
Computationally efficient neural network classifiers for next 
generation closed loop neuromodulation therapy – a case study 
in epilepsy

Ali Kavoosi✉,1,†, Robert Toth2,†, Moaad Benjaber1, Mayela Zamora1, Antonio Valentín3, 
Andrew Sharott2, Timothy Denison✉,1,2

1Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 
3TH, United Kingdom

2Institute of Biomedical Engineering, Old Road Campus Research Building, Department of 
Engineering Sciences, University of Oxford, Oxford OX3 7DQ, United Kingdom

3Department of Basic and Clinical Neuroscience, King’s College London, London SE5 9RT, 
United Kingdom

Abstract

This work explores the potential utility of neural network classifiers for real-time classification 

of field-potential based biomarkers in next-generation responsive neuromodulation systems. 

Compared to classical filter-based classifiers, neural networks offer an ease of patient-specific 

parameter tuning, promising to reduce the burden of programming on clinicians. The paper 

explores a compact, feed-forward neural network architecture of only dozens of units for seizure-

state classification in refractory epilepsy. The proposed classifier offers comparable accuracy 

to filterclassifiers on clinician-labeled data, while reducing detection latency. As a trade-off to 

classical methods, the paper focuses on keeping the complexity of the architecture minimal, to 

accommodate the on-board computational constraints of implantable pulse generator systems.

Clinical relevance—A neural network-based classifier is presented for responsive 

neurostimulation, with comparable accuracy to classical methods at reduced latency.

I Introduction

Deep brain stimulation (DBS) first received approval for the symptomatic treatment of 

Parkinson’s disease in 1997. While similar in design to cardiac pacemakers, the implantable 

pulse generators (IPG) of the time offered only an open-loop form of therapy, with typically 
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a single stimulation pattern, set by a clinician for each patient. Real-time seizure detection 

and responsive neurostimulation (RNS) was first attempted using a computer-in-the-loop 

system by Gotman et al. in 1976 [1], it was Osorio et al. in 1998 [2], [3], [4] who 

introduced the more widely studied filter-based spectral biomarker detectors to the field of 

epilepsy research. With the continued development of IPGs and the maturation of low-power 

microprocessor technology, the first RNS system for epilepsy received approval for pre-

clinical use in 2014. This system from Neuropace had the capabilities to sense bioelectric 

signals, and choose stimulation programs based on clinician-configured classification state 

[5].

Filter-based spectral-feature detectors have since been used successfully in other conditions, 

most notably for tremor suppression in Parkinson’s disease, through the discovery of beta 

oscillations as a correlate of disease state [6]. However, the smaller (1 μVrms) signal 

size of beta oscillations, compared to epileptiform activity (10 μVrms), made deploying 

the detector algorithm in IPGs challenging due to the presence of stimulation and other 

artifacts. Contemporary work focuses on improving the robustness of the signal chains 

to enable simultaneous sensing and stimulation, thus true closed-loop operation across 

targeted diseases [7], [8]. Examples include the Medtronic Percept [9] and the Picostim-

DyNeuMo research systems [10], [11]. A complementary avenue of refinement is the use 

of feedforward predictors for adapting stimulation based on periodicities of disease state 

and patient needs, such the circadian scheduling of the SenTiva system from LivaNova or 

the Picostim-DyNeuMo [12]. Taking advantage of more long term, weekly or even monthly 

rhythms are being investigated for epilepsy management [13].

Patient-specific filter design, while possible to aid with software, can be a complex 

problem, likely to limit both clinician-capacity and patient-throughput. Establishing and 

validating a neural-network (NN) training pipeline based on clinician-labeled data could 

offer a systematic classifier tuning process. Networks could be pre-trained on aggregate 

data from multiple patients, and refined based on individual labeled data at the point of 

deployment [14]. Of course, due to the black-box nature of neural network classifiers, 

extensive validation work will be required to establish safety before first-in-human studies. 

Advances in interpretable deep learning could facilitate building trust in NN–classifiers for 

medical use [15].

Liu et al. [16] demonstrated the feasibility of deploying high accuracy classifiers for seizure 

detection on modern microprocessors (ARM® Cortex-M4), through model compression and 

quantization techniques, showcasing several advanced NN topologies.

This paper is meant as an initial study to bring focus to the fundamental challenge of 

NN classifiers: computational cost. As state-of-the-art deep neural networks reach ever 

increasing model sizes [14], [17], we aim to explore whether lean NNs of only dozens of 

units could in fact compete in accuracy with classical, filter-based systems for bioelectric 

signal classification.
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II Design

A Baseline Method

To establish a baseline for performance as well as for computational cost, we used a classical 

band-power estimation filter chain to detect epileptiform discharges [3], [6], that we have 

previously deployed with success in the Picostim-DyNeuMo experimental IPG system [11]. 

The processing steps of this method are shown in the top panel of Fig. 1. While this 

algorithm is computationally efficient and has a very favorable memory footprint (refer to 

Table I), the demodulated envelope signal, thus the detector output, will always lag the 

input signal to reduce output ripple – irrespective of processing speed. This trade-off arises 

from the very nature of causal filtering, and is necessary to prevent rapid switching of the 

detector output for input signals near the classification threshold. The reference classifier 

was configured as follows. Our band-pass stage was an 8 – 22 Hz, 4th order Butterworth 

filter, with a Direct Form I IIR implementation (16-bit coefficients, 32-bit accumulators). 

Envelope demodulation was achieved using an exponential moving average filter with a 

decay-coefficient of 32 samples. The filter chain, and all other classifiers were designed to 

operate at a sampling rate of 256 Hz.

B New neural-based methods

In our search for a low-complexity classifier for time series input, we explored two main 

NN families. (1) Multi-Layer Perceptrons (MLP) are the simplest, and oldest family or of 

artificial neural networks [18], where the input vector is connected to ‘hidden’ layers of 

feedforward units, condensing information into an output unit. This architecture is shown in 

the bottom panel of Fig. 1. (2) As a step up in complexity, Convolutional Neural Network 

(CNN) introduce a convolution layer, also known as a filter bank, between the input vector 

and the neural layers as an initial extra step [14]. The input to our networks is formed by 

a windowed set of past time samples of the local field potential (LFP) signal. The output 

signal, calculated once for each complete window of samples, is thresholded into a binary 

label. We denote this classifier the ‘standalone MLP’ model.

Recurrent neural networks, an otherwise natural choice for processing time series data, 

were dismissed from consideration as recurrence necessitates the introduction of dynamic 

state variables, which significantly increases memory footprint [14]. Without recurrence, 

we introduced coherence into our classifier in a different way. We settled on requiring 

a consensus of three subsequent outputs from the NN to define our final output label, 

providing the ‘adjusted MLP’ model.

C Training and data

Our raw dataset consisted of LFP signals recorded from two patients, for a combined 24 

hours, with 30 professionally labeled events of clinical significance. The recordings were 

resampled to a 256 Hz sampling frequency for uniformity.

As seizures are comparatively rare events scattered among very long periods of normal 

activity, we decided to introduce class imbalance into our training sets to best prepare the 

NNs for real-life use. The training set was biased towards negative samples in a 3:1 ratio, 
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based on clinician annotations. The dataset was split in the common 70:30 ratio between a 

training and a validation set. Network weights and biases were quantized to 8-bit integers.

D Technical equipment used

Neural networks were modeled and trained in Tensorflow Lite version 2.7.0, using an Intel 

Core i7 CPU with 16 GB of RAM. Embedded performance was tested on an Arduino Nano 

33 BLE Sense evaluation board for the nRF52840 ARM Cortex-M4F microprocessor.

E Comparison of CNN and MLP models

Fig. 2 shows the performance of our CNN and MLP classifiers. While the CNN outperforms 

the standalone MLP, it performs with similar accuracy to the adjusted MLP model above 

80% true positive rate (TPR). For safe use, the operating point of a seizure detection system 

should be biased towards high TPR – missed seizures (false negatives) pose significantly 

more risk to the patient than false positives, which merely result in unnecessary stimulation. 

Overall, in targeting resource constrained IPGs, we judged the minor edge of the CNN 

insufficient to justify the added computational burden of the convolutional layer.

F Tuning the MLP classifier

The performance of the MLP model, when trained on a given dataset, is primarily 

determined by two hyperparameters: the number of timepoints in the input window, and 

the hidden layer’s size. We found that varying the number of hidden layers had very modest 

effects on accuracy (not shown in this paper). Fig. 3 systematically explores the effect of the 

two key hyperparameters on the classification error of a single output, single hidden layer 

MLP model. As expected, the network requires a certain size and complexity to encode a 

feature space sufficient for reliable classification, though increasing the number of units in 

either layer beyond a certain point leads to diminishing returns. To select one of the possible 

models from the error surface, one could define a scoring scheme including network size, 

computational time and the loss itself, to make an educated choice, however, this is beyond 

the scope of this paper. Favoring low complexity, we settled on using a 20-point input 

window and 8 hidden neurons, in the ‘transition zone’ of the error surface.

III Model Performance and Interpretation

The next step is to compare our best MLP result to the baseline classifier. The ROC of Fig. 

2 reveals that a well-tuned filter chain outperforms the small MLP model below 60% false 

positive rate, beyond which they converge in accuracy. Identifying a seizure does not present 

a holistic view of performance though. In Fig. 4 we highlight two additional characteristics 

to consider in classifier evaluation: (1) latency at event onset, and (2) the overlap between 

classifier and clinician labels. As shown, the MLP responds on average more rapidly to a 

commencing seizure (mean latency of 0.6 sec vs 1.7 sec), and tracks the clinician label more 

closely overall, compared to the baseline method.

To explore the MLP classifier’s internal representation of a seizure, we present a small 

interpretation experiment in Fig. 5. We presented the classifiers with second-long sinusoidal 

bursts of activity, performing parameter sweeps along both test frequency and test 
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amplitudes. As seen, the MLP model (right) was successful in internalizing a notion of 

the spectral characteristics of epileptiform activity (low frequency lobe), that encompasses 

the pass-band of the filter classifier (left). The greater effective bandwidth of the MLP 

could explain the lower false positive rates seen on the ROC of Fig. 2. The activation lobes 

at higher frequencies likely represent a process analogous to aliasing, and we expect this 

periodicity to be a correlate of the input window size, which should be investigated further.

IV Discussion

The example design of the MLP classifier demonstrates that even tiny neural networks 

can be effective at simple signal processing tasks. As the final step, we should reflect on 

the embedded resource usage achieved, so we refer the reader to Table I. Importantly, the 

network achieved sufficiently low complexity for real time use. Note that NN execution 

times are reported per sample, though the output only changes at the end of a window of 20 

samples. Notably, the true memory footprint of the classifier could not be determined with 

this evaluation system – Tensorflow Lite does not generate network code, rather it provides 

a network description file, to be run by a relatively large, general purpose interpreter library 

in the embedded system. For a more realistic, yet conservative outlook, we present estimates 

for the memory usage of the same network deployed using customized library, trimmed 

down to the features used in our design. In summary, the MLP could provide an alternative 

to existing tuned filter methods used in commercial devices.
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Fig. 1. Classifier architectures.
Top: classical filter-based spectral power detector [6]. Bottom: the multi-layer perceptron 

architecture evaluated in this paper. Through training on labeled data, the neural network is 

expected to assume an overall transfer function similar to the hand-crafted filter topology.
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Fig. 2. ROCs for different classifiers.
Note that performance converges towards high TPR and FPR, which is the desirable 

operating point of seizure detectors as FNs pose significantly greater risk of harm to patients 

than FPs.
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Fig. 3. Tuning the MLP classifier.
Grid search on the two main model hyperparameters: the input vector length and the number 

of hidden layer units. Loss is represented as binary cross entropy across all samples.
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Fig. 4. Detailed performance of classifiers.
Top: histogram of classification latency. Bottom: histogram showing the percentage of 

overlap between positive classifier output and clinician-labeled event.
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Fig. 5. Frequency response of classifiers to input signals of different magnitudes.
Left: filter chain classifier. Right: MLP classifier with average of 3 windows. Accuracy is 

presented as the mean classifier output for a 1 second sinusoidal test tone over 10 repeats.
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Table I
RESOURCE USAGE

Classifier Execution time (Cycles / Sample) Code (bytes) Memory (bytes)

Filter (custom) 750 675 100

MLP (TF Lite) 2250 31k 8k

CNN (TF Lite) 3200 31K 13k

MLP (custom) 2250* 2.0k* 300*

*
predicted
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