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Abstract

Background: Though Illumina has largely dominated the RNA-Seq field, the simultaneous availability of Ion Torrent
has left scientists wondering which platform is most effective for differential gene expression (DGE) analysis.
Previous investigations of this question have typically used reference samples derived from cell lines and brain
tissue, and do not involve biological variability. While these comparisons might inform studies of tissue-specific
expression, marked by large-scale transcriptional differences, this is not the common use case.

Results: Here we employ a standard treatment/control experimental design, which enables us to evaluate these
platforms in the context of the expression differences common in differential gene expression experiments.
Specifically, we assessed the hepatic inflammatory response of mice by assaying liver RNA from control and IL-1β
treated animals with both the Illumina HiSeq and the Ion Torrent Proton sequencing platforms. We found the
greatest difference between the platforms at the level of read alignment, a moderate level of concordance at the
level of DGE analysis, and nearly identical results at the level of differentially affected pathways. Interestingly, we
also observed a strong interaction between sequencing platform and choice of aligner. By aligning both real and
simulated Illumina and Ion Torrent data with the twelve most commonly-cited aligners in the literature, we
observed that different aligner and platform combinations were better suited to probing different genomic
features; for example, disentangling the source of expression in gene-pseudogene pairs.

Conclusions: Taken together, our results indicate that while Illumina and Ion Torrent have similar capacities to
detect changes in biology from a treatment/control experiment, these platforms may be tailored to interrogate
different transcriptional phenomena through careful selection of alignment software.
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Background
RNA-Sequencing (RNA-Seq) broadly refers to a family of
experimental techniques that give researchers the ability to
study the transcriptional landscapes of cells and tissues
quantitatively by exploiting high throughput sequencing
technology. Currently, the most commonly used sequen-
cing platforms are provided by Illumina, which uses a
fluorescence-based paradigm for reading the bases in a nu-
cleotide sequence. One alternative option is provided by

Ion Torrent, which is built around the use of pH measure-
ments to read nucleotide sequences. In addition to the dis-
tinct sequencing technologies used by these two platforms,
there are smaller differences in the types of data they gener-
ate. In Illumina data all sequence reads generated during a
single experiment have the same lengths, while the lengths
of Ion Torrent reads vary. Additionally, the current gener-
ation of Illumina instruments can generate sequence reads
from both ends of a fragment (“paired-end” reads), while
Ion Torrent cannot.
Prior studies have compared these two sequencing

platforms for various applications including genome se-
quencing, RNA-Seq, and microbiome profiling [1–5].
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These studies provide a basic indication of the error
rates and reproducibility these platforms achieve, how-
ever there are two motivations for performing the
present analysis.
First, in the intervening years both Illumina and Ion

Torrent have released platform updates in the form of
improved sequencing chemistry, nucleotide detection,
and throughput. With the rapid pace of development in
these sequencing technologies, we must continue to
compare these two platforms in order to maintain an ac-
curate understanding of their relative performances. This
continued re-assessment is of particular importance as
researchers adapt both of these sequencing platforms for
use in the clinical setting [6, 7].
Second, the previous studies that focused on compar-

ing the Illumina and Ion Torrent platforms for the pur-
poses of RNA-Seq expression analysis used the Universal
Human Reference RNA (UHRR) as source RNA [2, 8, 9].
The UHRR is a mixture of ten human cell lines derived
from various tissues [10] and has served as a standard
for many studies benchmarking microarray and RNA-
Seq performance [11, 12]. While these well-studied ref-
erence samples have proven useful for reproducibility as-
sessments, they are derived from immortalized cell lines
and are therefore somewhat removed from tissue-
derived RNA samples collected in vivo. Additionally,
many of these benchmarking studies combine different
reference RNA mixtures at various quantities to assess
differential expression. Again, while it has its uses, com-
paring these different UHRR mixtures is closer to per-
forming a between-tissue comparison, in which we
expect to see gross transcriptional changes between
samples. Lastly, multiple UHRR samples are effectively
technical replicates of one another, and therefore lack
the biological variability that will affect the results of
most RNA-Seq experiments in practice.
Arguably, one of the most common designs for RNA

expression profiling experiments involves a single tissue
or cell type, and varying genotypes or treatments. Gener-
ally, the transcriptional differences we expect to see be-
tween “treatment” and “control” conditions are more
subtle than those we see between universal reference
samples. Therefore, in order to evaluate the two plat-
forms in the context of this end point, we used the Illu-
mina and Ion Torrent sequencing platforms to assess
the effects of IL-1β treatment on the mouse liver tran-
scriptome. We evaluated these platforms at three levels
of complexity: 1) individual read alignments and expres-
sion quantification, 2) differential expression detection,
and 3) pathway-level analysis. Here we seek to determine
if/how choosing between the Illumina and Ion Torrent
sequencing platforms will affect the biological conclu-
sions a researcher derives from the data, for which con-
cordance at the pathway level is most relevant.

Results
A treatment/control experimental design to compare
platforms
We sought to compare the Illumina and Ion Torrent se-
quencing platforms using a treatment/control experi-
mental paradigm (see Methods section for details).
Briefly, we treated ten male mice with either 20 μg/Kg of
IL-1β (n = 5) or saline (n = 5; hereafter referred to as
untreated), and then collected liver samples from these
mice four hours after treatment (Fig. 1). After extracting
RNA from these liver samples, we prepared platform
specific libraries from all ten RNA samples and se-
quenced them using both an Illumina HiSeq 2500 and
an Ion Torrent Proton. We aligned the raw sequencing
data for both platforms using both GSNAP [13] and
STAR [14] (see Additional file 1: (Supplementary
Methods) for alignment parameters). These algorithms
showed the best performance in a recent benchmarking
analysis of RNA-Seq alignment algorithms performed by
our lab [15]. We also performed a sequential analysis
aligning reads with STAR first, and then used Bowtie2
[16] to align any reads not mapped by STAR, since pre-
vious work found this strategy performed well for Ion
Torrent RNA-Seq data [17, 18]. Next, we used the Pipe-
line Of RNA-Seq Transformations (PORT) [19] to both
normalize and quantify the aligned RNA-Seq reads sep-
arately for each combination of sequencing platform and
alignment algorithm.
All aligners achieved high percentages of uniquely

mapped reads in both Illumina and Ion Torrent data
(Additional file 2: Figure S1; Additional file 3: Table S1),
with the majority of reads mapping to exonic regions.
The STAR alignments showed the smallest percentage
of uniquely aligned reads in both platforms, while
GSNAP and the combination of STAR + Bowtie2 tended
to show the largest. The lower performance of STAR in
the Ion Torrent data may be due to the variable read
lengths present in the Ion Torrent data (Additional file
4: Figure S2; Additional file 5: Table S2). The STAR par-
ameter “sjdbOverhang” is used when creating the STAR
genome indexes and its value is generally determined by
the read length of the dataset. It is possible that further
tweaking of this parameter may improve the perform-
ance of STAR on Ion Torrent data. Here we used the
same genome indexes for both the Illumina and Ion
Torrent data to facilitate direct comparisons between
the two platforms. Despite these differences we contin-
ued to use data from all alignment schemes in our ana-
lyses, for comparison purposes.

Depth of coverage comparison
We begin the platform comparison at the levels of read
alignment and gene quantification. For all analyses, we
limit our results to a set of “detected” genes (see
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Methods section for full details). Briefly, we define a gene
as “detected” if it is mapped by at least five reads in five
of the samples, in any combination of platform and
alignment algorithm. After this filtering step, we directly
compared gene-level read counts from the Illumina and
Ion Torrent data alignments. For any given sample, we
see a strong linear relationship between the read counts
from both platforms (Fig. 2a - representative samples;
Additional file 6: Figure S3 - all samples). Additionally,
for each RNA sample the Spearman correlation between
the read counts of each platform ranged from 0.9380 to
0.9737 (Fig. 2b; Additional file 7: Table S3), underscoring
the strong agreement between the platforms at this level.
While one sample (untreated 9584) consistently had
lower Spearman correlations than the others, it still

showed a strong correlation (~0.93–0.94). Interestingly,
this same sample also displayed a shifted Ion Torrent
read-length distribution relative to the other samples
(Additional file 4: Figure S2), which indicates that differ-
ences in read length between libraries in Ion Torrent
could be a source of technical variability. That being
said, the high correlation coefficients we saw across all
samples are in agreement with previous work comparing
these two platforms [8]. We observed this agreement
consistently across all alignment algorithms.
In addition to the gene-level agreement between the

Illumina and Ion Torrent platforms, they also showed
similarity with respect to reads mapping to ribosomal
RNA (rRNA)—commonly present even after poly-A
selection—and the mitochondrial chromosome (chrM).

Fig. 1 A treatment/control experimental design. Ten mice were treated with IL-1β (n = 5), or saline (n = 5; referred to as untreated). Four hours after
treatment, the mice were sacrificed, liver samples were collected, and total RNA was extracted from the tissue. At this point, aliquots of the same RNA
sample were sequenced on both an Illumina HiSeq 2500 and an Ion Torrent Proton. Next, RNA-Seq reads from each platform were aligned using three
alignment algorithms: 1) GSNAP, 2) STAR, and 3) STAR, followed by Bowtie2 to align reads not mapped by STAR (STAR + Bowtie2). Lastly, all aligned data
were normalized using the Pipeline Of RNA-Seq Transformations (PORT)
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Both platforms identified a down-regulation of reads
mapping to chrM in the mice treated with IL-1β (Add-
itional file 8: Figure S4, top), although the effect was
more subtle in the Ion Torrent data. This falls in line
with previous findings that IL-1β affects mitochondrial
function in the liver, inhibiting hepatic ATP production
[20]. Neither platform showed a treatment-specific effect
in the number of rRNA reads (Additional file 8: Figure
S4, bottom), though Ion Torrent tended to have a
smaller percentage of rRNA-mapping reads than Illu-
mina. Again, these patterns are present in data
mapped by each alignment algorithm. Taken together,
these results suggest the two sequencing platforms
agree substantially at the level of alignments and gene
quantification.

Differential expression comparison agrees across
platforms
To identify genes that are differentially expressed be-
tween our two treatment conditions we used a two-

sided Mann-Whitney U test [21], followed by a
Benjamini-Hochberg correction for multiple testing [22].
We chose this classical method for three primary rea-
sons: 1) This is a widely used and relatively uncontrover-
sial approach, 2) with five replicates in each condition
we had enough samples to generate significant p-values
from the permutation procedure used by the Mann-
Whitney U test, and 3) many of the modern methods for
identifying differentially expressed genes (DEGs) are
built on top of assumptions and models derived largely
from Illumina data. This is not to say that these methods
are invalid for use with Ion Torrent data, but we wanted
to avoid using methods that might make assumptions
specific to one of the sequencing platforms.
We define a gene as significant if it has a q-value

≤0.05 (i.e. a Benjamini-Hochberg false discovery rate no
more than 5%). All combinations of alignment algorithm
and platform discovered roughly 5500–6400 differen-
tially expressed genes, with the Illumina data detecting
280–400 more DEGs than the Ion Torrent data (Fig. 3a;

Fig. 2 Read count comparison between platforms. a Scatterplots comparing the gene-level read counts between Illumina (x-axis) and Ion Torrent
(y-axis). Results are displayed for two representative samples (IL-1β treated 9577 and untreated 9574), across all three alignment algorithms. Both
axes are scaled to log10 of the PORT-normalized read counts. b Spearman correlation coefficients comparing Illumina and Ion Torrent gene-level
read counts. Correlation coefficients are displayed for all samples and colored according to treatment group (IL-1β = orange; untreated = blue).
The one sample showing a slightly reduced correlation is untreated 9584
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Additional file 9: Table S4). Within a given alignment al-
gorithm both platforms had ~76–81% of their DEG lists
in common, indicating a moderate concordance. Focus-
ing on those genes detected as differentially expressed
by only one of the platforms, we found the majority
were at the fringes of detectability owing to their low ex-
pression levels or small fold-changes (Fig. 3b - blue and
green dots). Thus the typical gene not in the intersection
was just below our significance cutoff in one platform.
We hypothesize that the majority of these platform-
specific DEGs that are truly differential would likely be
detected by both platforms with additional sequencing
depth. To test this hypothesis, we randomly down-
sampled our normalized GSNAP data from both plat-
forms to various levels, repeated the Mann-Whitney DE
analysis in each down-sampled dataset, and compared
the agreement between the two platforms as a function
of coverage depth (see Additional file 1: Supplementary
Methods for full details). Our down-sampling experi-
ment showed that as read depth increases, so does the
percentage of total DEGs identified by both platforms
(Additional file 10: Figure S5), which provides initial
evidence in support of this hypothesis. While these in-
creases in concordance may seem modest, this down-
sampling experiment uses read depths at the lower end
of the spectrum (6–12 million reads; 2-fold change in
read depth) for most RNA-seq experiments. We also re-
peated our DE analysis using the limma package [23] to
assess how an algorithm specifically designed for

expression data would perform in these two platforms.
We found limma identified nearly all of the DEGS from
our Mann-Whitney analyses (Additional file 9 Table S4;
Additional file 11: Figure S6 ), in addition to identifying
platform-specific DEGs not originally found by Mann-
Whitney. These differences are likely due to the differing
statistical power of the tests underlying these two
methods. Interestingly, many DEGs identified as platform-
specific using Mann-Whitney were identified in both plat-
forms using limma. This also supports our hypothesis that
many of these platform-specific DEGs are the result of se-
quencing depth and experimental/biological noise, and
would otherwise be detectable in both platforms. We con-
tinue to use the Mann-Whitney DE results for the remain-
der of this manuscript, for the reasons we outlined above
(it is agnostic to platform and alignment method).
The DEGs identified by both platforms were among

those with the highest expression levels and largest
fold-change values (Fig. 3B - red dots). Comparing
the fold-change values for the DEGs between plat-
forms directly, we again found good agreement for
those DEGs identified in both Illumina and Ion Tor-
rent (Additional file 12: Figure S7; Additional file 13:
Table S5). The fold-change values for platform-
specific DEGs tended to be larger for the platform in
which they were detected, though they still showed
strong, positive correlations between the two plat-
forms. Thus, both platforms are equally capable of
identifying the most significant differences in gene

Fig. 3 Differential expression comparison agrees across platforms. Within each combination of platform and aligner, differentially-expressed genes
(DEGs) were identified using a two-sided Mann-Whitney test, followed by a Benjamini-Hochberg (BH) correction for multiple testing. Genes with
BH q-values <0.05 were identified as differentially expressed. a The overlap in DEGs between Illumina and Ion Torrent for each aligner. b MA plots
for every combination of platform and aligner. Within each aligner, genes are colored according to the platform in which they were identified
as DEGs
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expression and are in good agreement at the level of
DEG detection.

Both platforms are in agreement about the top enriched
pathways
To investigate how well the results from both platforms
agree at the level of biological systems, we used Ingenu-
ity Pathway Analysis (IPA) [24], which identifies the
pathways and biological systems most affected by the IL-
1β treatment. The IPA tool uses a curated database of
literature and experimental results to identify the path-
ways and biological functions enriched among a list of
DEGs. We collected lists of DEGs from every combin-
ation of platform and alignment algorithm and analyzed
each list separately using IPA. Both platforms showed
strong enrichment of pathways related to the inflamma-
tory response, regardless of alignment algorithm (Fig. 4;
Additional file 14: Table S6). These top pathways include
granulocyte adhesion and diapedesis, hepatic cholestasis,
as well as various interleukin signaling pathways. Given
the proinflammatory role of IL-1β, this is in line with
our expectations [25–28]. Perhaps most importantly, the
IPA results across all datasets identify IL-1β as one of
the top two upstream regulators (Additional file 15:
Table S7). In summary, given the strong agreement
among enriched biological pathways between both plat-
forms, a scientist using either sequencing technology
would ultimately reach the same systems-level conclu-
sions about the effects of IL-1β on liver function.

Platform and aligner choice affects detection of a subset
of genes
While the majority of our analyses indicate a strong
agreement between both platforms, we did observe that
some genes are detected in a platform-specific manner.
Examining the data from each of the alignment algo-
rithms separately, we found the STAR alignments
yielded the most platform-specific genes in the Illumina
data, while GSNAP yielded the most platform-specific
genes in the Ion Torrent data (Fig. 5a; Additional file 16:

Table S8). Additionally, the bulk of these platform-
specific genes are mapped by less than 10 reads (Fig. 5b
- representative samples; Additional file 17: Figure S8 -
all samples). This suggests that the genes which are de-
tected in a platform-specific manner are expressed at
low levels. We hypothesize that increasing read depth or
performing a replicate of this experiment would allow
for detection of these genes in both platforms.
Looking specifically at the DEGs, we compared the

length, number of exons, average exon length, and GC
content of genes identified by both platforms, Illumina
only, Ion Torrent only, and neither platform. While
there were no differences in the majority of these met-
rics between these groups of DEGs, we did observe a
trend in the GC content (Additional file 18: Figure S9).
The DEGs detected in both platforms had a GC content
centered on 50%, while the Illumina- and Ion Torrent-
specific DEGs tended to have lower and higher GC con-
tents, respectively. Both platforms have known GC
biases [1, 29, 30] which could be contributing to these
platform-specific differences.
In addition to read counts, we also compared the

biotypes of the various genes detected in these data
(Additional file 19: Table S9). While over 90% of genes de-
tected by both platforms were protein-coding, up to 50%
of the platform-specific genes were classified as pseudo-
genes. Among these platform-specific genes, the exact
percentage of protein coding and pseudogenes varies sub-
stantially depending upon both the sequencing platform
and the aligner. This observation hints at an interaction
between platform and aligner that impacts a researcher’s
ability to detect particular genes.
There are a few platform-specific genes that exhib-

ited higher depth of coverage (> 100 mapped reads;
Additional file 16: Table S8). However, many of these
genes while platform-specific in data generated from one
aligner were detected by both platforms when consider-
ing all of the aligners together (Fig. 5c - representative
examples). Curiously, in many of these cases the choice
of alignment algorithm had substantial effects on the

Fig. 4 Both platforms show good agreement among the top enriched pathways. Ingenuity Pathway Analysis was performed separately on the
lists of DEGs identified by each combination of aligner and platform. This figure presents the top 6 canonical pathways with significant
enrichment in each dataset (ordered by enrichment p-value)
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depth of coverage for these platform-specific genes.
Consider two representative examples of differentially
expressed genes: Serpina3e-ps and Btg3. We detected
Serpina3e-ps (Fig. 5c - top) with both platforms using
STAR + Bowtie2, with neither platform using STAR,
and only with the Ion Torrent data using GSNAP.
Similarly, we detected Btg3 (Fig. 5c - bottom) with both
platforms using GSNAP and STAR + Bowtie2, but with
Illumina only when using STAR. In both of these cases,
our ability to detect these genes was dependent both on
our choice of sequencing platform, as well as our
choice of alignment algorithm.

An interaction between platform and aligner affects
detection of a gene/pseudogene pair
One particularly startling example of this platform/
aligner interaction is the gene/pseudogene pair of
Mup20 and Mup-ps22. We detected Mup20 at very high
expression levels using all combinations of platform and
aligner (Fig. 5d - left, a representative sample). This is
expected, as the major urinary protein (MUP) genes are
expressed at very high levels in the livers of male mice
[31]. Looking more closely at the coverage plots (dis-
playing read depth across the length of each gene locus,
rather than the total number of reads mapped to each

a

b

d

c

Fig. 5 Differential gene detection due to platform/aligner choice. a Bar graphs displaying the number of genes detected exclusively by Illumina or Ion
Torrent. These numbers are displayed for all three alignment algorithms. Detected genes are defined as those with at least 5 reads in 5 of the samples.
b Distribution of read counts for platform-specific genes are displayed for two representative samples (IL-1β treated 9577 and untreated 9574), across
all three alignment algorithms. The majority of platform-specific genes have less than 50 reads, so the graph’s x-axis is limited to the [0,50] range for
display purposes. c Expression traces for two representative genes showing differential detection between platforms/aligners. Expression plots are
colored according to aligner. d Coverage plots for a gene/pseudogene pair with significant differences across aligner/platform; Mup20 (left; blue) and
Mup-ps22 (right; red) from a representative sample (untreated 9574) across all combinations of platform and aligner. Gene models for Mup20 and
Mup-ps22 are displayed in the sense orientation (5′ → 3′) below the coverage plots. Note, the loci displayed for Mup20 and Mup-ps22 are 22,000 bp
and 2000 bp in length, respectively
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gene), we did see that detection of the 5′ exons is af-
fected by aligner choice, with the GSNAP-aligned data
yielding the highest 5′ coverage. The related pseudogene
Mup-ps22 was detected at very low levels with STAR,
substantially higher levels with GSNAP, and at extremely
high levels with STAR + Bowtie2 (Fig. 5d - right). Fur-
thermore, even looking within the GSNAP- and STAR +
Bowtie2-aligned data, Mup-ps22 was detected at a sub-
stantially higher level in the Ion Torrent data than in the
Illumina data. We have confirmed the expression of
both genes at detectable levels by qPCR (Additional file
20: Figure S10). This is a particularly extreme example
of the phenomenon we observed previously, where our
selection of both alignment algorithm and platform de-
termines whether a gene is detected.
To further examine this platform/aligner interaction,

we extracted all reads from untreated sample 9574

aligned by GSNAP, or STAR + Bowtie2 to either Mup20
or Mup-ps22. Next, we used the STAR + Bowtie2 com-
bination and the twelve most popular alignment algo-
rithms, as determined by a recent survey of the
literature [15], to map these reads to the reference gen-
ome. Interestingly, we found drastically different levels
of expression for both genes across all alignment algo-
rithms (Fig. 6). It is possible this variability in coverage
could be explained by the differing strategies the aligners
use to declare read alignments as ambiguous. However,
the majority of aligners assigned few, if any, multimap-
pers to Mup-ps22 in either platform. It is also possible
that we introduced a bias by using the reads aligned by
GSNAP and STAR + Bowtie2 as input for the other
alignment algorithms. To test for this effect we aligned
all reads from sample 9574 using all thirteen aligners.
We found that while the overall read depth at these loci

Fig. 6 Using simulated data to examine platform/aligner interaction. For each sequencing platform, all reads aligned by GSNAP, or STAR +
Bowtie2 to Mup20 or Mup-ps22 from sample 9574 (untreated) were extracted. These data were re-aligned using STAR + Bowtie2 and the twelve
most popular aligners, according to a survey of the literature. Additionally, simulated RNA-Seq reads were generated from both of these genes.
Mup20 expression was simulated at three times the level of Mup-ps22. This figure displays the number of uniquely-mapped (top) and multimapped
(bottom) reads aligned to Mup20 or Mup-ps22

Lahens et al. BMC Genomics  (2017) 18:602 Page 8 of 13



is increased when using all of the reads, there was no
change in the platform/aligner effect we observed above
(Additional file 21: Figure S11). Taken together these ob-
servations provide further evidence that the choice of
platform and aligner can affect our ability to resolve ex-
pression originating from different genomic loci. Fur-
thermore, these differences are not due solely to an
aligner’s ability to resolve multimapped reads.
To further investigate the differential behavior of the

aligners, we generated simulated RNA-Seq reads from
each of these two genes using the Benchmarker for Evalu-
ating the Effectiveness of RNA-Seq Software [32]. We sim-
ulated ~100,000 reads, with Mup20 expressed at three
times the level of Mup-ps22, and aligned the resulting
reads using the same thirteen alignment algorithms as
with our real data (Fig. 6 - right column). Again we ob-
served differences between the alignment algorithms in
their ability to map reads to each of these two genes. Fur-
thermore, the majority of aligners, including the three we
used for the bulk of this analysis, were able to accurately
align reads to the Mup-ps22. Yet, in the real Ion Torrent
data, we saw a great deal of heterogeneity in each aligner’s
ability to map reads to this gene. In addition to this gene/
pseudogene pair, we also saw a similar finding with Serpi-
na3c and Serpina3i, two members of the Serpina3 gene
family (Additional file 22 - panel A). Since these genes are
induced by IL-1β treatment (Additional file 22 - panel B),
we also saw the choice of aligner and platform affected
the fold-change expression we calculated between the two
experimental conditions (Additional file 22 - panel C).
Taken together, these findings suggest that the differing
coverage patterns of Mup20 and Mup-ps22 (as well as the
Serpina3 genes) between the Illumina and Ion Torrent
data is not simply a function of the aligner choice, but ra-
ther an interaction between both the aligner and the se-
quencing platform.

Discussion
Both Illumina and Ion Torrent provide alternative
methods for researchers to study RNA at the sequence
level. Here we compare the performance of these two
technologies by investigating their ability to detect differ-
entially expressed genes and pathways in a treatment/
control experimental paradigm involving the effect of
IL-1β treatment on the mouse liver. We found very high
concordance between both of these technologies in
terms of gene-level read counts, which is in agreement
with the previous comparison studies [2, 8]. Addition-
ally, we detected similar sets of differentially expressed
genes in both sequencing platforms, and ultimately both
Illumina and Ion Torrent data led to identical biological
conclusions at the pathway level. In short, our results
suggest a researcher would write the same paper, regard-
less of platform choice.

That being said, we did notice differences between the
data from both platforms. Within the datasets generated
by each aligner, we found 18–25% of the identified DEGs
were platform-specific. These differences are comparable
to those from previous studies using UHRR samples
where biological variability was not even a factor [33]. It
is likely the majority of these platform-specific DEGs are
the results of the technical variability arising from differ-
ences in the library preparation and sequencing tech-
nologies of both platforms. This hypothesis is further
supported by two observations: 1) most of the platform-
specific DEGs are close to our threshold for statistical
significance, and 2) 15–30% of the platform-specific
DEGs identified using only one of the alignment algo-
rithms were identified in both platforms when consider-
ing all three alignment algorithms together.
These observations led to the surprising finding that

there appears to be an interaction between alignment al-
gorithm and platform that affects the ability to detect ab-
solute and differential gene expression. Others have
noticed the impact of aligner choice on downstream ana-
lysis within a single sequencing platform [12, 34]. Here
not only do we see these effects as well, we also observe
that the impact of aligner choice is different depending
upon whether we are using data derived from Illumina or
Ion Torrent. Given that several of these aligners were de-
veloped prior to the introduction of the Ion Torrent plat-
form, it is possible some of these interactions are due to
the underlying assumptions of these algorithms, which are
based largely on Illumina data. As a result, it may be pos-
sible to reduce the effects of this interaction through care-
ful tuning of the alignment algorithm parameters to
optimize for Ion Torrent. Alternatively, this platform/
aligner interaction may prove to increase the utility of
these RNA-Seq technologies. For both platforms, re-
searchers already use different library preparation
methods to study small RNAs and non-coding transcripts.
Perhaps particular combinations of alignment software
and sequencing platform may be better suited for interro-
gating specific genomic or transcriptional phenomena, like
gene/pseudogene pairs or fusion transcripts.

Conclusions
Taken together, our results suggest that while re-
searchers may be able to modulate their ability to detect
different transcripts through careful selection of sequen-
cing platform and alignment algorithm, on the whole
Illumina and Ion Torrent are equally suited to the task
of expression analysis in treatment/control experiments.

Methods
Animal care, tissue collection, and RNA extraction
Wild-type, twelve-week old male C57/B6J mice were ac-
quired from Jackson Labs (Bar Harbor, Maine, USA).
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Ten mice were treated with 20 μg/Kg of IL-1β (Sigma-
Aldrich, catalog no. I9401; n = 5) or saline (n = 5; re-
ferred to as untreated in this manuscript), via intraperi-
toneal injection. Four hours after treatment, the mice
were euthanized through carbon dioxide induced as-
phyxiation and liver samples were dissected and snap-
frozen in liquid nitrogen. RNA was extracted from the
liver tissue using TRIzol (ThermoFisher Scientific, cata-
log no. 15596018) and RNeasy Mini Kit (Qiagen, catalog
no. 74104), according to manufacturers’ protocols. After
extraction, total RNA was analyzed on a BioAnalyzer
2100 (Agilent) to check for integrity. All procedures
were approved and carried out in accordance with the
Institutional Animal Care and Use Committee of the
University of Pennsylvania.

Illumina library preparation and sequencing
200 ng of total RNA from each liver sample was pre-
pared for Illumina sequencing according to the manu-
facturer’s protocol using the TruSeq stranded mRNA
Sample Preparation Kit (Illumina, catalog no. RS-122-
2103). Following preparation, library qualities were
assessed using a Bioanalyzer 2100. Libraries from all
samples were pooled together and sequenced using an
Illumina HiSeq 2500 (125 bp paired-end reads).

Ion torrent library preparation and sequencing
Total RNA was poly-A selected using the Dynabeads
mRNA Direct Micro Purification kit (ThermoFisher,
catalog no. 61021), according to manufacturer’s protocol.
About 100 ng of poly-A RNA were used to prepare
strand-specific barcoded RNA libraries with the Ion
Total RNA-Seq kit v2.0 (ThermoFisher Scientific, cata-
log no. 4475936) following manufacturer’s protocol. The
library qualities were checked by running on a BioAnaly-
zer 2100 and the concentrations were determined from
the analysis profiles. Ten barcoded libraries were pooled
together on an equimolar basis and run using three PIv3
chips on an Ion Torrent Proton using HiQ chemistry.

RNA-Seq data alignment and normalization
We aligned fastq files from both platforms using STAR
v2.5.1b [14], GSNAP release 2015–12-31 (v8) [13], or a
combination of STAR and Bowtie2 v2.2.9 [16]. For the
STAR + Bowtie2 combination, we first aligned reads to the
genome using STAR and extracted all unmapped reads
from the resulting BAM files. Next, we used Bowtie2 to
align all of these unmapped reads to the reference genome.
Lastly, we used custom perl scripts to merge the Bowtie2
alignments with the STAR alignment, replacing entries for
the unaligned reads with the mapping information from
Bowtie2. We mapped reads to the mm9 version of the ref-
erence genome (downloaded from the UCSC genome
browser [35]) for all alignment algorithms. Also, we

provided GSNAP and STAR with gene models from the
Ensembl v67 genome annotation [36]. See the Additional
file 1: Supplementary Methods for the full commands we
used for each step in the alignment.
To normalize the data within a given platform/aligner

combination, we used the Pipeline Of RNA-Seq Trans-
formations v0.8.1-beta (PORT) [19]. PORT is an imple-
mentation of the read re-sampling approach for
normalization proposed by Li and Tibshirani [37].
Briefly, PORT filters out potential confounding factors
like reads mapping to rRNA sequences and mitochon-
drial DNA. Next, PORT determines the input dataset
with the fewest number of gene-mapping reads and re-
samples all datasets to have the same number of reads,
thus accounting for batch effects and differences in se-
quencing depth between samples. As a result, the nor-
malized BAM and coverage files generated by PORT are
directly comparable to each other. In addition to
normalization, we also used PORT to quantify the nor-
malized, gene-level read counts for each of our datasets.
For quantification, we used the gene models from the
Ensembl v67 annotation.

RNA-Seq data analysis
We performed the majority of our quantification and differ-
ential expression analyses of the PORT quantification results
in R. Before any other analyses, we filtered out all genes with
low expression. Briefly, we only retained those genes with at
least five mapped reads, in five of the ten total samples. This
reduced the original 37,681 input genes to ~15,000 detected
genes in each of the samples. We used this set of
expression-filtered genes for the remainder of our analyses.
To identify genes with differential expression between the
untreated and IL-1β treatment conditions, we performed a
two-sided Mann-Whitney U test [21], as implemented by
the wilcox.test function in R. Lastly, we accounted for mul-
tiple testing using a Benjamini-Hochberg correction [22], as
implemented by the p.adjust function in R. For the purposes
of our analyses, we identified significantly differentially-
expressed genes as those with Benjamini-Hochberg q-values
<0.05. We also used the limma (v3.28.17) [23] software
package to perform a parallel differential expression analysis.
All further analyses and visualization of the data were
performed using custom R scripts.

qPCR
Real-time PCR for Sperina3 genes was performed using
ABI Taqman primers (ThermoFisher Scientific) and re-
agents on an ABI Prizm 7500 thermocycler according to
manufacturer’s instructions: Serpina3c (ThermoFisher cata-
log no. 4331182; Mm00434669_m1) and Serpina3i (Ther-
moFisher catalog no. 4331182; Mm01612859_m1). Since
Mup-ps22 required custom primers, real-time PCR for
mouse urinary protein genes was performed using SYBR
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reagents on the same instrument: Mup20 (IDT PrimeTime
qPCR Primer Assays in Tubes; Mm.PT.58.14054833),
Mup-ps22 (custom primers ordered from Sigma-Genosys;
sequences in Additional file 1: Supplementary Methods).
All mRNA measurements were normalized to Gapdh
mRNA levels (Taqman assay - ThermoFisher catalog no.
4331182; Mm99999915_g1; SYBR assay - custom primers
ordered from Sigma-Genosys; sequences in Additional
file 1: Supplementary Methods).

Ingenuity pathway analysis
To identify pathways enriched among our lists of DEGs,
we used Ingenuity Pathway Analysis (IPA, Qiagen) [24].
We began by uploading the full tables of our Mann Whit-
ney DEG results to the IPA server. These tables included
the following information for each combination of plat-
form and aligner: log2 fold-change differences between
untreated and IL-1β treated samples, the p-values from
the DEG test, and the multiple-testing corrected q-values.
Next, we ran the IPA core analysis separately on the gene
lists from each platform/aligner combination. For the core
IPA analyses we identified DEGs with the following cut-
offs: q-values <0.05 and absolute log2 fold-change values
>1. For the purposes of enrichment tests, we used the list
of all detected genes (i.e. our full IPA input tables) as the
background set of genes. Aside from these changes, we
used the default parameters for our IPA analyses.

Down-sampling analysis and multiple aligner
comparisons across both platforms
(See Additional file 1: Supplementary Methods for full
details).

Additional files

Additional file 1: Supplementary Methods. Supplementary information
on the alignment command-line parameters, down-sampling analysis,
RNA-Seq simulations, and custom qPCR primers for Mup-ps22 and Gapdh.
(DOCX 21 kb)

Additional file 2: Figure S1. Alignment statistics. Bargraphs displaying
the percentage of reads that either aligned uniquely (blue), aligned to
multiple loci (green), or did not align (red) in each sample. These results
are displayed for all combinations of platform and aligner. (PDF 137 kb)

Additional file 3: Table S1. Alignment metrics for all samples. For each
sample, the following metrics are listed for each combination of platform
and alignment algorithm: total number of reads (Ion Torrent) or read
pairs (Illumina), percentage of uniquely-aligned reads, percentage of mul-
timapped reads, percentage of unaligned reads, percentage of uniquely-
aligned reads aligned to gene regions, percentage of multimapped reads
aligned to gene regions, percentage of uniquely-aligned reads aligned to
exonic regions, percentage of multimapped reads aligned to exonic re-
gions, percentage of uniquely-aligned reads aligned to intronic regions,
percentage of multimapped reads aligned to intronic regions, percentage
of uniquely-aligned reads aligned to intergenic regions, and percentage
of multimapped reads aligned to intergenic regions. (XLSX 17 kb)

Additional file 4: Figure S2. Read length distribution for Ion Torrent
data. Read lengths were derived from the raw input files for each sample.
(PDF 299 kb)

Additional file 5: Table S2. Ion Torrent read length statistics. The max,
min, mean, and standard deviations of the read lengths in the Ion
Torrent data, for each sample. (XLSX 9 kb)

Additional file 6: Figure S3. Read count comparison between
platforms. Scatterplots comparing the gene-level read counts between
Illumina (x-axis) and Ion Torrent (y-axis). Results are displayed for all sam-
ples, across all three alignment algorithms. Both axes are scaled to log10
of the PORT-normalized read counts. (PDF 344 kb)

Additional file 7: Table S3. Spearman correlation coefficients between
Illumina and Ion Torrent read counts. Spearman correlation coefficients
between Illumina and Ion Torrent read counts for each sample and aligner.
(XLSX 11 kb)

Additional file 8: Figure S4. Mitochondrial and ribosomal content.
Bargraphs displaying the percentage of reads that aligned to
mitochondrial DNA (top; ChrM), or to ribosomal RNA sequences (bottom).
Samples colored by treatment group (IL-1β = orange; untreated = blue).
(PDF 86 kb)

Additional file 9: Table S4. Read count and differential expression
results for all combinations of platform/aligner. Gene-level read counts from
each sample, p-values from the Mann-Whitney U tests and limma for differ-
ential expression, Benjamini-Hochberg-corrected q-values. (XLSX 13131 kb)

Additional file 10: Figure S5. DEG concordance between platforms as a
function of read depth. Line graph displaying the concordance (DEGS
identified by both platforms/total number of DEGs) at varying levels of read
depth. The regression line generated by the glm function in R is displayed in
blue. (PDF 81 kb)

Additional file 11: Figure S6. Differential expression analysis with limma.
Within each combination of platform and aligner, differentially-expressed
genes (DEGs) were identified using the limma software package. Genes with
BH q-values <0.05 were identified as differentially expressed. A) The overlap
in DEGs between Illumina and Ion Torrent for each aligner. B) The overlaps
in DEGs identified in each platform by limma or Mann-Whitney, for each
aligner. C) MA plots for every combination of platform and aligner. Within
each aligner, genes are colored according to the platform in which they
were identified by limma as DEGs. (PDF 573 kb)

Additional file 12: Figure S7. Fold-change comparison between
platforms. Scatterplots comparing the log2 fold-change values of differen-
tially expression genes in the Illumina (x-axis) and Ion Torrent (y-axis)
datasets, for each alignment algorithm. Within each aligner, genes are
colored according to the platform in which they were identified as DEGs.
For those DEGs with zero expression in the IL-1β or untreated condition,
a pseudo-count of 1 was added to both the numerator and denominator
for the fold-change calculation. (PDF 336 kb)

Additional file 13: Table S5. Spearman and Pearson correlation
coefficients for Illumina vs Ion Torrent fold-change comparison. Spearman
and Pearson correlation coefficients between Illumina and Ion Torrent
log2 fold-change values, within each alignment algorithm. Separate cor-
relation coefficients were calculated for DEGs identified by both plat-
forms, by Illumina only, and by Ion Torrent only. (XLSX 9 kb)

Additional file 14: Table S6. Significant results from Ingenuity Pathway
Analysis – Canonical Pathways. IPA results from the canonical pathways
analysis for each combination of platform and aligner. Table lists pathway
names, enrichment p-values, z-scores, and the list of DEGs for each pathway.
(XLSX 35 kb)

Additional file 15: Table S7. Top 10 results from Ingenuity Pathway
Analysis – Upstream Regulators. IPA results from the upstream regulators
pathway analysis for each combination of platform and aligner. Table lists the
identities of the upstream regulators, predicted activation state, p-value for
DEG overlap with regulator targets, list of DEGs for each upstream regulator.
(XLSX 19 kb)

Additional file 16:Table S8. The number of platform-specific genes
detected by aligner. Numbers of platform-specific genes detected in each
aligner as a function of the mean gene-level read counts across all
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samples. Also lists the number of DEGs among the platform-specific
genes. (XLSX 11 kb)

Additional file 17: Figure S8. Read depth for platform-specific genes.
Distributions of read counts for platform-specific genes are displayed for
all samples, across all three alignment algorithms. The majority of
platform-specific genes have less than 50 reads, so the graphs’ x-axes are
limited to the [0, 50] range for display purposes. (PDF 1099 kb)

Additional file 18: Figure S9. GC-content of DEGs. Density plots, for
each aligner, of the % GC content for DEGs identified by both platforms
(red), Illumina only (blue), Ion Torrent only (green), and non-DEGs (black).
(PDF 99 kb)

Additional file 19: Table S9. Ensembl biotypes of genes detected by
both platforms, or exclusively by one platform. For each aligner, lists the
number of and percent of detected genes for each ensembl biotype.
These numbers are broken down by those genes detected in both
platform, only in Illumina data, and only in Ion Torrent. (XLSX 12 kb)

Additional file 20: Figure S10. qPCR results for Mup20 and Mup-ps22.
Bargraphs display average expression across samples in each treatment
group. Gapdh expression is used as the endogenous control. Error bars
display the squared-error of the mean (SEM). (PDF 16 kb)

Additional file 21: Figure S11. Using a full dataset to examine
platform/aligner interaction. For each sequencing platform, full fastq files
from sample 9574 (untreated) were re-aligned using STAR + Bowtie2 and
the twelve most popular aligners, according to a survey of the literature.
This figure displays the number of uniquely-mapped (top) and multi-
mapped (bottom) reads aligned to Mup20 or Mup-ps22. (PDF 110 kb)

Additional file 22: Figure S12. Using simulated data to examine
platform/aligner interaction. For each sequencing platform, all reads aligned
by GSNAP, or STAR + Bowtie2 to Serpina3c or Serpina3i across all samples
were extracted. These data were re-aligned using STAR + Bowtie2
and the twelve most popular aligners, according to a survey of the literature.
Additionally, simulated RNA-Seq reads were generated from both of these
genes. A) The average number of uniquely-mapped (top) and multimapped
(bottom) reads aligned to each gene across the untreated and IL-1β-treated
samples. B) qPCR results for Serpina3c and Sperina3i. C) Log2 fold-change
differences between the average expression in the IL-1β-treated and
untreated samples. (PDF 269 kb)
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