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Abstract.—We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient
inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of
more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes
are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size
posteriors. This allows demographic reconstruction through time and estimating the timing and magnitude of population
bottlenecks and full population histories. Altogether, BICEPS can be considered a more muscular version of the popular
Bayesian skyline model. We demonstrate its power and correctness by a well-calibrated simulation study. Furthermore,
we demonstrate with an application to SARS-CoV-2 genomic data that some analyses that have trouble converging with
the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is
available as open-source package for BEAST 2 under GPL license and has a user-friendly graphical user interface.[Bayesian
phylogenetics; BEAST 2; BICEPS; coalescent model.]

Knowledge of population size dynamics can be of
interest, for example, for the study of megafauna
extinctions (Campos et al. 2010), conservation biology
(Shapiro et al. 2004), reconstructing human settlement
history (Pedro et al. 2020), impact of viral ecology on
public health (Rambaut et al. 2008), or the influence of
climate events on population sizes (Miller et al. 2012).
Here, we will infer population size dynamics using a
phylogeny with sequence data on a single gene, for
example, mitochondrial sequences, or full genome viral
data, based on coalescent theory in a Bayesian setting.
We do not assume any structure, that is, we assume
there is a single population, and we assume there is
random mating and no admixture. Coalescent theory
links phylogenies with population sizes through tree
priors based on Kingman’s theory (Kingman 1982).
These tree priors are driven by a population function
that defines the effective population size through time. A
population function can be parametric, like exponential
or constant (Kuhner et al. 1998), but nonparametric
methods that split up the time frame spanning a tree into
epochs allow a population function to be constant in an
epoch but vary over time. Nonparametric methods allow
the representation of a much wider range of population
functions than parametric methods and can capture
one or more population bottlenecks and expansions
without a priori having to commit to the number of such
bottlenecks or expansions. So, nonparametric models
offer a flexible alternative to parametric models and
allow more wide range of population size dynamics
estimates. Even when population size dynamics is of
no interest, these models provide a flexible tree prior
allowing a broad range of tree shapes and sizes.

The classic skyline model (Pybus et al. 2000), intro-
duced in a maximum likelihood framework, is based
on epochs for every coalescent event. It assumes that

the phylogeny is fully resolved and divergence time
estimates are reliable, so can only be applied when
the data exhibit a strong phylogenetic signal. The
classic skyline model was later generalized to epochs
grouping coalescent events in the generalized skyline
model (Strimmer and Pybus 2001), making it possible
to estimate population histories when little divergence
information is available, for instance, when the align-
ment contains identical sequences. The Bayesian skyline
plot (Drummond et al. 2005) generalized this to a
Bayesian setting, where epochs span multiple coalescent
events, and the number of coalescent events as well
as population sizes for an epoch are sampled during
Markov chain Monte Carlo (MCMC). Furthermore, a
smoothing prior is employed that links population sizes
in consecutive epochs. Linking population sizes reduces
stochastic noise and makes biological sense in that
consecutive population sizes will usually be of a similar
order of magnitude as preceding ones. Other popular
epoch based coalescent models with different smoothing
priors include the skyride prior (Minin et al. 2008), which
takes the amount of time between epochs in account, the
skygrid prior (Gill et al. 2013; Hill and Baele 2019), which
allows users to define epoch boundaries, and the besp
model (Parag et al. 2020), which takes sampling times in
account.

All the above Bayesian methods sample the pop-
ulation function parameters. By assuming an inverse
gamma prior distribution on population size, we demon-
strate that the population size can be integrated out
during MCMC. The technique is used in the multispecies
coalescent models StarBeast2 (Ogilvie et al. 2017) and
STACEY (Jones 2017), where a constant population size
is associated with each branch of the species tree.
Here, we generalize this method to the case where
we have a single tree, potentially with sampled tip

1549

http://creativecommons.org/licenses/by-nc/4.0/
mailto:contact journals.permissions@oup.com


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[22:22 29/9/2022 Sysbio-OP-SYSB220016.tex] Page: 1550 1549–1560

1550 SYSTEMATIC BIOLOGY VOL. 71

c)  scale>1a) b) scale<1

A B

C

D
E

FIGURE 1. The traditional scale operator that gets often rejected when there are many tip data (r≥1) because of high probability of negative
branch lengths when scaling down or inappropriately stretching short branches into older tips when scaling up. Tree stretch proposal moves
nodes near tips (e.g., node D) less far than nodes away from tips (e.g., node E), b) for scale factor <1 where lighter trees are the original state and
darker trees are proposals, and c) for scale factor larger than one.

dates, and assume a piecewise constant population for
each epoch under an inverse gamma prior. The mean
for the population size of the youngest epoch can
be sampled but for consecutive epochs the posterior
mean of the previous epoch can be used, providing us
with a smoothing prior. Even though population sizes
are integrated out, they can still be sampled from the
posterior population sizes for the epochs conditioned
on the tree. This allows us to reconstruct population
size history including uncertainty intervals in a similar
fashion as for the Bayesian skyline plot as follows. At
regular intervals during the MCMC, we log the tree,
group sizes, and sample for each group a population
size from the posterior. Each such sample defines a
demographic history where the length of each epoch is
defined by the tree and group sizes, a so-called skyline
plot (Fig. 1, Drummond et al. 2005). So, for each point
in time, the skyline plot defines a population size for
a particular tree and its parameters. By considering all
the trees and other parameters in the posterior, we get
a distribution of population sizes for each point in time,
which we can use to find the confidence intervals of the
distribution (Fig. 5).

Apart from introducing a more efficient way to infer
population size histories at different epochs, we also
consider a number of new MCMC proposals that can
lift a large number of nodes in a tree simultaneously.
Observing that tree priors tend to be highly correlated
with the length of a tree, we target tree length changes
by moving nodes in randomly chosen time intervals (not
necessarily the ones used for the tree prior). Note that we
are considering rooted time trees only, so the tree length
is defined as the sum of branch lengths in units of time of
the tree. The likelihood is also correlated with the length
of the tree, but only after scaling it with a clock rate.

Furthermore, noting that scaling of trees tends to be
hampered by serially sampled tips, we design a new
scale proposal that moves all nodes in a tree simultan-
eously but with better exploratory powers than standard
scalers. Both proposals move tree length, and since

clock rates tend to be inversely correlated with the tree
length (Douglas et al. 2021c), we designed proposals that
simultaneously move the clock rate to compensate for a
changing tree length. We demonstrate the effectiveness
of these MCMC proposals for improving the mixing of
tree lengths, and thus tree priors.

Together, integrating out population sizes and
employing more sophisticated MCMC proposals allow
us to do inference efficiently and make it possible
to perform larger analyses, as we demonstrate using
SARS-CoV-2 data. In the next section, we consider the
technical details around integrating out parameters and
new MCMC proposals. We continue with validating
the method and presenting results. In Conclusions
(final section), we consider ways to generalize the
approach and in particular point out how to integrate
out parameters for an epoch version of the Yule prior
(Appendices B and C of the Supplementary material).

METHODS

First, we consider integrating out population size
parameters, then we design a set of new MCMC
proposals.

BICEPS Model: Integrating Out parameters
Let T be a rooted binary tree with n taxa sampled at r

different times.1 So, r=1 when all taxa are sampled at the
same time and r=n when all taxa are sampled at differ-
ent times. Then, there are n+r−2 times t1,t2,...,tn+r−2
that are either sampling times or coalescent times
ordered from youngest tip (t1) to the coalescent time at
the root (tn+r−2) and let �ti = ti −ti−1 denote the length
of an interval. Let ki be the number of lineages at event i,

1Though the notation of (Drummond et al., 2005) is mostly followed
here, we use r instead of s since later s will be used to denote scale
factors for MCMC proposals.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac015#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac015#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac015#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac015#supplementary-data
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so i decreases by one at a coalescent event, but increases
at a sampling event. Let Ic(i) be an indicator function
that indicates whether the ith event is a coalescent event
(Ic(i)=1) or a sampling event (Ic(i)=0).

Consider m epochs defined by groups of coalescent
events, and let A={a1,a2,...,am} be the number of
coalescent events in each of the m epochs that cover
the whole tree (so

∑m
i=1ai =n−1). (Parag and Pybus,

2019) show that having a similar number of coalescent
events per epoch increases accuracy of population size
estimates, so in practice we keep group sizes constant
and evenly spread. The number of epochs is a parameter
to be provided by the user, but by default 10 epochs will
be used unless the epoch sizes become less than 6 (�n/6�
groups will be used) or larger than 30 (�n/30� groups
will be used).

Let �={�1,�2,...,�m} be the effective population sizes
for the m epochs, that define a piecewise constant
population function for the m epochs. Let h(i) be a
function 1,...,n+s−2→m that map the coalescent and
sampling events i to epochs (Drummond et al. 2005, Eq.
(4)). Then, the log likelihood logp(T|�,A) of the tree T
given � and A is (Drummond et al. 2005, Eq. (3)):

logp(T|�,A)=
n+r−2∑

i=1

Ic(i)log
ki(ki −1)

2�h(i)
− ki(ki −1)�ti

2�h(i)
.

(1)
Taking the exponent, gives the density

p(T|�,A)

=
n+r−2∏

i=1

exp

{
Ic(i)log

ki(ki −1)
2�h(i)

}
exp

{
−ki(ki −1)�ti

2�h(i)

}
.

(2)

Let pj(T|�,A) denote the contribution for a single
epoch j so p(T|�,A)=∏m

j=1pj(T|�,A), and let bj be the
index of event i at the start of the jth epoch (so, h(i)= j
for bi ≤ i<bi+1), then

pj(T|�,A)

=
bj+1−1∏

i=bj

exp

{
Ic(i)log

ki(ki −1)
2�j

}
exp

{
−ki(ki −1)�ti

2�j

}

(3)

which can be simplified to

pj(T|�,A)=
(

1
�j

)Qj

e
−Rj
�j (4)

with Qj =
∏bj+1−1

i=bj
exp{Ic(i)logki(ki −1)/2} and Rj =∑bj+1−1

i=bj
ki(ki −1)�ti/2. Following (Liu et al., 2008),

we note that the inverse gamma distribution
f (x;�,�)= ��

�(�) x−�−1e−�/x is conjugate for �j, in other

words, the posterior is f (�j|�+Qj,�+Rj) and integrating
out �j gives

∫ ∞

0
pj(T|�,A)f (�j|�,�)d�j

=
∫ ∞

0

( 1
�j

)Qj
e−Rj/�j

��

�(�)
�−�−1

j e−�/�j d�j

= ��

�(�)

�(�+Qj)

(�+Rj)
(�+Qj)

(5)

thus we get a closed form density for the contribution
of epoch j that has the population size �j integrated
out. Since logp(T|�,A)=∏m

j=1 logpj(T|�,A) and �j inde-
pendent, we can do this for each of the intervals.

This leaves us to choose the parameters for the
inverse gamma prior on population sizes. If no further
information about population sizes, this prior ideally
has little influence on the distribution of population
sizes (Liu et al. 2008). By default, the shape value of
�=3 is fixed as suggested elsewhere (Ogilvie et al. 2017;
Liu et al. 2008), which has the special property that the
standard deviation is identical to the mean (Ogilvie et al.
2017), so the coefficient of variation is 1, providing a
wide ranging distribution. If there is some information
about possible values of �, these can be changed. The
population mean �1 = �

�−1 estimated during the MCMC
run with a lognormal(�=1,	=1) by default.

Smoothing priors.—Epoch models can show abrupt
changes in population size estimates when population
sizes for the epochs are assumed to be independent.
For that reason, smoothing priors are applied (Drum-
mond et al. 2005; Minin et al. 2008; Gill et al. 2013),
which suppress large fluctuations of population sizes
in consecutive epochs. One way to do this is to sample
only the population mean for the first epoch, and for
consecutive epochs, the posterior mean of the previous

epoch �j = �+Rj
�+Qj−1 can be used to set �j+1 =�j(�−1).

Inferring skyline plots.—While models that explicitly
sample population sizes of each epoch store population
sizes and epoch information during MCMC, we do not
have population size information available when integ-
rating them out. However, given that for each epoch j we
have a posterior distribution f (�j|�+Qj,�j +Rj) we can
just sample a value from that posterior and approximate
the population size distribution for each epoch, and
this allows us to perform demographic reconstruction.
A sample from an inverse gamma distribution can be
obtained by sampling a gamma distribution with shape
�+Qj and scale 1/(�j +Rj) and taking the reciprocal
value of the sample.
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BICEPS Operators
To help convergence of the MCMC algorithm, we

introduce a number of new proposals that move a large
number of heights of internal nodes in the tree while
keeping leaf node heights constant. These proposals
have a large effect on the length of a tree, and thus
indirectly on the tree prior. Note that the methods
introduced are applicable to all phylogenetic tree priors
and are not restricted to the epoch model discussed
above.

New tree stretch proposal.—The standard tree scale pro-
posal in BEAST 2 simply multiplies all internal node
heights hi (for node i) with the same randomly chosen
scale factor s, but leaf node heights remain unchanged.
This can lead to negative branch lengths if an internal
node is scaled down below a tip height of a descendant,
at which point the scale proposal is instantly rejected
(see node D in Fig. 1a when scaled down). When there are
many dated tips over a large time range, and there is little
variation in sequence data resulting in short terminal
branches, scaling up can make relatively short terminal
branches stretch out a lot causing a marked reduction in
tree likelihood causing the proposal to be rejected (see
node D in Fig. 1a when scaled up).

To remedy such low acceptance, the range from which
the scale factor is sampled can be reduced, but that
leads to smaller overall changes to the tree. Note that
when scaling all nodes in the tree the pruning algorithm
(Felsenstein 1981) for calculating the tree likelihood
needs to recalculate all so called partials for internal
nodes, which is a computationally expensive task (see
Felsenstein 1981 for details). So, ideally we would like
to make bold proposals to justify this computationally
costly operation.

Instead of simply multiplying internal node heights,
as the standard scale operator does, we can do a
postorder traversal where we scale branch lengths and
add them to the height of the left and right child, then
take the average of these heights to set the height of
the current node in the traversal. Formally, let s be a
randomly chosen scale factor from a Bactrian kernel
(Yang and Rodríguez 2013; Thawornwattana et al. 2018),
that is, we randomly sample a value from a standard
Gaussian N(0,1) scaled with c

√
1−m2, and randomly

add or subtract m. Here, m determines the shape of
the Bactrian distribution and is set to 0.95 by default,
and c is a tuning parameter. The tuning parameter is
automatically optimized (Drummond and Bouckaert
2015) during MCMC to obtain optimal balance between
better acceptance (at lower values of c) and boldness (at
larger values of c). A target acceptance probability of
0.4 suggested in (Yang and Rodríguez, 2013) appears to
give good results. Automatic tuning of operators ensures
that for models with high rejection rate, the size of
the proposed changes will be reduced, so subsequent
proposals will be less bold. Let bi be the branch length
above node i, so bi =hp −hi when p is the parent of
node i. We traverse the tree and do not change leaf

node heights, but for a node i with children j and k
(assuming they were already visited), we set the new
height h′

i of node i to (h′
j +sbj +h′

k +sbk)/2. When all
tips are contemporary, this proposal is the same as the
traditional tree scale operator (because h′

i = (h′
j +sbj +h′

k +
sbk)/2= (h′

j +s(hi −hj)+h′
k +s(hi −hk))/2 under induction

assumption h′
j =shj and h′

k =shk , giving (shj +s(hi −hj)+
shk +s(hi −hk))/2= (shi +shi)/s=shi =h′

i). But, with dated
tips, nodes closer to dated tips move less than nodes
farther away from tips.

The probability of acceptance of an MCMC proposal
(Green 1995; Holder et al. 2005) is

min{1,posterior ratio×Hastings ratio×Jacobian},
where the posterior ratio is the posterior of the proposed
state S′ divided by that of the current state S, the Hastings
ratio the probability of moving from S to S′ divided
by the probability of moving back from S′ to S, and
the Jacobian is the determinant of the matrix of partial
derivatives of the parameters in the proposed state with
respect to that of the current state. The Hastings ratio has
a contribution of hi

hi
for each node that is moved, so the

Hastings ratio works out as
∏

i
h′

i
hi

. By using a Bactrian
kernel, the Jacobian is 1. Note that down stretching
can lead to increased branch lengths, and up stretching
to reduced branch lengths, for example in the internal
branch below the left branch below the root marked
with dots on the nodes in Figure 1b and c, respectively.
In Figure 1c, the dots overlap due to the branch length
being reduced to close to zero. While it is still possible
for node heights to be proposed that result in negative
branch lengths, if this happens often, automatic tuning
parameter optimization ensures that boldness of the
move is reduced, and still a good number of proposals
will be accepted.

New epoch flex proposal.—The epoch flex-operator ran-
domly selects a lower bound L and upper bound U in
the range between the root height of the tree and the
youngest leaf (enforcing L<U by swapping values if L>
U), then scales the interval with a random scale value s
drawn from a Bactrian distribution (Yang and Rodríguez
2013; Thawornwattana et al. 2018) with respect to the
lower bound. Internal nodes above the upper bound
U are moved to accommodate the scaled height of the
interval. Internal nodes below L and leaf nodes do not
have their heights changed, which allows caching of the
partial calculations for the tree likelihood for at least the
nodes below L (Fig. 2), making it a more time efficient
operator that the tree stretch operator.

More formally, for every node i with height hi the
proposed height h′

i is

h′
i =
⎧⎨
⎩

hi +(s−1)(U−L) if U <hi
L+s(hi −L) if L≤hi ≤U
hi if hi <L

. (6)
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FIGURE 2. Epoch operator selects lower bound L, upper bound L, and scale factor s and scale all nodes between L and U. Nodes above U
are moved to make space for the newly scaled epoch. a) applied to light tree giving dark tree when scale factor less than one, and b) when scale
factor larger than one.

The Hastings ratio requires taking into account select-
ing L and U and since these are chosen uniform in the
interval [0,hroot] and we have a new root height h′

root after
the proposal the contribution is (h′

root/hroot)2 for these
two random values. Furthermore, let there be k nodes
with heights in between L and U, then the contribution
of scaling these k nodes is sk , making the log Hastings

ratio 2log( h′
root

hroot
)+k log(s).

Like for the tree stretch operator, a tuning parameter
c is used for sampling s to obtain an optimal acceptance
probability of 0.4. The proposal can result in direct
rejection if any of the scaled nodes are assigned heights
below a tip. One way to prevent this from happening is
to enforce the lower bound to be older than the oldest
tip, so only part of the tree above the oldest tip is scaled.
Since that part of the tree tends to be less constrained
by tips, bolder proposals are possible, so having both
the restricted and unrestricted version of the operator in
the mix can lead to better proposals overall. Note that
this is only an effective strategy if there are a sufficiently
large number of internal nodes above the oldest tip. This
is not always the case, for example, influenza data sets
can be sampled over a large duration of an outbreak, and
most internal nodes may end up younger than the oldest
sample.

New up/down proposal.—Mean clock rate, tree prior
parameters, and tree height tend to be highly correlated,
so moving them at the same time (but in opposite
direction) can help mixing. The so called up/down
operator in BEAST randomly picks a scale factor s and
scales up the tree with factor s while scaling down the
clock by scaling with factor 1/s. Tree prior parameters
like birth rate or population size can be scaled in the
appropriate direction at the same time.

The new tree stretch and epoch flex operators also
change tree height, so we can use s=hroot′/hroot as scale
factor in a similar fashion as for the up/down operator
and scale clock rates and tree prior parameters. For each
scaled parameter, a contribution of s when scaling up (or

1/s when scaling down) must be added to the Hasting
ratio.

VALIDATION

We performed a well-calibrated simulation study in
order to make sure our implementation is correct and
performed an analysis of SARS-CoV-2 for community
outbreaks in New Zealand.

The Implementation is Correct
To establish correct implementation of BICEPS, we

performed a well-calibrated simulation study sampling
50 tip dates randomly from the interval 0 to 1. To establish
correctness of the new operators, we use a coalescent
tree prior with constant population size (log-normal(�=
1,	=1.25) distributed), a HKY model with kappa
log-normal(�=1,	=1.25) distributed and gamma rate
heterogeneity with four categories with shape parameter
exponentially distributed with mean=1, and frequencies
Dirichlet(1,1,1,1) distributed. Further, gamma is lower
bounded by 0.1 to give reasonable range of rates
(Bouckaert 2020) and frequencies lower bounded by
0.2 to prevent atypical parameter values. We use a
strict clock where the clock rate times tree height
has a tight normal(�=1,	=0.05) prior. Sampling 100
instances from this distribution using MCMC in BEAST 2
(Bouckaert et al. 2019), we get a range of tree heights from
1.03 to 8.8 with mean 1.6 (note that due to the tips being
sampled from 0 to 1, the tree height is lower bounded
by 1) and a clock rate range of 0.1 to a fraction over 1 in
our study. With these trees, we sample sequences of 1000
sites using the sequence generator in BEAST 2.

Tables 1 and 2 show the coverage of true parameter
values (and some other statistics) used to simulate the
sequence data by the 95% highest probability density
(HPD) intervals estimated after running MCMC. With
100 experiments, the 95% HPD of the binomial distri-
bution with P = 0.95 ranges from 91 to 99 inclusive. All
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TABLE 1. Coverage of the true value by 95 %HPD estimates from
100 independent runs of BICEPS for various parameters in the model
and for different operators added to the standard set of operators.

Epoch Tree Up/
Parameter flexer stretcher down

Tree height 91 95 94
Tree length 94 91 92
Kappa 96 99 99
Gamma shape 99 98 96
Population parameter 97 94 93
Clock rate 96 99 98
Tree prior 98 92 93
Frequencies A 95 91 92
Frequencies C 97 94 95
Frequencies G 95 93 95
Frequencies T 96 96 96

Notes: All coverage is in the expected 91–99 range, providing confidence
there are not errors in the operator implementation.

analyzes were run for 20 million samples, which was
sufficient to obtain effective sample sizes of at least 200
for each of the parameters shown in Tables 1 and 2. All
coverages observed are in the expected range, suggesting
no problems with the implementation.

COVID-19 in New Zealand
We use the 887 full genome sequence data from

(Douglas et al., 2021a) containing samples from the
11 community outbreaks in New Zealand plus closely
related sequences from the rest of the world. Further, we
use a subsample of all taxa sampled up to 31 August
2020 consisting of 257 taxa for performance comparison.
The data were analyzed as follows. Genomic sites were
partitioned into the three codon positions, plus noncod-
ing, as described by (Douglas et al., 2021b). For each

partition, we model evolution with an HKY substitution
model with log-normal(�=1,	=1.25) prior on kappa,
frequencies estimated with Dirichlet(1,1,1,1) prior, and
relative substitution rates with Dirichlet(1,1,1,1). We use
a strict clock model with log-normal(�=−7,	=1.25)
prior on mean clock rate as in (Douglas et al., 2021a,b),
and for tree prior we use a Bayesian skyline model
(Drummond et al. 2005) with Markov chain distribution
on population sizes and log-normal(�=0,	=2) on first
population size and compare this with a BICEPS tree
prior. MCMC analyses were initialized with a neighbor
joining tree.

RESULTS

Operator Performance Analysis
Figure 3a–c shows violin plots for effective sample

sizes (ESS) obtained with the 100 runs for the posterior,
prior, and tree length where the first item was done
with standard operators, the second with the epoch
flex operator added, and the the third with tree stretch
operator added as well. There was some beneficial effect
from these operators on the posterior, more so on the
prior, as well as the tree length. Site model parameters
were practically unaffected by adding these operators,
but there was some beneficial effect on the ESS for
the clock rate. Note these ESSs were obtained under
similar run times, so the plots suggest the operators
are moderately beneficial for data simulated under the
model, or at least no detrimental to mixing. However, for
empirical data, we observed more marked differences
(see below).

Another way to get a sense of the performance of
the BICEPS operators compared to standard operators is

TABLE 2. Results for 100 BICEPS analysis with 50 taxa, 250 sites, and unlinked and linked population sizes with standard operators and
with the new operators added in

Coverage Average ESS Minimum ESS
Linked Linked Linked

Parameter Unlinked Standard New Standard New Standard New

Tree height 97 93 94 1640 1709 116 1219
Tree length 99 97 94 1540 1669 113 1200
Population size 94 97 96 1709 1736 783 1250
Coalescent prior 98 98 94 1547 1690 121 1216
Pop size epoch 1 97 96 98 1721 1731 969 1358
Pop size epoch 2 97 96 93 1704 1728 250 1401
Pop size epoch 3 99 96 95 1711 1731 232 1285
Pop size epoch 4 97 96 97 1695 1711 364 1343
Pop size epoch 5 94 95 96 1693 1716 289 1035
Kappa 97 96 93 1530 1536 1114 1132
Gamma shape 92 99 93 1532 1543 644 741
Frequencies A 91 95 97 790 778 213 342
Frequencies C 94 96 94 750 752 390 349
Frequencies G 91 93 98 787 760 425 369
Frequencies T 92 89 95 789 761 293 228
Clock rate 96 92 94 1622 1690 125 1182

Notes: Coverage as in Table 1 for unlinked BICEPS with standard operators, linked BICEPS with and without new operators. Effective sample
size (ESS) shown compares the standard with new operators, where bold numbers indicate the better ESS. Coverage is in the expected 91–99
range for all cases but ESS increase for tree related parameters, in particular the minimum ESS of the 100 runs increases significantly. Coverage
of the true value by 95% HPD estimates from 100 independent runs of BICEPS for various parameters in the model and for different operators
added to the standard set of operators.
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d) e)

b) c)

FIGURE 3. Performance of epoch flexer and tree stretch operators. Operator are weighted such that run times of various combinations are
similar, so ESSs are comparable. ESSs improve a little, and weights favor the new operators over standard ones. a) ESSs on a scale of 500–2500
of the prior for different operator combinations—classic, with epoch operator and with epoch operator and scaler. b) ESSs for posterior, c) ESSs
for tree length. d) Weights on a scale of 0–1 assigned to operators by the adaptable operator sampler for standard tree scaler, up/down operator
and tree stretcher. e) Weights for standard tree scaler, tree stretcher, up/down operator, and tree stretcher with up/down combination.

by employing the adaptable operator sampler (Douglas
et al. 2021c). This is an operator that selects among a set
of operators by keeping track of relevant performance
indicators of the various operators, namely amount of
change in node heights, amount of time required to
calculate the new state, and probability of acceptance.
Together, these factors are used by the adaptable oper-
ator sampler to reweigh sets of operators for optimal
amount of node height change per unit of time.

Figure 3d and e shows the end weight distribution
over the 100 runs of the well-calibrated simulation study
for the case where the tree scaler, up/down operator,
and tree stretcher were reweighted by an adaptable
operator sampler, and Figure 3e the case where a new
up/down operator was added. In the first case shown
in Figure 3d, an overwhelming amount of weight is
distributed towards the tree stretcher. In the second case
shown in Figure 3e, about standard operators hardly
get any weight assigned, while most of the weight is
distributed almost evenly between tree stretcher and
new up/down operator, with a slight preference for the
up/down operator. This illustrates the new tree stretch
and up/down variant perform well when balancing the
size of change, the time to recalculate the posterior,
and how often the operator is accepted. Since there is
no directly comparable version of the epoch flexer, we
omitted it from the mix.

COVID-19 Analysis
For the 10 runs of the 257 taxa SARS-CoV-2 analysis,

MCMC convergences (all parameters having ESSs larger

than 200) around 20 million samples for the BICEPS
analysis while the BSP analysis still struggles to achieve
mixing. In particular, the tree length only achieves single
digit ESSs or ESSs less than 20 when taking favorable
burn-in values for the 10 runs in Tracer. Figure 4a
shows a typical trace of the tree length for one of the
BSP and one of the BICEPS analyses, highlighting how
BICEPS achieves convergence much faster. Figure 4b
displays the poster ESSs over 10 runs and shows that
adding the BICEPS operators helps mixing with the BSP
model. Further, integrating out parameters as done in
the BICEPS model improves ESSs a bit more and fixing
group sizes instead of estimating them improves ESSs
even more.

The COVID-19 analysis from (Douglas et al., 2021a)
required eight chains running 1 billion samples each and
were combined to obtain satisfactory ESSs over 200. In
contrast, for the same analysis with BICEPS prior and
new operators a single run converged in 1 billion samples
to ESSs over 200, a factor 8 speed up. Since these analyses
use a different though related tree prior, we compare the
tree posteriors (see Fig. 5a) and conclude these tree priors
lead to very similar results in posterior tree distributions.
Clade support is very similar (red dots in Fig. 5a) except
for a handful of clades, which may be due to imperfect
mixing of the trees, something not unexpected with this
many taxa and sequences with relatively little variation
(some sequences are even identical).

The estimate of most clade ages and in particular
the root ages are consistent with each other. However,
the BSP analysis puts the root age a fraction lower
(at 1.24 year) than the BICEPS analysis (at 1.25). This
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FIGURE 4. MCMC efficiency a) Trace of tree length for BSP (green line with very low period), BSP with new operators (blue line with higher
period) and BICEPS analysis (red line forming a satisfying hairy caterpillar pattern). The BSP analysis typically does not reach an ESS of 10 when
the BICEPS analysis already has ESSs around 200. b) Posterior ESS for 10 runs of BSP, BSP + new operators, and BICEPS with variable and fixed
group sizes. Both new operators and the BICEPS prior contribute to improving ESSs.
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FIGURE 5. BSP and BICEPS compared. a) Difference in clade support and clade heights for the Bayesian skyline analysis from Douglas et al.
(2021) and the same analysis with a BICEPS prior. Red dots indicate clade support between 0 and 1 on both axis, blue dots indicate mean clade
heights with cross hairs showing the 95% HPD intervals of height estimates. The axis are scaled between zero and the highest tree height found
in either tree set. b) Population history for COVID-19 inferred with the BSP model and c) BICEPS model. Dark middle line indicates the median,
lighter outer lines cover the 95%HPD intervals. The x-axis shows time in years going backward from left to right, the y-axis shows population
size on a log scale. BSP and BICEPS analyses largely agree.

can be explained when considering the demographic
reconstruction, shown for BSP in Figure 5b, and for
BICEPS in Figure 5c. Over all, the reconstructions are
quite similar, but note that the population size estimates

near the root (right-hand side of plots) are lower and
with higher uncertainty for the BSP reconstruction. The
BICEPS reconstruction assumes a constant population
size for each epoch and number of coalescent intervals
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are fixed to 29 or 30 (making 30 groups for 887 taxa).
Therefore, the last 29 coalescent events to the root are
assumed to be under a constant population. The BSP
analysis on the other hand estimates group sizes, and
it is 22 on average with 95% credible range of 11 to 35,
resulting in a smaller population size estimate, hence
a slightly reduced root age estimate. When running
the BICEPS with 10 epochs instead of 30, the effect is
enlarged (giving a root age estimate of 1.29 year).

A general rule of thumb in statistics is that 30
observations are sufficient to estimate the mean of a
parameter. Given that epochs can be linked through
posterior mean population size estimates in BICEPS
using epochs that cover more than 30 observations does
not seem necessary. By default, the model uses 10 groups
unless group sizes are larger than 30, then the group
count is set to the number of taxa divided by 30. However,
if group sizes are less than 6 then group count is set to
the number of taxa divided by 6.

HCV Analysis
To demonstrate BICEPS does not only perform well

with serially sampled data, we analyzed a data set of
63 hepatitis-C virus sequences sampled in Egypt in
1993, which was earlier analyzed in (Drummond et al.,
2005) and (Stadler et al., 2013). We analyzed with a GTR
substitution model with gamma rate heterogeneity with
four categories and fixed the clock rate at 7.9×10−4

substitutions per site per year.
Where BSP requires 30 million samples for MCMC

to converge, BICEPS requires only 5 million samples,
demonstrating that BICEPS can be considerably faster. A
comparison similar to shown in Figure 5 for SARS-CoV-
2 can be found in Appendix A of the Supplementary
material. It demonstrates that the BSP and BICEPS
models result in very similar tree sets, but the BICEPS
analysis can be performed more efficiently, both when
tips are sampled through time as in the case of the
SARS-CoV-2 data, or when tips are sampled at the
same time as for the HCV data. This suggests that
we can analyze larger data sets using the BICEPS
model than the BSP model. So, the primary benefit
of using this model is being able to analyze more
sequences and allowing us to investigate processes such
as demographic reconstructions in more refined detail.

Generalization to Other Tree Priors
The efficiency of the BICEPS tree prior relies on integ-

rating out population sizes, so that fewer parameters
need to be inferred. Here, we used an inverse gamma
distribution over population sizes, but a gamma distri-
bution would be a suitable alternative. For models with
more parameters, like the besp tree prior which takes
sampling in account (Parag et al. 2020), integrating out
parameters analytically if possible at all would require
nonstandard techniques. Regardless, coalescent models

assume that the samples represent a small number of
individuals from a much larger population. When this
assumption does not hold, birth–death models may be
more appropriate. However, it is more challenging to
extend the idea of integrating out parameters to birth
death sampling models.

For the Yule model (Yule 1924; Aldous 2001), a pure
birth model, this is straightforward (Appendix B of the
Supplementary material). An epoch version of the Yule
model assuming death and sample rates of zero and
sampling all extant taxa at the same time (i.e., rho-
sampling with rho = 1) can be found in Appendix C of
the Supplementary material. The latter is available as
“Yule skyline” model in BEAST in the BICEPS package.
This provides a flexible prior for the case where tips
are not sampled through time, but are all taken at
the same time. The model is implemented in BEAST 2
and a well calibrated simulation study (Appendix C of
the Supplementary material) passed. For more general
cases this approach is hampered by the large number
of parameters (birth, death, sampling rate, etc.), and
because the tree likelihood is of a form that does not
appear to lend itself for integrating out parameters.

The BICEPS and Yule skyline tree priors put coalescent
events in approximately equally sized groups in order
to reduce noise and provide estimates of population
sizes and birth rates respectively with tight uncertainty
bounds. An alternative is to split the tree height into
equally sized time intervals and use the coalescent and
lineage count information in these same sized epochs.
Though most epoch boundaries do not coincide with
coalescent events any more, this has little impact in the
way the mathematics works out but will impact the
distribution of coalescent events in the intervals: usually,
there will be fewer near the root and more near sampling
times. Consequently, uncertainty bounds will become
larger near the root and smaller in epochs containing
larger numbers of coalescent events.

Primates Analysis
A primate alignment of full mitochondrial genomes

with 87 taxa and 19,220 sites (Finstermeier et al. 2013) was
analyzed using a GTR substitution model with estimated
frequencies, optimized relaxed clock model (Douglas
et al. 2021c) and Yule tree prior (see Supplementary
material for BEAST 2 XML files for this and associated
analyses). Due to the very informative sequence data,
this analysis tends to mix slowly because the posterior
is very peaked making it hard for standard operators
to make bold moves (Zhang and Drummond 2020).
Figure 6 shows how adding the BICEPS operators
does help mixing of the posterior and the likelihood,
demonstrating that adding BICEPS operators allows
analyses to run more efficiently. A Yule skyline analysis
with the same data shows significant improvements in
mixing for both posterior and likelihood compared to
the Yule analyses with standard operators, but slight
degradation of the posterior ESS though still improved
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FIGURE 6. Primate analysis. a) ESS over 10 runs for posterior when using Yule with standard operators, Yule with BICEPS operators and Yule
skyline with BICEPS operators. b) ESSs for the likelihood. Note the change in scale. c) Reconstruction of birth rates with Yule Skyline showing
median and 95% HPD intervals. The dashed line shows the mean birth rate for a Yule analysis.

likelihood ESS compared to Yule analyses with BICEPS
operators. A birth rate skyline reconstruction through
time shows that there is only small variation through
time. In fact, Figure 6c shows the mean birth rate under
the Yule model, which assumes a constant birth rate
throughout the whole tree, as dashed horizontal line.
The line fits inside the whole 95% HPD trajectory, which
suggests a constant rate of speciation of primates cannot
be ruled out.

CONCLUSIONS

We introduced a two-headed approach for improving
the efficiency of Bayesian inference under epoch models:
a flexible tree prior based coalescent epoch model
that integrates out population size parameters and a
set of new MCMC proposals directly targeting tree
lengths. Both these elements contribute to more efficient
inference, in particular with SARS-CoV-2 data and
with serially sampled sequence data. The behavior of
BICEPS tree prior is very similar to that of the popular
Bayesian skyline plot and allows for reconstruction of
demographic histories through time making it possible
to estimate timing and magnitude of population bottle-
necks as well as track population expansions through
time.

A generalization to a pure birth prior under an
epoch model that integrates out birth rate parameters,
the Yule skyline model, is detailed in Appendix C
of the Supplementary material. Other generalizations
integrating out tree prior parameters appear to be
mathematically challenging. The benefit of integrating
out parameters instead of estimating them through
MCMC as well as the more efficient tree operators is
that it becomes possible to analyze larger data sets and
infer more detailed population histories. Even if the

population history is of no interest, but for example the
tree topology, timing of origins of clades or evolutionary
rate estimates are the topic of investigation, the BICEPS
model provides a flexible tree prior that caters for a wide
range of tree shapes and sizes with little requirements in
terms of prior knowledge, unlike many birth death based
priors.

The application of the new tree operators is not limited
to the BICEPS tree prior, but can be used in combination
with any tree prior. These operators can be expected to
contribute to more efficient inference under a wide range
of models, and make it possible to include more taxa than
is possible with the currently available standard set of
operators. This is especially important with the growing
amount of sequence data, and allows for more detailed
post hoc analyses by techniques such as lineage through
time plots, or when location information for taxa is
available, introduction through time plots (see Douglas
et al. 2021b for an example applied to COVID-19). Most
tree operators in BEAST either move a very small number
of nodes (often just one), or move all nodes. The tree
stretch operators introduced here moves all nodes, while
the epoch flex operator moves a large subset of nodes.
A tree operator that randomly selects a single node
proposes a new height and moves surrounding nodes
to accommodate the node height change by minimizing
changes in evolutionary distances did not prove to be
effective in that it did not increase effective sample sizes
per unit of time. It is an open question whether tree
operators for Bayesian inference under MCMC that move
a small subset of nodes can contribute to the efficiency
of MCMC.

The BICEPS tree prior and operators are implemented
in BEAST 2 (Bouckaert et al. 2019) and can be used in
combination with a large range of different data types,
substitution and site models as well, a number of clock
models, sampled ancestor trees and in combination with
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various types of data, including geographical locations,
morphological characters, micro satellite, etc.

AVAILABILITY

The open source BICEPS package for BEAST
2 (Bouckaert et al. 2019) is available under GPL
at https://github.com/rbouckaert/biceps. An analysis
can be set up through BEAUti, the user friendly GUI for
BEAST, both for the BICEPS and Yule Skyline models.
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