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Abstract: Glioblastoma (GBM) is highly resistant to treatment and invasion into the surrounding
brain is a cancer hallmark that leads to recurrence despite surgical resection. With the emergence of
precision medicine, patient-derived 3D systems are considered potentially robust GBM preclinical
models. In this study, we screened a library of 22 anti-invasive compounds (i.e., NF-kB, GSK-3-B,
COX-2, and tubulin inhibitors) using glioblastoma U-251 MG cell spheroids. We evaluated toxicity
and invasion inhibition using a 3D Matrigel invasion assay. We next selected three compounds
that inhibited invasion and screened them in patient-derived glioblastoma organoids (GBOs). We
developed a platform using available macros for FIJI/ImageJ to quantify invasion from the outer
margin of organoids. Our data demonstrated that a high-throughput invasion screening can be
done using both an established cell line and patient-derived 3D model systems. Tubulin inhibitor
compounds had the best efficacy with U-251 MG cells, however, in ex vivo patient organoids the
results were highly variable. Our results indicate that the efficacy of compounds is highly related to
patient intra and inter-tumor heterogeneity. These results indicate that such models can be used to
evaluate personal oncology therapeutic strategies.

Keywords: glioblastoma; organoids; invasion; patient-derived; compound; drug screening; precision
medicine

1. Introduction

Glioblastoma (GBM), also known as grade IV astrocytoma, is the most common
malignant primary brain tumor in adults. GBM has both intra- and inter-tumor hetero-
geneity and possesses a variety of genetic and epigenetic mutations that drive tumor
cell motility to cause cells to invade, infiltrate, and colonize close and distant surround-
ing normal brain tissue [1]. Due to the aggressive nature of invasion in GBM, complete
surgical resection is not feasible, and remaining cancer cells can undergo mutations to sur-
vive ionizing-radiotherapy and chemotherapy (e.g., DNA-alkylating agent temozolomide
(TMZ)), leading to recurrence [2]. The GBM median survival time, even after surgery, radi-
ation, and chemotherapy, is 15 months after the initial diagnosis [3,4]. GBM also occurs in a
complex tumor microenvironment (TME) made of extracellular matrix (ECM) components
and infiltrated cancer-associated cells such as immune cells, several types of stromal and
endothelial cells, and glial cells that crosstalk with the cancer cells, and this plays a critical
role in tumor invasion [4–7].
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A critical factor limiting the progress of GBM therapeutic innovation is the lack of
simple and reliable in vitro models for testing therapeutic strategies. Current standard
models are typically 2-dimensional (2D) cell culture systems which do not mimic the
genetic and microenvironmental complexity of GBM [8]. Some of the best options available
today are in vivo models such as patient-derived xenografts (PDX). However, long en-
graftment periods and high costs make PDX models limiting for many research groups [9].
Advancements in cell culture techniques have seen the rapid evolution of more complex
in vitro cell culture models that include three-dimensional (3D) multicellular spheroids,
organoids, bio-printing, and organ-on-a-chip models. These models have been shown
to have improved characteristics in comparison to 2D models which include abundant
extracellular matrix (ECM), cell heterogeneity and signaling variation; hypoxic, nutrition,
and pH gradients; and higher therapeutic resistance and mutations similar to the parent
tumor, which thus make them more suitable for cancer therapy research [10–14].

Due to the invasiveness of GBM, 3D models reproducing this feature are essential,
especially when studying, selecting, and screening a large group of compounds that inhibit
invasion. In this study, using multicellular spheroids developed with the U-251 MG cell
line, which is well-characterized [15], and has been used in the National Cancer Institute’s
published A Large Matrix of AntiNeoplastic Agent Combinations (NCI-ALMANAC) [16],
we screened our library of anti-invasive compounds, composed of NF-kB, GSK-3-B, COX-2,
and tubulin inhibitors by developing and testing an automatic quantitative Matrigel-based
invasion assay. Since GBM cancer cells spread in the brain primarily along the perivascular
spaces between the endothelial cells and astrocytic end feet which comprise the blood
brain barrier [17], we used a Matrigel invasion assay. The major component of Matrigel
is laminin, which is a major component of the basement membranes surrounding blood
vessels [18,19]. Developing a GBM 3D model that also maintains a characteristic TME is a
challenging hurdle. To answer this need, we decided to utilize patient-derived glioblastoma
organoid cultures (GBOs). This model has been shown to preserve tumor heterogeneity and
complexity, to recapitulate inter-and intra-tumoral heterogeneity, and to maintain many key
features of GBM, such as its cytoarchitecture and cell-cell interactions [20–22]. Our goal was
to validate the use of GBOs in 3D pre-clinical models for precision medicine, specifically
assaying invasiveness using our automated Matrigel-based invasion assay [23]. We used
patient-derived tissue obtained from surgery and our precision medicine biobank [24]. Our
study confirms that compound efficacy is highly variable between GBOs from different
patients, indicating that precision medicine models such as ours may result in improved
therapeutic solutions for patients (Figure 1). Our pilot GBO studies indicate the need for the
further development of high-throughput screening processes with patient-derived tissue.
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Figure 1. Schematic of experimentation. (a) U-251 MG cell spheroid formation in an ultra-low
attachment round bottom well plate, followed by either drug incubation for cytotoxicity analysis
or drug (10 µM) distributed in the basement membrane matrix Matrigel for invasion assay analysis.
(b) Cytotoxicity assessment of the compounds on spheroids by interpolation of the standard curve
established based on Calcein AM (green: living cells) and propidium iodide (red: dead cells) fluo-
rescence intensity related to the known ratio of living/dead cells (0, 20, 50, 80, and 100%), with the
establishment of a standard curve allowing us to interpolate (following mathematical model with
Graphpad: Prism) (Figure S2) the percentage of living cells and also the number of cells related to the
fluorescence intensity. (c) Development of an automatic invasion assay analysis using FIJI/ImageJ
and INSIDIA macro. (d) Brain tumor extracted from surgery, followed by dissection and dissociation
to constitute the GBOs. (e) Transfer of the GBOs in an ultra-low adhesion well plate with the drug
incorporated in the basement matrix. (f) Evaluation of the invasiveness of the GBOs for 360 h
maximum, using automatic invasion assay analysis.
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2. Results
2.1. Cytotoxicity of the Compounds on U-251 MG Spheroids

U-251 MG is an established GBM cell line [15], part of the NCI-60 human cancer cell
lines [25], with the ability to form spheroids with invasive properties [26]; it has been
used in the screening of pharmaceutical agents to identify, characterize, and select novel
compounds with growth inhibition and/or killing of tumor cells. A series of 22 different
compounds called BS, BSK, JVM PNR, and ST [27–34] whose the chemical structures,
details, and activity are explained in Table 1 and Figure S1, were incubated with the
spheroids for 48 h to define the toxicity the effects on their invasiveness. These com-
pounds have anti-invasive properties, as they interfere with pathways of cell invasion
(Figure 2). The goal of our initial screening was to identify compounds that were able to
stop the invasion independently of their induced toxicity. We selected a fixed concentration
of 10 µM for all compounds based on preliminary data (not shown) to support the selection
of compounds to validate the GBO model.

Table 1. Table Compounds/drugs Panel used for experimentation.

Compound Simplified Group
Identification Family/Chemical Group Activity References

BS-1-28 BS MMB (Melampomagnolide b) indole esters NFk-B inhibitors [27]
BS-2-04 BS MMB indole esters NFk-B inhibitors [27]
BS-4-60 BS MMB indole esters NFk-B inhibitors [27]

BSK-1-97 BSK MMB-Thiadiazolidinone NFk-B and GSK-3 B inhibitors Non-published
BSK-2-17 BSK MMB-Thiadiazolidinone NFk-B and GSK-3 B inhibitors Non-published
BSK-2-26 BSK MMB-Thiadiazolidinone NFk-B and GSK-3 B inhibitors Non-published
JVM-3-55 JVM MMB dimers NFk-B inhibitors [28]
JVM-3-62 JVM MMB dimers NFk-B inhibitors [28]
JVM-4-25 JVM MMB Triazole dimers NFk-B inhibitors [29]
JVM-4-26 JVM MMB Triazole dimers NFk-B inhibitors [29]

PNR-4-44 PNR Heterocyclic
trans-cyanocombretastatin analogues Tubulin inhibitors [32]

PNR-4-48 PNR Heterocyclic
trans-cyanocombretastatin analogues Tubulin inhibitors [32]

PNR-5-02 PNR CA-4 triazole Tubulin inhibitors [31]
PNR-5-82 PNR Indole barbiturate and thiobarbiturates COX-2 inhibitors [30]
PNR-5-85 PNR Indole barbiturate and thiobarbiturates COX-2 inhibitors [30]
PNR-5-88 PNR Indole barbiturate and thiobarbiturates COX-2 inhibitors [30]
PNR-7-74 PNR Heterocyclic trans-cyanocombretastatin Tubulin inhibitors [32]
PNR-7-84 PNR Heterocyclic trans-cyanocombretastatin Tubulin inhibitors [32]

ST-145 ST Resveratrol analogues Tubulin inhibitors [33]

ST-145(B) ST
Novel 4,5-disubstituted 2H-1,2,3-triazoles

as cis-constrained analogues
of combretastatin

Tubulin inhibitors [34]

ST-148 ST Resveratrol analogues Tubulin inhibitors [33]

ST-467 ST
Novel 4,5-disubstituted 2H-1,2,3-triazoles

as cis-constrained analogues
of combretastatin

Tubulin inhibitors [34]

Our results indicated three categories of compounds in terms of viability, organized
in function of their statistical relevance: (1) with cytotoxic effect or higher death than the
control (5/22 compounds), such as BS-1-28, BS-4-60, and JVM-4-26, which had the most
cytotoxic effect; (2) neutral, with no difference compared to the control (9/22 compounds);
and (3) with higher viability than the control (8/22 compounds), such as JVM-3-55, PNR-5-
02, ST-145 (Figure 2a,b; Table 2).
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Figure 2. Determination of cytotoxicity on a U-251 MG cell 3-D model with percentage of living cells interpolated for
(a) the first series of compounds tested: BS, BSK, and JVM, and for (b) the second series of compound tested: PNR and
ST. Respective numbers of living cells interpolated for (c) the first series of compounds tested: BS, BSK, and JVM, and for
(d) the second series of compounds tested: PNR and ST. Statistical analysis for significance determination was done using
one-way ANOVA with the control (DMSO) as the comparative model with the Dunnett model, ns (non -significant) for
adjusted p > 0.05,* for adjusted p ≤ 0.05, *** p ≤ 0.001, and **** p ≤ 0.0001. For each experiment, n = 3.

Table 2. Summary of compound cytotoxicity and invasion inhibition. Significance is compared to control (DMSO) with
ns: non-significant, (-): higher cytotoxicity or death induced than the control, (=): no difference compared to control, ( + ):
higher viability of percentage of living cells than the control. Significance was established for cytotoxicity and invasion
assay independently with two-way ANOVA with the control (DMSO) for 48 h of invasion, control as the comparative
model with the Dunnett model, ns (non -significant) for adjusted p > 0.05,* for adjusted p ≤ 0.05, ** for adjusted p ≤ 0.01,
*** p ≤ 0.001, and **** p ≤ 0.0001. For each experiment, n = 3.

Compound Activity/Inhibitors Cytotoxicity Cytotoxicity Effect in
Comparision to Control Invasion (48 h) Invasion Inhibition

PNR-5-85 COX-2 * - *** Low
BSK-1-97 NFk-B and GSK-3 B *** - * High
JVM-4-26 NFk-B **** - ** Moderate
BS-1-28 NFk-B **** - * High
BS-4-60 NFk-B **** - ** Moderate

JVM-3-62 NFk-B * + *** Low
PNR-5-02 Tubulin * + ** Moderate
PNR-7-74 Tubulin * + ** Moderate

ST-467 Tubulin * + ** Moderate
JVM-3-55 NFk-B *** + ** Moderate

ST-148 Tubulin *** + ** Moderate
ST-145 Tubulin **** + ** Moderate

ST-145(B) Tubulin **** + ns Very High

BS-2-04 NFk-B ns = ** Moderate
BSK-2-17 NFk-B and GSK-3 B ns = ** Moderate
BSK-2-26 NFk-B and GSK-3 B ns = ** Moderate
PNR-4-48 Tubulin ns = ** Moderate



Int. J. Mol. Sci. 2021, 22, 10720 6 of 16

Table 2. Cont.

Compound Activity/Inhibitors Cytotoxicity Cytotoxicity Effect in
Comparision to Control Invasion (48 h) Invasion Inhibition

PNR-5-88 COX-2 ns = ** Moderate
JVM-4-25 NFk-B ns = *** Low
PNR-7-84 Tubulin ns = *** Low
PNR-4-44 Tubulin ns = ns Very High
PNR-5-82 COX-2 ns = ns Very High

For the concentration tested, the correlation of these three groups in function of their
cytotoxic effects and their activity (Table 2) indicates that, for most compounds, NFk-B
inhibitors were the ones with the most cytotoxicity. Given that NFk-B signaling pathways
are typically overexpressed in cancers to direct growth and progression, it is not surprising
that the inhibition of these pathways would lead to cytotoxicity [35]. By contrast, most of
the tubulin inhibitors were non-toxic or even supported the growth of the cells.

2.2. Invasion Inhibition of the Compounds on U-251 MG Cell Spheroids and the Development and
Implementation of Automatic Invasion Assay Analysis

A 3D tumor spheroid-based functional assay to model invasion was accomplished
by seeding spheroids in a basement membrane matrix (Matrigel®, Bedford, MA, USA)
containing a fixed and defined concentration of the different compounds. Quantification of
the invasion was done using time-series image capture (0, 24, and 48 h) in z-stack using the
macro INSIDIA (INvasion SpheroID ImageJ Analysis) [36], and an extended depth-of-field
algorithm [37] developed for FIJI/ImageJ [38]. The 3D spheroids were able to invade the
basement matrix by creating multiple multicellular protrusions, confirming that this 3D
model could be used to estimate and screen different compounds for invasion inhibition
(Figure 3a–c). As a first observation, in DMSO, the invasion could be accessed and was
visible after 24 h. Invasion also was visible after 24 h for most of the compounds, but
inhibition of invasion by compounds became statistically significant after 48 h for most of
the compounds tested (Figure 3d).

During that time frame, our data showed that very few compounds impaired the in-
vasion of the cells (only 3/22 tested; two tubulin inhibitor compounds (ST-145(B) and PNR-
4-44), and one COX-2 inhibitor (PNR-5-82) compound). For these compounds, spheroids
remained rounded (e.g., Figure 3b). When expansion was recorded, most compounds
were able to reduce by half the protrusion invasion compared to the control. The tubulin
inhibitors were the ones that showed the most effectiveness compared to the control, and
inhibited the invasion of the spheroids in the basement matrix.

Cytotoxic effects and invasion ability are summarized in Table 2. The results are
organized in three sections based on their classification within the column “Cytotox-
icity effect in comparison to control,” with (-) indicating higher cytotoxicity or death
induced compared to the control, (=) indicating no difference compared to the control,
and (+) indicating higher viability than the control. For each section, invasion was then
defined as either low, moderate, or high in a function of the area of invasion measured
(Figure 3). Interestingly, toxicity and invasion inhibition did not correlate. Compounds
that induced cell death sometimes still had high-to-moderate invasion, especially for the
NFk-B inhibitors which, despite their higher toxicity, allowed a high-to-moderate inva-
sion. In contrast, the tubulin inhibitors which do not show any significant toxicity, and
even favor the proliferation of cells, were what controlled most of the invasion. Based on
these results, we decided to select compounds with no toxicity like PNR-5-88 (COX-2 in-
hibitor) and PNR-7-84 (Tubulin inhibitor) for GBOs screening, with respectively moderate-
to very high invasion inhibition effects. We also selected JVM-3-55 (NFk-B) due to the
lack of toxicity (despite this group showing in majority a cytotoxic effect) combined with
invasiveness inhibition.
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Figure 3. Evaluation of invasion ability and implementation of an automatic invasion analysis
assay. Shown are brightfield images recorded on Cytation 5, using a 4× objective lens, overlayed
images from z-stack of embedded spheroids in a basement membrane matrix for 0, 24, and 48 h for
(a) DMSO, (b) JVM-3-55, and (c) ST-1459(B). Spheroids are large dark bodies in the center of images,
and invading cells are smaller dark protrusions from the central spheroid core. (d) Quantitation of
invasion was determined by the automatic measurement of the area of cells that invaded the matrix
(in pixels) for the different times of incubation (0, 24, and 48 h). Statistical analysis of significance was
done using two-way ANOVA with the control (DMSO) for the different times of invasion control
as the comparative model with the Dunnett model, ns (non-significant) for adjusted p > 0.05, * for
adjusted p ≤ 0.05, ** for adjusted p ≤ 0.01, *** p ≤ 0.001 For each experiment, n = 3. Scale bar: 200 µm,
brightfield images were recorded on Cytation 5 using a 4× objective lens.

2.3. Development of GBOs

Our GBOs are a type of organoid that was made not by dissociating tumors, but by
mincing tumors into small pieces (<1 mm) (Figure 4b,d) and culturing them under continu-
ous shaking to favor organoid formation, nutrient diffusion, and gas (oxygen) exchange,
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with serum-free conditions or in the presence of the basement membrane matrix [21,22].
To develop GBOs, we obtained fresh surgically resected GBM tumor tissue from consented
patients, which were biobanked and deidentified under Institutional Review Board (IRB)
protocol (#228443). In collaboration with our neurosurgical team [24], we confirmed that
our surgical specimens used for generation of GBOs did not have necrosis (Figure 4a). In
this study, GBOs were maintained for 15 days (Figure 4c), during which they generally
became rounded (Figure 4e–f), as observed in previous studies [21,22]. After 15 days, one
patient’s GBOs were seeded in Matrigel (without DMSO or compound) to validate their
invasive ability. As with the U-251 MG cell spheroid model, protrusions were visible after
24 h of incubation.
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Figure 4. Development of GBOs from: (a) a tumor resected in the operating room coming as a bulk
tumor, or (b) already dissociated in small pieces with a surgical blade until reaching less than 500 µm
size. (c) Small pieces of tumor are forming GBOs after 15 days in the incubator. (d) GBOs are cut into
small fragment pieces and incubated in media at t = 0. (e) GBOs after t = 7 days in culture media and
under permanent shaking. (f) GBOs after t = 15 days in culture media and under permanent shaking.
GBOs embedded in a matrix to verify invasion properties for (g) 0 h, (h) 24 h, (i) 120 h, and (j) 168 h.
Scale bar from (d) to (f): 1000 µm, obtained with x2.5 objective lens, under Evos microscope. Scale
bar from (g) to (j): 200 µm, brightfield images were recorded on Cytation 5, using a 4× objective lens.

2.4. Determination of Invasion Inhibition on GBOs by Selected Compounds

We processed different GBM organoids and selected 3 patients, referenced as follows:
35312, 36095, and 35456. After 15 days, triplicate GBOs from each patient were seeded with
either DMSO (control), JVM-3-55, PNR-5-88, or PNR-7-84, and embedded in Matrigel for 0,
24, 48, 72, 144, 192, 240, and 360 h. An automatic invasion assay protocol was applied to
determine the resulting invasion area outward from the GBOs and any potential inhibition
of invasion by the compounds (Figure 5). For patient 35312 GBOs, inhibition of invasion
was observed using all compounds and became significant after 192 h. For patient 36095
GBOs, inhibition of invasion was visible after 72 h for all three compounds. However, JVM-
3-55 was less inhibitive than PNR-5-88 or PNR-7-84. The imaging showed rounded GBOs
from this patient without the presence of invasive protrusions, except when in DMSO. For
patient 35456, none of the compounds inhibited the invasion from the GBOs. The imaging
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indicated a large presence of protrusions after about 72 h. Thus, cells from different patients
with the same GBM diagnosis exhibited different results to invasion inhibitors.
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Figure 5. Evaluation of invasion ability of selected compounds on GBOs from different patients. The
invasion was determined by automatic measurement of the area of cells invading into the matrix
(µm2) in a function of the different times of incubation for patients (a) 35312, (b) 36095, and (c) 35456.
The statistical analysis for significance was done using two-way ANOVA with the control (DMSO) for
the different times of invasion as the comparative model with the Dunnett model, ns (non -significant)
for adjusted p > 0.05,** for adjusted p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001. For each experiment,
n = 3. Brightfield images were recorded on Cytation 5 using a 4× objective lens, in z-stacks of
embedded GBOs in the matrix for 0, 72, 192, and 360 h with either DMSO, JVM-3-55, or PNR-5-88 for
patients 36095 (d) and 35456 (e). Scale bar: 200 µm.
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3. Discussion and Conclusions

Glioblastoma, due to their complex TME and a wide range of mutations, can invade,
infiltrate, and colonize close- and distant surrounding healthy brain tissue. Some current
in vitro models fail to mimic these in vivo characteristics, which delays the discovery and
development of small-molecule cancer inhibitors. The goal of this study was to evaluate a
panel of compounds which were already tested and screened in conventional 2D culture
and animal models in a patient-derived glioblastoma organoids model for their efficacy
in stopping the invasive properties of GBM cells. The ability to use this model to screen
compounds in 15 days allows for the potential to support clinical trials with the benefit
of evaluating new drugs that are the most effective for individual patients, developing
precision medicine as a new technique for the clinical management of GBM.

First, a GBM 3D culture as spheroids or organoids made from commercial cell lines
or = patient-derived cancer cells was used to investigate drug response and mechanisms of
resistance [39,40] and radioresistance [41]. Spheroids have also been shown to mimic inva-
siveness when implanted on an external basement membrane matrix, such as Matrigel [42],
but have been rarely studied in the case of GBM. One of the reasons is the difficultly of
processing a large number of recorded images using open-access software to quantify the
three-dimensional invasion of cells through the matrix. Using FIJI/ImageJ, INSIDIA [36],
and a new macro to enhance the depth of the imaging, we have been able to determine the
size of the area invading the surrounding core of the spheroids, allowing for the screen-
ing of a large number of compounds. Here, we have shown, by evaluating cytotoxicity
through an established standard curve, and invasiveness through the development of an
automatic invasion assay analysis, that the GBM spheroid model has an ability of invasion
in a basement membrane matrix for the screening of many compounds. As a proof of
concept, we studied the U-251 MG GBM cell line to develop the algorithm by using a fixed
concentration of the different compounds.

Our results recorded with the implementation of the algorithm encourage future work
on a larger number of GBM cell lines and, more specifically (1) GBM cell lines that are
part of the NCI-60 cell lines, and (2) patient-derived cells dissociated from GBM tumors.
We believe that the screening of compounds based on their cytotoxicity should also be
correlated with invasion data. This study highlights the evidence that toxicity can be
induced but invasion is still unaffected. Due to the diversity of compounds and their
mechanisms of action, as well as the diversity of GBM, the standardization of methods with
spheroids that are highly repeatable and easy to form, culture, and treat will be necessary
to identify specific genetic biological mutations that can be treated with specific types of
compounds to assess their IC50 and pharmacokinetics.

Despite the ability of spheroids to invade a basement membrane matrix, it is recog-
nized that spheroids lack cellular heterogeneity because they are made of only cancer cells.
Invasiveness is linked to cancer–TME crosstalk, and therefore more advanced 3D models
that replicate the complex TME are likely the ideal systems to study invasion [43–45].
Developing a GBM 3D model that also possesses a surrounding normal human brain mi-
croenvironment is another challenging hurdle. The emergence of human brain organoids
or organotypic models combining patient-specific GBMs that use both patient-derived
glioma stem cells (GSCs) and human stem cells looks to be very promising. Unlike animal
brains, which are used in PDX models, human brain organoids providing a species-specific
microenvironment show invasive protrusions and microtube networks [46,47]. The advan-
tages of such models will be their large scalability, reproducibility, and standardization.
These types of 3D cultures developed from stem cells reproducing the phenocopy of pa-
tients are extremely promising. However, they are costly in time (>30 days in general).
GBOs are a unique 3D model obtained from resected tumors with minimal processing and
the absence of manual or chemical dissociation, preserving tumor integrity and TME for at
least 2 weeks under in vitro culture.

Following recent achievements in the discovery of GBOs [22,23], we studied this new
model to evaluate its effectiveness on invasiveness of drugs and small-molecule inhibitors
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that have been effective on motility in 2D cultures [48], or invasiveness in simpler 3D
spheroid models, yet may not appear to be effective for patients in all cases or in clinical
trials. The rapid evaluation of compounds on the invasiveness of individual patient’s
cells in the more heterogeneous and tissue-like context of the GBO model may reveal
that such compounds are effective for some patient’s cells and not others, thus further
helping to guide a personalized therapeutic approach. Potential reasons for this could
be: (1) the resected tumors possess different invasiveness, being more or less aggressive
in a function of the patient; (2) the part of the tumor resected to make the GBOs was not
in an invasive niche of the tumor; (3) patients underwent different treatments and had
some GBM recurrence after radiation or chemotherapy, making it possible that the invasion
properties of the GBM changed with treatment; (4) the mutations in GBM differed between
the different patients.

A limitation of our pilot study with GBOs is that cytotoxicity was not assessed during
the drug screens. We were limited by the quantity of surgically resected tissue available and
the difficulty in imaging dense 3D structures in Matrigel. In future studies, we will assay
cytotoxicity contemporaneously with invasion while in Matrigel, and we are currently
working on optimizing these protocols.

Our study demonstrates that GBOs may be an attractive option to consider for assaying
invasion inhibition. This study was a pilot to assess the feasibility of this assay, as GBO-
based invasion has yet to be published to our knowledge. Another primary limitation
that we faced is controlling for the initial size of the GBOs. We are currently evaluating
automated systems which can decrease tissue handling time and allow for high throughput
scalability and size control. Previous studies that utilized 3D cancer spheroids have
demonstrated that size is related to drug diffusivity/penetration [49,50]. However, GBOs
are more complex, given the presence of various cell types and stroma. In the future, we will
determine the relationship between GBOs size and drug diffusion. To quantify diffusion,
fluorescently labeled drugs can be used in combination with two-photon microscopy which
can be used to image 3D models with high solidity [51]. We are currently developing these
methods to expand our model and address this current key limitation. Ultimately, our
goal is to begin the transition from this preclinical model to clinical implementation as a
functional precision medicine assay. A main advantage of the GBO model is its ability to
replicate the heterogenous microenvironment of the parent tumor [21,22]. Patient-derived
models using GBM surgical tissue have been implemented to assess drug efficacy and
guide clinical management [52]. To perform a large drug screening pipeline, the GBO
model requires more tissue than models in which the tumor is dissociated into cancer cells.
GBOs can be potentially ideal for smaller targeted drug panels than spheroids, as they
are able to be used in a relatively short time-period to allow integration with a patient
treatment scheme.

In conclusion, these results showed that a spheroid-and-GBO model combination can
be used to determine the invasion-inhibitive effects of a larger number of compounds, and
that our assay can quickly evaluate invasion with the use of an open-access plug-in imple-
mented in FIJI/ImageJ. Due to the inherent variability of GBOs given the heterogenous
nature of GBM, in future studies we advocate for the development of a high-throughput
system that can undergo both quantitative and qualitative analyses for drug screening.
These tools will support the scalability of drug screening in terms of numbers of com-
pounds, time of analysis (lower than the time of surgery recovery), numbers of patients,
and quantity of samples that can be used to investigate a new clinical trial set-up as well as
implementing a more personalized therapeutic approach.

4. Materials and Methods
4.1. Drug Panel Selected for Experimentation

Please see as Table 2.



Int. J. Mol. Sci. 2021, 22, 10720 12 of 16

4.2. Spheroid Culture, Standard Curve Generation, and Cellular Viability in 3D GBM Spheroids

U-251 MG cells (Sigma-Aldrich, St. Louis, MO, USA, #09063001) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Fisher Scientific, Hampton, NH, USA) sup-
plemented with 10% Fetal Bovine Serum (FBS), 3.2% nonessential amino acids (NEEA),
4 mmol/L L-Glutamine, and 100 U/mL penicillin, 100 U/mL streptomycin. All supple-
ments were from Fisher Scientific. Spheroids were cultured at 37 ◦C and 5% CO2. U-251
MG cell spheroids were grown by plating 5000 viable cells/well/100 µL using ultra-low
attachment round-bottom microplates (Corning, Bedford, MA, USA, #4515) at 37 ◦C and
5% CO2 in DMEM supplemented with 10% FBS, 1% nonessential amino acids (NEEA),
4 mmol/L L-Glutamine, and 100 U/mL penicillin, 100 U/mL streptomycin. Spheroids
were grown for 48 h, then treated with 10 µM final concentration of compound for an
additional 48 h. They were stained live with Calcein AM/Propidium Iodide (Invitrogen,
Waltham, MA, USA). Total fluorescence was read after 30 min, or spheroids were imaged
after 20 min using Cytation 5 (Biotek, Winooski, VT, USA). To generate standard viability
curves, U-251 MG cells were grown in DMEM supplemented with 10% FBS, 1% nonessen-
tial amino acids (NEEA), 4 mmol/L L-Glutamine, and 100 U/mL penicillin, 100 U/mL
streptomycin with a total of 10,000 cells per well at specific percentages of living cells (0, 20,
50, 80, and 100%) mixed with specific percentages of dead cells (100, 80, 50, 20, and 0%) to
equal 100%. Then, the wells were stained with Calcein AM/Propidium Iodide (Invitrogen).
Total fluorescence in each well was read after 30 min using Cytation 5.

4.3. Spheroid Culture for Invasion Assay

U-251 MG cell spheroids were grown by plating 5000 viable cells/well/100 µL using
ultra-low attachment round bottom microplates for 48 h, as above. After cooling the plate
for at least 30 min on ice, 100 µL of media was removed, and the spheroids were treated
with 10 µM of compound and 33% of Matrigel® (Corning #351234) final concentration.
Migration was observed at 0, 24, and 48 h using Cytation 5.

4.4. Spheroid Measurements for Automatic Invasion Assay Analysis

Spheroids treated with various compounds were imaged using brightfield microscopy
at 0, 24, and 48 h after treatment with a Cytation 5 Cell Imaging Multi-Mode Reader. Image
data for each spheroid consisted of 22 optical sections at different levels along the z-axis to
create a z-stack at each time point. Images were then processed, segmented, and measured
using the FIJI distribution of ImageJ [38].

Each z-stack of 22 optical sections had to be overlayed to form a single projection prior
to segmentation. The z-projections produced by Cytation 5 left spheroids out of focus and
were thus unsuitable for segmentation. To obtain an in-focus projection of each spheroid,
we used an ImageJ implementation of an extended depth-of-field algorithm to fuse each
stack into a single focus-stacked image [37]. Shade-off artifacts were then removed from
the resulting images using background subtraction in ImageJ.

Images were then segmented using the Trainable Weka Segmentation plugin included
with FIJI (trainable segmentation v3.1.2). [53,54] A classifier model was trained using
19 manually selected images representative of the different tumor spheroid morphologies
as well as types of extraneous debris found in the image data set. Image features were
assigned to one of two classes—“Spheroid” and “Background.” Tumor cells were assigned
to the “Spheroid” class, while extraneous debris was assigned to the “Background” class.
The resulting model was then used to classify the entire image data set and generate
binary masks outlining each tumor spheroid. The binary masks were then run through the
INSIDIA FIJI macro [36] to obtain two-dimensional tumor area measurements.

4.5. Collection, Dissection, and Processing of Patient Glioblastoma

Fresh surgically resected glioblastoma tissue was placed in sterile phosphate-buffered
saline and taken immediately to the lab. The tissue was distributed and placed in Hibernate
A medium and kept at 4 ◦C. For reliable organoid generation, it was imperative that the
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tissue was processed immediately, as a prolonged time between surgical removal and
tissue processing reduced the reliability of GBO generation.

The use of human brain tissue was coordinated by the University of Arkansas for
Medical Sciences (UAMS) Tissue Biorepository and Procurement Service (TBAPS) for bio-
specimen banking following the ethical and technical guidelines on the use of human
samples for biomedical research purposes under the Institutional Review Board-approved
protocol (IRB #228443) and general consent form. Patient glioblastoma tissues were col-
lected at the University of Arkansas for Medical Sciences after informed patient consent was
obtained, and all patient samples were de-identified before processing. A total of 3 patient
cases with the following demographic information (Table 3) were used for this study:

Table 3. Tumor/patient demographic information.

Sample ID Age Sex Diagnosis MGMT Mutation IDH Mutation

35312 36 Female Gliosarcoma, rare
glioblastoma, primary no no

36095 57 Male Glioblastoma, recurrent no no
35456 43 Female Glioblastoma, primary yes yes

The tissue was transferred to a sterile glass dish with H+GPSA medium containing Hi-
bernate A, 1× GlutaMax (Thermo Fisher Scientific), 1× PenStrep (Thermo Fisher Scientific),
and Amphotericin B (Thermo Fisher Scientific) for dissection under an Evos microscope
(Thermo Fisher Scientific) within a laminar flow biosafety cabinet. The resected tumors
were minced into approximately 0.5 to 1 mm diameter pieces using fine dissection scissors
(Fine Science Tools, Foster City, CA, USA) and washed with H+GPSA medium to remove
cellular debris. Pieces containing substantial amounts of necrosis or surrounding brain
tissue were removed. Tumor pieces were incubated in 1× RBC (red blood cell) lysis buffer
(Thermo Fisher Scientific) under gentle rotation for 10 min at room temperature to lyse the
majority of contaminating red blood cells. Once the RBC lysis buffer was aspirated, and
tumor pieces were washed with H+GPSA medium.

4.6. Generation of GBOs from Resected Patient Glioblastoma Tissue

The tumor pieces were distributed in ultra-low attachment 6-well culture plates (Corn-
ing, #CLS3471) with 4 mL of GBO medium containing 50% DMEM:F12 (Thermo Fisher
Scientific), 50% Neurobasal medium (Thermo Fisher Scientific), 1× GlutaMax (Thermo
Fisher Scientific), 1× NEAAs (Thermo Fisher Scientific), 1× PenStrep (Thermo Fisher Sci-
entific), 1× N2 supplement (Thermo Fisher Scientific), 1× B27 w/o vitamin A supplement
(Thermo Fisher Scientific), 1× 2-mercaptoethanol (Thermo Fisher Scientific), and 2.5 µg/mL
human insulin (Sigma) per well, and placed on an orbital shaker rotating at 120 rpm within
a 37 ◦C, 5% CO2, and 90% humidity sterile incubator. Roughly 75% of the medium was
changed every 48 h. Within the first week of culture, the tumor pieces often shed cellular
and blood debris, making the medium slightly cloudy. The shedding then ceased, and
the tumor pieces generally formed rounded organoids within an additional 1-2 weeks,
depending on patient-specific tumor growth characteristics. The criteria for the successful
establishment of GBOs from a given patient’s tumor was that the micro-dissected tumor
pieces survived for 2 weeks, developed spherical morphology, and continuously grew
in culture.

4.7. GBO Culture for Invasion Assay

After 2 weeks of growth, organoids were placed in an ultra-low attachment round
bottom 96-well microplate (Corning, #4515) in 100 uL GBO medium and placed in a 37 ◦C,
5% CO2, and 90% humidity sterile incubator. After cooling the plate for at least 30 min on
ice, 100 µL of media was added and the organoids were treated with 10 µM of compound
and 33% of Matrigel® (Corning #351234) final concentration.

Migration was observed at 0, 24, 48, 72, 144, 192, 240, and 360 h. using Cytation 5.
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