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Conventional tRNAs have highly conserved sequences, four-armed cloverleaf secondary
structures, and L-shaped tertiary structures. However, metazoan mitochondrial tRNAs
contain several exceptional structures. Almost all tRNAsSer for AGY/N codons lack the D-
arm. Furthermore, in some nematodes, no four-armed cloverleaf-type tRNAs are present:
two tRNAsSer without the D-arm and 20 tRNAs without the T-arm are found. Previously,
we showed that in nematode mitochondria, an extra elongation factor Tu (EF-Tu) has
evolved to support interaction with tRNAs lacking theT-arm, which interact with C-terminal
domain 3 in conventional EF-Tu. Recent mitochondrial genome analyses have suggested
that in metazoan lineages other than nematodes, tRNAs without the T-arm are present.
Furthermore, even more simplified tRNAs are predicted in some lineages. In this review, we
discuss mitochondrial tRNAs with divergent structures, as well as protein factors, including
EF-Tu, that support the function of truncated metazoan mitochondrial tRNAs.
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INTRODUCTION
As discussed in other articles in this special issue, conventional
tRNAs are highly conserved: they have a four-armed cloverleaf sec-
ondary structure and L-shaped tertiary structure (Figures 1A,B;
Jühling et al., 2009). However, some tRNAs encoded in mito-
chondrial DNA, particularly in metazoan (multi-cellular animal)
mitochondria, have diverged from standard form tRNAs in a vari-
ety of ways. In this review, we focus on mitochondrial tRNAs
(mt tRNAs) lacking either the dihydrouridine arm (D-arm) or
the ribothimidine arm (T-arm; Figures 1C,D). The function of
tRNA is to help decode mRNA into protein. tRNA collaborates
with a variety of proteins from post-transcription to decoding in
ribosomes. The unique characteristics of factors interacting with
such shrunken tRNAs have been uncovered over the past several
decades. In this review, these factors and their evolution will also
be discussed.

SHRUNKEN mt tRNAs
tRNAs LACKING THE D-arm
In the 1970s, D-arm-lacking tRNAs were at first identified as
non-tRNA molecules (a putative equivalent to cytoplasmic 5S
ribosomal RNA) because of their short length (Dubin and Friend,
1972; Dubin et al., 1974; Baer and Dubin, 1980). Since the iden-
tification of genes in mitochondrial DNA, these truncated tRNAs

have been proposed to be functional (Arcari and Brownlee, 1980;
de Bruijn et al., 1980). Virtually all metazoan mitochondria have
at least one of D-arm-lacking tRNA, namely tRNASer(GCU/UCU)
for AGY or AGN codons (Figure 1C; Jühling et al., 2009). In addi-
tion, some animal mitochondria have additional D-arm-lacking
tRNAs, such as tRNASer(UGA) in chromadorean nematodes (Oki-
moto et al., 1992), and tRNACys in some vertebrates (Seutin et al.,
1994).

The secondary structures of D-arm-lacking tRNAs have been
classified into several groups based on the base pairs in T and
anticodon stems (Steinberg et al., 1994). Experimental verifica-
tions of the secondary and tertiary structures have been performed
using chemical modification, limited enzymatic digestion, nuclear
magnetic resonance (NMR) spectroscopy, and native gel elec-
trophoresis (de Bruijn and Klug, 1983; Ueda et al., 1985; Hayashi
et al., 1997; Frazer-Abel and Hagerman, 1999, 2004; Ohtsuki et al.,
2002a). Although these results support the coaxial stacking of T
and acceptor stems (Frazer-Abel and Hagerman, 2008), this idea
is somewhat controversial, possibly because of the structural flex-
ibility of the D-arm-lacking tRNAs themselves (Frazer-Abel and
Hagerman, 2008). The shortest possible D-arm-lacking tRNA was
suggested to be 54 nt long (Steinberg et al., 1994).

Aminoacylation and EF-Tu binding of D-arm-lacking
tRNAs have been demonstrated (Ueda et al., 1985, 1992;
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FIGURE 1 | Secondary and tertiary structures of tRNAs. (A) Cloverleaf
tRNA. (B) L-shape tertiary structure of cloverleaf tRNA (Saccharomyces
cerevisiae tRNAPhe, PDB code 6TNA). (C) D-arm-lacking tRNA (bovine
mt tRNASer(GCU), accession number: X15132. Modification data
from tRNAdb (Jühling et al., 2009), tRNAdb ID: tdbR0000402).
(D) T-arm-lacking tRNA (Ascaris suum mt tRNAMet, accession number:
D28746; Watanabe et al., 1994; Sakurai et al., 2005b). (E) L-shape model

of T-arm-lacking tRNA (Ohtsuki et al., 1998) built with reference to the
crystal structure of yeast tRNAPhe. This model was built from
computational analysis including molecular dynamics calculations to
arrange the base locations according to tertiary interactions deduced
from NMR observations (Ohtsuki et al., 1998), sequence alignment
(Wolstenholme et al., 1994), and structural probing experiments
(Watanabe et al., 1994).

Yokogawa et al., 1989, 2000; Kumazawa et al., 1991; Watanabe
et al., 1994; Hanada et al., 2001; Shimada et al., 2001; Ohtsuki
et al., 2002a; Chimnaronk et al., 2005; Suematsu et al., 2005).
Translation with an unmodified D-arm-lacking mammalian mt
tRNASer(GCU) derivative with a GAA anticodon has been investi-
gated using a cell-free system (Hanada et al., 2001). The ability to
form a ternary complex with EF-Tu/GTP of the tRNASer(GCU)
derivative is similar to that of the tRNASer(UGA) derivative,
which has a four-armed cloverleaf secondary structure (Hanada
et al., 2001). However, the amount of peptides produced using
tRNASer(GCU) derivative is lower than that produced using
tRNASer(UGA) derivative (Hanada et al., 2001).

tRNAs LACKING THE T-arm
T-arm-lacking tRNA genes were identified in nematode mito-
chondria in Wolstenholme et al. (1987). Since then, T-arm-lacking

tRNA genes have also been found in mitochondrial DNA in other
lineages of animals, such as Arthropoda (Masta, 2000). They
have a TV replacement loop instead of a variable loop and T-
arm (Figure 1D). Isolation of nematode mt T-arm-lacking tRNAs
has been performed with preparative gel electrophoresis and/or
solid-phase DNA affinity purification (Watanabe et al., 1994, 1997,
Ohtsuki et al., 1998; Sakurai et al., 2005a,b).

Basically, intramolecular interactions in T-arm-lacking tRNAs
are thought to be identical to those in conventional tRNAs, except
for interactions between T- and D- arms, because of conserva-
tion around the D-arm and the similarity of the 5′ region in
the TV replacement loop to the variable loop region (Watanabe
et al., 1994; Wolstenholme et al., 1994). As an analog of cloverleaf-
type tRNA, an L-shape-like structure of T-arm-lacking tRNAs has
been proposed (Watanabe et al., 1994; Wolstenholme et al., 1994).
Hypothesized interactions have been supported by chemical and
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enzymatic probing and NMR spectroscopy (Figure 1E; Watanabe
et al., 1994; Ohtsuki et al., 1998).

The aminoacylation capacity of T-arm-lacking nematode mt
tRNAs has been demonstrated with mt extract or recombinant
enzymes (Watanabe et al., 1994; Ohtsuki et al., 1996; Chihade et al.,
1998; Lovato et al., 2001; Sakurai et al., 2005b; Arita et al., 2006).
Furthermore, the formation of a tertiary complex of a T-arm-
lacking aminoacyl tRNA/EF-Tu/GTP has been detected (Ohtsuki
et al., 2001; Arita et al., 2006).

In nematode mt T-arm-lacking tRNAs sequenced at the RNA
level, the 1-methyladenosine at position 9 is strictly conserved
(Watanabe et al., 1994, 1997; Sakurai et al., 2005a,b; see also Oht-
suki and Watanabe, 2007). This modification helps maintain the
tertiary structure of the tRNA, and also aids in efficient aminoa-
cylation and formation of the ternary complex with EF-Tu/GTP
(Sakurai et al., 2005b).

tRNAs POTENTIALLY LACKING BOTH D- AND T-arms
As mentioned above, the shortest biochemically characterized
tRNA is a 54-nt long mt tRNASer(UCU) from the nematode
Ascaris suum (Watanabe et al., 1994). A computational survey
of mitochondrial tRNA genes predicted the presence of tRNA
genes lacking both D- and T-arms (Jühling et al., 2012a,b). More
recently, after the submission of the abstract of this review, RT-
PCR analyses using 5′- and 3′-RACE showed that such putative
tRNA genes are indeed transcribed, and the transcripts even have
a 3′CCA sequence in the nematode Romanomermis culicivorax
(Wende et al., 2014). Note that some tRNAs are imported from the
cytoplasm into the mitochondria in some animals (Rubio et al.,
2008), suggesting that imported tRNAs may function in place
of mitochondrial-encoded putative tRNAs lacking both D- and
T-arms. Thus, functional analysis of such extremely truncated
putative tRNAs is critical.

FACTORS INTERACTING WITH tRNAs LACKING D- OR T-arms
AMINOACYL tRNA SYNTHETASES
Aminoacyl tRNA synthetases recognize a cognate tRNA and add
an aminoacyl moiety to its 3′ end. The major recognition sites
of the enzymes in tRNAs are the anticodon, a discriminator base
at position 73, and the acceptor stem (Giegé et al., 1998). In fact,
in the case of alanyl-tRNA synthetases, even the mitochondrial
enzyme uses the acceptor stem as a major recognition site (Chi-
hade et al., 1998). However, some of the enzymes also use the
D-arm in tRNA [e.g., Escherichia coli isoleucyl-tRNA synthetase
(Nureki et al., 1994)]. Whether the mitochondrial counterparts
of such enzymes encoded in nuclear genome still use D-arms as
recognition sites is an interesting issue yet to be investigated. If
so, even if a tRNA lost its T-arm, the enzyme could still add the
aminoacyl moiety to the shrunken tRNA.

On the other hand, seryl-tRNA synthetase (SerRS) uses recog-
nition sites other than the anticodon and acceptor stem. Bacterial
SerRS recognizes T- and characteristic long variable arms in
bacterial tRNASer (Asahara et al., 1994) using the N-terminal
coiled–coil region (Biou et al., 1994). However, metazoan mt
tRNASer has lost its long variable arm, and even the D-
arm is absent in tRNASer(GCU/UCU). Thus, how mt SerRS
recognizes mt tRNASer without its long variable arm is an

interesting question. Earlier studies suggested that mammalian
mt SerRS can recognize not only mt tRNASer but also bac-
terial tRNASer; however, bacterial SerRS could not recognize
mt tRNASer (Kumazawa et al., 1991). Also, mammalian mt
SerRS recognizes the T-loop of both D-arm-lacking tRNASer

and cloverleaf-type tRNASer(UGA) without the long variable
arm, and further requires a T-loop/D-loop interaction with
tRNASer(UGA) (dual-mode recognition; Ueda et al., 1992; Shi-
mada et al., 2001). The crystal structure of a mammalian mt
SerRS, a model of it complexed with tRNA, and mutational anal-
yses suggest that the N-terminal coiled–coil region, the distal
helix, and the C-tail interact with the T-arm of mt tRNASer

(Chimnaronk et al., 2005, Figure 2). Mutational analysis of
mammalian mt SerRS showed the substitution of some of the
residues in N-terminal coiled–coil region (shown in stick model
in Figure 2B) reduced the aminoacylation activities of either
one of two mt tRNAsSer or both, suggesting that interaction
of these residues with the tRNA in the enzyme-tRNA com-
plex (Chimnaronk et al., 2005, Figure 2B). To maintain these
interactions, the movement of N-terminal coiled–coil region
(shown as a red arrow) is expected (Chimnaronk et al., 2005,
Figure 2B). Furthermore, mutational analysis of the enzyme sug-
gested that, for the recognition of tRNASer(UGA) which have
T-loop/D-loop interaction, Arg24, Tyr28 and Arg32, in the dis-
tal helix and the Lys93 and Arg122 on the N-terminal coiled–coil
region are important (Figure 2B). On the other hand, for the
D-arm-lacking tRNASer(GCU), Arg24 and Arg32 flanking the
distal helix, and Arg129 on the N-terminal helical region are
crucial (Figure 2B). Thus, with the dual-mode recognition, mam-
malian mt SerRS recognizes two tRNASer isoacceptors which
have different secondary structures using distinct sets of the
residues.

Interestingly, in chromadorean nematode mt, two tRNAsSer

have lost their D-arms, but the remaining 20 tRNAs have lost
their T-arms. It is of interest whether nematode mt SerRS
also recognize the T-arm. If so, that may explain why only
tRNAsSer have kept their T-arms in nematode mitochondria. How-
ever, it seems reasonable that the secondary structure of tRNA
is governed by EF-Tu and ribosomes rather than aminoacyl-
tRNA synthetase (ARS) during evolution, because the recognition
mode of each ARS is constrained by only one or a few tRNA,
while that of EF-Tu or the ribosome is constrained by over 20
tRNAs.

EF-Tu
The EF-Tu/GTP complex delivers aminoacyl-tRNAs to the A-site
in ribosomes. Bacterial EF-Tu binds to the aminoacyl-moiety,
a part of acceptor stem, and the T-arm (Nissen et al., 1995;
Figure 3A), and it cannot bind to a tRNA analog missing
the T-arm (Rudinger et al., 1994). In mitochondria, nuclear-
encoded EF-Tu exists. Due to the presence of aminoacyl-tRNAs
missing the T-arm in nematode mitochondria (Watanabe et al.,
1994; Ohtsuki et al., 1996), the EF-Tu counterpart in nematode
mitochondria should use an alternative binding mode for T-
arm-lacking tRNAs. In fact, nematode mitochondria have two
EF-Tu homologs, and only one of them (EF-Tu1) binds to
T-arm-lacking tRNAs (Ohtsuki et al., 2001; Arita et al., 2006).
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FIGURE 2 | (A) Docking model of mammalian mt SerRS and yeast tRNAPhe

(Chimnaronk et al., 2005). Two subunits of the enzyme are shown in green
(monomer 1), and gray (monomer 2), respectively. Distal helix of monomer
1 and C-tail of monomer 2 which are mitochondrial-specific extensions and
possibly interact with the tRNA, are shown in yellow and pink, respectively.
In the tRNA, D-arm, variable loop, and T-arm are shown in purple, sky blue,

and red, respectively. (B) Putative interactions between the N-terminal
coiled–coil region and the C-tail distal helix with the T-arm of the tRNA. The
interactions are inferred by mutational analysis of the enzyme (Chimnaronk
et al., 2005). Residues in N-terminal coiled–coil region and distal helix
involved in the interaction with tRNA are shown in stick model (Chimnaronk
et al., 2005).

Caenorhabditis elegans mt EF-Tu1 has an approximately 60 amino-
acid extension at the C-terminus (domain 3′) that is essential
for binding to T-arm-lacking tRNAs (Ohtsuki et al., 2001; Saku-
rai et al., 2006). The extension likely interacts with the D-arm
region of T-arm-lacking tRNAs through positive charges in Lys
residues (Sakurai et al., 2006; Figures 3B,C). Interestingly, C. ele-
gans mt EF-Tu1 lacks binding ability to cloverleaf-type tRNAs
(Ohtsuki et al., 2001), which are missing in C. elegans mito-
chondria (Okimoto et al., 1992). In another lineage of nematode,
Trichinella, mitochondria have T-arm-lacking tRNAs, cloverleaf-
type tRNAs, and D-arm-lacking tRNAsSer (Lavrov and Brown,
2001). Trichinella also have two EF-Tu homologs, and one of them
(EF-Tu1) binds to both T-arm-lacking tRNAs and cloverleaf-type
tRNAs (Arita et al., 2006). Interestingly, Trichinella mt EF-Tu1
has a 41-residue C-terminal extension shorter than that in C.
elegans mitochondria (Arita et al., 2006). A mutant of C. ele-
gans mt EF-Tu1 with a 13-residue deletion at the C-terminus
(43-residue extension left) cannot bind to T-arm-lacking tRNAs
(Sakurai et al., 2006). Although the detailed tRNA binding mode
of Trichinella mt EF-Tu1 has not been elucidated, it could be
similar but not identical to that of C. elegans mt EF-Tu1. Note
that C. elegans EF-Tu1 binds to only T-arm-lacking tRNAs, while
Trichinella EF-Tu1 binds to T-arm-lacking tRNA, D-arm-lacking
tRNA, and cloverleaf tRNA (Ohtsuki et al., 2001; Arita et al.,
2006).

Nematode mitochondria have another EF-Tu homolog,
EF-Tu2. Nematode mt EF-Tu2 has a short (about 15-residue)
C-terminal extension, and it binds to D-arm-lacking tRNASer,
but not to T-arm-lacking or cloverleaf-type tRNAs (Ohtsuki et al.,
2001; Suematsu et al., 2005; Arita et al., 2006). C. elegans mt EF-Tu2
binds to a region of the T-arm exposed due to the missing inter-
action between the T-arm and D-arm (Figures 3D,E; Suematsu
et al., 2005). Interestingly, D-arm-lacking tRNAs in this species
have anticodons for serine, and EF-Tu2 binds only to Ser-tRNA
and accepts neither Ala-tRNA nor Val-tRNA with the same back-
bone (Ohtsuki et al., 2002b; Arita et al., 2006). This is likely due to
the evolution of the aminoacyl-moiety binding pocket in EF-Tu2
to specialize in binding with the seryl moiety because of a unique
adaptation in Ser-tRNA (Sato et al., 2006).

More recently, in some taxa other than the nematodes, such as
Arthropoda, there have been mitochondrial T-arm-lacking tRNA
genes discovered (Masta, 2000). Interestingly, there are two mt
EF-Tu genes in arthropods (Ohtsuki and Watanabe, 2007). The
functional differences between the two EF-Tu homologs in these
species should be elucidated, and this project is in progress in our
laboratory.

FUTURE PERSPECTIVES
Besides ARS and EF-Tu, other factors such as tRNA termi-
nal nucleotidyltransferases (CCA enzymes) and ribosomes could
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FIGURE 3 | (A) Ternary complex of conventional tRNA/EF-Tu/GTP (Nissen
et al., 1995). (B) Summary of ethylnitrosourea (ENU) modification
interference studies of T-arm-lacking mt tRNA with C. elegans mt EF-Tu1
(Sakurai et al., 2006). The phosphate groups important for EF-Tu1 binding
are shown with arrows. (C) A model of the ternary complex of
T-arm-lacking tRNA/mt EF-Tu1/GTP (Sakurai et al., 2006). The model was
based on the structure shown in (A) and in Figure 1E. A possible
interaction between the C-terminal extension of EF-Tu1 and the region
around position 9 in T-arm-lacking tRNA is suggested by modification
interference as summarized in (B), cross-linking studies, and the tRNA
binding activity of the C-terminal deletion mutants of EF-Tu1 (Ohtsuki et al.,

2001; Sakurai et al., 2006). (D) Summary of ENU modification interference
study of D-arm-lacking mt tRNA with C. elegans mt EF-Tu2 (Suematsu
et al., 2005). The tRNA structure was inferred from the model proposed by
Steinberg and his co-workers (Steinberg et al., 1994). The phosphate groups
important for EF-Tu2 binding are shown by arrows. (E) A model of the
ternary complex of D-arm-lacking mt tRNASer/C. elegans mt EF-Tu2/GTP
(Suematsu et al., 2005). A possible interaction between the C-terminal
extension of EF-Tu2 and acceptor-T helix in D-arm-lacking tRNA is
suggested by modification interference study as summarized in (D), binding
assays of mutant tRNAs, and the binding activity of EF-Tu mutants with
C-terminal deletions (Suematsu et al., 2005).

be interesting in terms of their interactions with shrunken mt
tRNAs.

After the trimming of 3′ extra sequences, 3′CCA sequences
are added to 3′ ends of pre-tRNAs by CCA enzymes (Deutscher,
1983). The bacterial CCA enzyme binds to the acceptor-T helix
of pre-tRNA (Tomita et al., 2004), and thus a T-arm-lacking
tRNA precursor is not a good substrate for the bacterial CCA
enzyme (Tomari et al., 2002). On the other hand, the chro-
madorean nematode C. elegans has two genes for CCA enzymes,
one of which encodes a putative mt CCA enzyme (Tomari et al.,
2002). The recombinant (putative) mt CCA enzyme of C. elegans

can recognize and efficiently add a CCA sequence, not only to
conventional cloverleaf tRNAs, but also to T- or D-arm-lacking
tRNAs (Tomari et al., 2002). It would be interesting to know how
the nematode mt enzyme recognizes T-arm-lacking mt tRNAs
efficiently.

During translation, conventional bacterial tRNA interacts with
several sites in the ribosome (reviewed by Khade and Joseph,
2010). In bacterial ribosomes, the T-arm of P-site tRNA inter-
acts with ribosomal protein L5 (Korostelev et al., 2006; Selmer
et al., 2006). At the A-site, the T-arm of tRNA interacts with
ribosomal protein L16 (Selmer et al., 2006; Voorhees et al., 2009).
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The residues in the A-site finger (helix 69) of 23S rRNA inter-
act with the D-arm of tRNA at the A- and P-sites (Korostelev
et al., 2006; Selmer et al., 2006; Voorhees et al., 2009). In a struc-
tural model of C. elegans mt rRNAs, the corresponding rRNA
positions exist (Mears et al., 2002). At the E-site, residues in the
T- and D-loops interact with ribosomal protein L1 and helices
76, 77, and 78 in 23S rRNA (e.g., the L1 stalk; Korostelev
et al., 2006; Selmer et al., 2006). Interestingly, the correspond-
ing regions in nematode mt rRNA are missing (Mears et al.,
2002). In general, mitochondrial ribosomal proteins are enlarged
compared to their counterparts in bacteria (Koc et al., 2000;
Suzuki et al., 2001), suggesting that mitochondrial ribosomal pro-
teins may have alternate binding modes for truncated tRNAs.
Further structural analysis of metazoan mt ribosomes (Sharma
et al., 2003; Greber et al., 2014) would be helpful to reveal the
detailed interaction mode between mt ribosomes and shrunken
mt tRNAs.

Structural alterations of metazoan mt tRNAs have been com-
pensated for by several interacting factors. The mode of com-
pensation by these factors may explain why metazoan tRNAs have
undergone truncation during evolution. Further investigation into
the detailed binding modes between shrunken tRNAs and the
interacting factors that co-evolved with them will shed light on
how truncated tRNAs evolved.
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