance (i.e.,
generalization ability) of ML models was evaluated on the
test set. The coefficient of determination (R*) and root-mean-
square error (RMSE) were utilized to evaluate the prediction
accuracy as defined by eqs 1 and 2. The lower RMSE and
higher R* indicate the better predictive performance of ML
models.

Yo (b — 2
Yo (e = ) )

Yo, (= %)
n (2)

where x; is the predicted value of the output, x} is the actual
value of the output reported in the literature, x,, is the mean
value of all of the output, and # is the number of data points in
the training or test set.

Feature Analysis. To understand the built models and
thus provide insightful guidance for future membrane
fabrication, identifying potential controlling fabrication param-
eters for membrane properties and performance is essential. In
previous work, feature importance analysis has been performed
to explain different models (such as random forest and neural
network), providing insight into the roles of input features.””"
Here, the importance and impact of each feature on the targets
were analyzed using the SHAP method.*® The Shapley value
for input feature x (of n total input features) given the
prediction p by the built ML model was calculated by

o) = X MU’(S U x) = p(S)]
SCN/x n. (3)

RP=1-

RMSE =

where S is the subset for each feature without feature x, p(S U
x) represents the predictions by the built ML model
considering feature x, and p(S) represents the predictions
without considering feature x. The differences among all
possible subsets of S C n are calculated due to the dependency

of the effect of withholding a feature from other features in the
ML model.

Characterization of Membrane Properties. To further
validate the model prediction accuracy, three UF membranes
were fabricated using NIPS methods as described in Texts S1
and S2 and Table S6. The water contact angle (CA) indicating
membrane surface hydrophilicity was measured by a Rame-
Hart model 250 goniometer (Ramé-Hart Instrument Co.).
The average membrane pore radius (micrometers) was
determined on the basis of the Guerout—Elford—Ferry
equation®” as follows:

(2.9 — 1.75¢) x 87lQ
eAAP (4)

m

where 7 is the water viscosity at 23 °C (9.3 X 107* Pas), Q is
the permeate flow rate (cubic meters per second), and AP is
the operational pressure (pascals).

The overall porosity (percent) of a membrane was measured
by the dry—wet weight gravimetric method as expressed by the
following equation:

Wy — Wy
Alp (%)

where w,, is the weight of the hydrated membrane (grams), wy
is the weight of the dried membrane (grams), A is the surface
area of the membrane (square centimeters), [ is the membrane
thickness (centimeters) determined by the cross-section SEM
image, and p is the water density at 23 °C (0.998 g cm™>).
Evaluation of Membrane Performance. The pure water
permeability of the fabricated membranes was measured using
a dead-end ultrafiltration cell (Amicon stirred cell, Millipore
Sigma) with an effective membrane area of 13.4 cm” The
membranes were precompacted under 4 bar for 2 h before
switching to the operating pressure of 1—1.5 bar. A bovine
serum albumin (BSA) solution was used as the feed solution to
test the rejection performance of the membranes. The
operational conditions for each of the fabricated membranes
are listed in Table S6. The concentration changes of BSA were
determined using a Shimadzu TOC-L analyzer (Shimadzu
Scientific Instruments). The water permeability (A) and
rejection efficiency (R) were calculated using eqs 6 and 7.

E =

v
AP (6)
C0 - Ct
R="""x100%
Co (7)

where ], is the water flux, AP is the applied hydraulic pressure,
and C; and C, refer to the concentrations of BSA in the feed
solution and permeate, respectively.

Membrane fouling performance was evaluated using humic
acid (HA) as the model foulant. The membranes under
investigation were first compacted for 2 h under applied
hydraulic pressure to reach a steady water flux. The water flux
was recorded for an additional 1 h to obtain the pure water flux
(J.v)- Subsequently, the pure water was converted into the HA
solution and allowed to run for 6 h at the same applied
hydraulic pressure. The steady flux with a 20 mg L™' HA
solution as the feed was recorded as J. Then, the fouled
membrane was physically cleaned with deionized (DI) water.
After physical cleaning, the recovered pure water flux (J,) was
recorded for an additional 1 h with DI water as the feed
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solution. The flux decline ratio (FDR) coupled with the water
flux recovery ratio (FRR) was used to evaluate the membrane
antifouling potential based on eqs 8 and 9.°* Generally, the
lower FDR and the higher FRR suggest a better antifouling
performance of the membranes.

FDR = [1 - L] X 100%

w

(8)

FRR = L X 100%
J, ©)

Membrane fouling can be generally classified as reversible
and irreversible fouling. The flux decline ratio caused by
reversible and irreversible fouling during the filtration process
was calculated by

R, = E7h s too%

I, (10)

J, (11)

B RESULTS AND DISCUSSION

Predictive ML Models. To simplify the ML model and
enhance its performance, the Pearson correlation coefficient
(PCC) was determined to identify the correlations between
features. Figure S3 shows the PCC results of all of the features.
With respect to membrane performance, the irreversible
fouling ratio showed a completely negative correlation with
the flux recovery ratio (i.e, PCC = —1), which is in line with
the calculation result according to eqs 9 and 11. Therefore, the
irreversible fouling ratio was sorted out from the output target
and the flux recovery ratio was chosen as the representative
one.

Overfitting is controlled by tunning the hyperparameters of
the machine learning algorithm to control the complexity of
the model. We used the Bayesian optimization algorithm to
tune the hyperparameters of the machine learning algorithm, in
which we observed the training and validation performance
together. We took the hyperparameters that can afford the best
validation performance as the optimum hyperparameters.
Figure S4 demonstrates the plot of training RMSE
(RMSEcv-training) versus validation RMSE (RMSEcv-valida-
tion), in which the black dotted line indicated the lowest
RMSEcv-validation. With a decrease in RMSEcv-training,
RMSEcv-validation first decreased and then increased,
indicating the underfitting and overfitting process. The
location of the lowest RMSEcv-validation indicates the
optimum complexity of the model.

The predictive performance of the built ML model for each
target is listed in Table 1 and plotted in Figure 1. The
prediction of ML models in the test data sets exhibited an R?
value of >0.78 for water permeability, removal efficiency, and
flux decline ratio. These results indicated the strongly
quantitative correlation of membrane performance with the
fabrication conditions and operational conditions. In compar-
ison with the prediction performance of these three targets, the
models exhibited relatively lower testing R* values of 0.62 and
0.73 for the flux recovery ratio and reversible fouling ratio,
respectively. As expressed in eqs 9 and 10, these two targets
were highly relevant to the recovered water flux after physical

Table 1. Prediction Performance of the ML Models for
Membrane Performance

total training  training set  test test set
performance index  datasize  set R* RMSE set R RMSE
water permeability 320 0.97 29.61 0.83 68.24
(LMH bar™)
removal efficiency 320 0.99 1.83 0.84 6.60
(%)
flux decline ratio (%) 320 0.96 3.82 0.78 9.50
flux recovery ratio 320 0.87 4.73 0.62 7.89
(%)
reversible fouling 320 0.96 391 0.73 10.33

ratio (%)

cleaning. Therefore, the relatively limited prediction perform-
ance for the flux recovery ratio and reversible fouling ratio may
be attributable to the case-by-case variations in the physical
cleaning procedures. Improvements in the prediction perform-
ance could be achieved by expanding the current data sets to
include more reasonable variables as input features such as the
cleaning time of the physical cleaning process.

As membrane performance mainly depends on membrane
properties, we also developed ML models for predicting
membrane performance by including membrane properties
(e.g, mean pore radius, overall porosity, contact angle, and
surface roughness) together with fabrication/operational
conditions as input features. As listed in Table S7, the
prediction of the ML models with membrane properties
exhibited an R* value comparable to those of the ML models
without membrane properties. These results revealed the
quantitative relationship among fabrication, property, and
performance.

To further validate the generalization ability of the
developed ML models, we fabricated three UF membranes
(as listed in Table S6) and tested their performance (Table
S8). Our experimental data points were independent of the
320 data points collected from the literature. We found that
the experimental results for all of the targets showed relatively
good agreement with the predicted values (Figure 1). This
finding indicated that all of the built ML models were reliable
enough to provide satisfactory predictions of membrane
performance based on the selected input features. Notably,
the polymers used to fabricate these three membranes have
molecular weights different from those of the polymers
enclosed in the collected data sets. The application of the
molecular fingerprint method made it possible to deliver
acceptable performance predictions for membranes fabricated
with new polymers. However, the additive as a categorical
feature was encoded to the numerical feature in this work,
which limited the prediction capability of the built model for
cases with new additives (i.e., those not present in the training
data set).

To understand the correlation between membrane proper-
ties and fabrication conditions, we also developed ML models
to predict three major membrane performance-determining
properties, i.e., mean pore radius, overall porosity, and contact
angle (revealing the hydrophilicity of the membrane surface),
using fabrication conditions as input features. As shown in
Table 2, for the test data sets, the R? values were 0.87 and 0.76
on the prediction of mean pore radius and contact angle,
respectively, and their corresponding RMSEs were 7.59 and
5.87, respectively, suggesting satisfactory prediction perform-
ance of the built ML models with fabrication conditions as
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Figure 1. Prediction results of the ML models for each target: (a) water permeability, (b) removal efficiency, (c) flux decline ratio, (d) flux recovery

ratio, and (e) reversible fouling ratio.

Table 2. Prediction Performance of the ML Models for
Membrane Properties

membrane total training  training set test test set
property data size set R* RMSE set R RMSE
overall porosity 320 0.96 2.51 0.66 7.61
(%)
mean pore 320 0.98 3.47 0.87 7.589
radius (pm)
contact angle 320 0.98 1.87 0.76 5.87

(deg)

input features. In comparison with the prediction performance
on mean pore radius and cotact angle, the R* value of 0.66 for
overall porosity was relatively lower, which could be partially
explained by the variations in data quality due to the dry—wet
gravimetric measurement method as calculated in eq S.
Notably, the observed membrane properties of our fabricated
membranes (as listed in Table S9) were in line with the
predicted values as indicated by the blue dots in Figure 2. This
experimental validation further confirmed the prediction
accuracy of the three predictive ML models on membrane
properties.

Feature Analysis using the SHAP Method. According
to the built ML models, the contributions of each input feature
to the targets (i.e, membrane performance) were evaluated
using the SHAP method. A feature’s Shapley value quantifies
its contribution, whether negative or positive. A feature with a
higher absolute Shapley value implies a greater contribution to
membrane performance. Figure 3a and Figure S5 illustrate the

importance and impact of each feature on membrane
performance. In general, the loading of additives (A_wt %),
the polymer content of the total casting solution (P_wt %), the
molecular weight of the pore maker (M_Da), and the pore
maker content (M_wt %) were found to be the four most
influential fabrication parameters for predicting membrane
performance. Notably, A_wt % was found to be the most
important fabrication parameter for predicting membrane
performance indices except for the flux decline ratio, for which
A wt % ranked second in importance. With respect to water
permeability as shown in Figure 3a, it is noteworthy that the
feature A_S also played an important role in improving water
permeability. As described in the data collection and data set
construction section, the category features were first converted
into numerical features. Here, A number stands for the
encoder of the category feature (i.e., the type of additive). The
SHAP plot demonstrated that A S positively contributed to
water permeability, which means that the additive having an
A_S value of 1 (such as UiO-66) might be a desirable additive
for enhancing water permeability. Because the additive was
identified as a significant contributor to membrane perform-
ance, to optimize the robustness of the ML models and gain
more insights into the effects of the additive, future work may
focus on compiling data sets with structural parameters of the
additives, especially nanomaterials (such as size, length, shape,
and diameter) as well as its chemical properties (e.g, ¢
potential, hydrophilicity, and surface functional groups).
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80 80 LY ¢
c 80 4
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Figure 2. Prediction performance of the ML model for each membrane property: (a) prediction performance with experimental validation of the
overall porosity, (b) prediction performance with experimental validation of the mean pore radius, and (c) prediction performance with

experimental validation of the contact angle.
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Figure 3. SHAP plot for water permeability based on ML models (a) without membrane properties and (b) with membrane properties. For panel
a, the model was developed by using fabrication conditions as input features and water permeability as the target, while for panel b, the model was
developed by using fabrication conditions combined with membrane properties as input features and water permeability as the target. A_number
(e.g, A_S) denotes the encoder for the category feature (i.e., the type of additive). The feature number (e.g,, fp_45) stands for the feature position

in the Morgan fingerprint vector.
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Figure 4. Shapley values of additive loading (A_wt %) and polymer content (P_wt %) for each of the membrane performance indices: (a) water
permeability, (b) removal efficiency, (c) flux decline ratio, (d) flux recovery ratio, and (e) reversible fouling ratio.

Additionally, the operational conditions played considerably
important roles in membrane performance. In particular, the
transmembrane pressure (TMP) was integral to water
permeation, while the molecular weight of contaminants
(C_Da), concentration of contaminants (C_mg/L), and
concentration of foulants (F_mg/L) played crucial roles in
removal efficiency- and membrane fouling-related perform-
ance. As demonstrated in Figure 3a, TMP was negatively
correlated with water permeation. Such a negative effect of
applied hydraulic pressure on water flux was mainly ascribed to
55,56 The
compaction under different applied pressures resulted in a
reduction in the membrane pore size and porosity, which
agreed well with the contribution of pore size and porosity to
water permeability (Figure 3b). C_Da was positively correlated
with removal efficiency (Figure SSa). The separation of UF
membranes was dictated by the molecular-sieving mechanism

the compaction of the polymeric membrane.
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indicated by the molecular weight cutoff (MWCO), where the
large solutes were retained by the smaller pores to achieve high
removal efficiency.”” The negative correlation of the mean pore
radius with removal efficiency in Figure S6a is consistent with
this domain knowledge. These findings verified the necessity of
developing an ML model with operational conditions included
(in addition to the fabrication parameters) as input features.
As shown in Figure 4, A_wt % was positively correlated with
water permeability, removal efficiency, and flux recovery ratio
with a loading of >0.5 wt % (defined by the weight percentage
of an additive to the base polymer), while the beneficial
loading for the flux decline ratio and reversible fouling ratio
was found to be >1.0 wt % (Figure 4c,e). These findings
revealed that incorporating 1.0 wt % additives (specifically
nanomaterials) into a polymer matrix could potentially afford a
membrane with high water permeability and removal
efficiency, as well as antifouling performance. As the backbone
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S7.

of a membrane, the polymer used to fabricate the UF
membrane was expected to be a crucial feature. As shown in
Figure 4, P_wt % had a significant impact on membrane
performance, especially on water permeability. With P_wt %
ranging from 10 to 16 wt %, it was positively correlated with
water permeability. Beyond 16 wt %, a strongly negative
correlation with water permeability was observed. It might be
attributed to the delayed phase inversion due to the higher
polymer content, which normally resulted in less porosity and
a small pore sizes in the membrane.’® This trend was in
accordance with the results shown in Figure 3b, wherein the
pore size and porosity exhibited a positive correlation with
water permeability. Notably, as for removal efliciency, flux
recovery ratio, and reversible fouling ratio, the Shapley value of
P_wt % was comparable to that of A_wt %, while in terms of
water permeability and flux decline ratio, the Shapley value of
A_wt % was much larger than that of P_wt %, suggesting that
in comparison with tuning the polymer content, tailoring the
addition loading of nanomaterials into the polymer matrix
might be a more effective method for achieving a UF
membrane with desirable membrane performance, especially
enhanced water permeability and a decreased flux decline ratio.
In practical water and wastewater treatment applications, UF
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membranes with a lower flux decline ratio are desired as it
indicates that such a membrane holds better antifouling
potential.

Figure 5 displays the feature analysis of the ML models for
the prediction of membrane properties. The ranking of the
features’ importance for predicting membrane properties was
in accordance with that for membrane performance prediction.
In the analogue to the prediction of membrane performance,
A wt %, P wt %, M _Da, and M_wt % were also found to be
the four most significant fabrication factors dominating
membrane property prediction. Therefore, the influence of
these factors on membrane performance prediction can be
explained by their contributions to each of the membrane
properties. A wt % was positively correlated with the mean
pore size and overall porosity and negatively correlated with
the contact angle at a loading of >1.0 wt % (Figure Sd), which
was highly consistent with the beneficial range of A_wt % for
membrane performance. This revealed that an increased
addition of additives (referring to nanomaterials in the
collected data sets) contributed to the formation of a larger
pore size, a higher porosity, and a smaller contact angle
indicating higher surface hydrophilicity,”” typically leading to

https://doi.org/10.1021/acs.est.2c05404
Environ. Sci. Technol. 2023, 57, 17831—-17840


https://pubs.acs.org/doi/10.1021/acs.est.2c05404?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c05404?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c05404?fig=fig5&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c05404/suppl_file/es2c05404_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c05404/suppl_file/es2c05404_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c05404?fig=fig5&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c05404?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

desirable water permeability,®"**

results shown in Figure 3b.

It has been reported that irreversible fouling rapidly
occurred as a result of internal pore blockage, followed by
the formation of a cake layer on the membrane surface.”> The
pore constriction-induced irreversible fouling resulted in the
progressive decline of the membrane water flux. Therefore, a
smaller pore might make it difficult for foulants to enter and
constrict the pores, which in turn could afford a lower flux
decline ratio. As shown in Figure S6, the mean pore radius
positively correlated with the flux decline ratio, revealing that a
smaller mean pore radius contributed to a lower flux decline
ratio, which was a desirable performance for separation
membranes. P wt %, A wt %, P_ MW, and M _Da were
found to be the four most influential factors in predicting the
flux decline ratio (Figure SSb). A possible reason could be
these four factors showed significant effects on the mean pore
size of the membrane as illustrated in Figure Sa. The flux
recovery ratio and reversible fouling ratio, which could be
promoted through hydraulic cleaning, largely depended on the
membrane surface hydrophilicity inferred from the contact
angle. The ranking of features for the flux recovery ratio and
the reversible fouling ratio indicated that the contact angle was
the most important property for both performance indices.
The four most important factors governing the prediction of
the flux recovery ratio and the reversible fouling ratio were
identified as A_wt %, P_wt %, M_Da, and M_wt %, which was
consistent with the top four factors contributing to the contact
angle.

which agreed well with the
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