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Abstract: Biocompatible nanogels are highly in demand and have the potential to be used in various
applications, e.g., for the encapsulation of sensitive biomacromolecules. In the present study, we
have developed water-in-oil microemulsions of sodium alginate sol/hexane/Span 20 as a template
for controlled synthesis of alginate nanogels, cross-linked with 3d transition metal cations (Mn2+,
Fe3+, and Co2+). The results suggest that the stable template of 110 nm dimensions can be obtained
by microemulsion technique using Span 20 at concentrations of 10mM and above, showing a zeta
potential of −57.3 mV. A comparison of the effects of the cross-links on the morphology, surface
charge, protein (urease enzyme) encapsulation properties, and stability of the resulting nanogels
were studied. Alginate nanogels, cross-linked with Mn2+, Fe3+, or Co2+ did not show any gradation
in the hydrodynamic diameter. The shape of alginate nanogels, cross-linked with Mn2+ or Co2+, were
spherical; whereas, nanogels cross-linked with Fe3+ (Fe–alginate) were non-spherical and rice-shaped.
The zeta potential, enzyme loading efficiency, and enzyme activity of Fe–alginate was the highest
among all the nanogels studied. It was found that the morphology of particles influenced the percent
immobilization, loading capacity, and loading efficiency of encapsulated enzymes. These particles are
promising candidates for biosensing and efficient drug delivery due to their relatively high loading
capacity, biocompatibility, easy fabrication, and easy handling.

Keywords: sodium alginate; nanogels; template-based synthesis; enzyme; polycation cross-linker

1. Introduction

The linear copolymer of α-L-guluronic acid (G) and β-D-mannuronic acid (M) residues
have an inherent ability to form alginate hydrogels by ionotropic gelation with divalent
and trivalent metal cations [1]. The cation cross-linked alginate hydrogels have found
applications in a variety of fields such as environmental sciences, food sciences, biomedical
sciences, and nanotechnology, including use as cell scaffolds for islet cell immobiliza-
tion [2,3], 3D bioprinting [4], delivery systems for pharmaceuticals [5–7], sorbents for the
sequestration of metals in contaminated aqueous solutions [8,9], substrates for microflu-
idics [10], components in the production of foods and beverages [11], and food coating
material for fresh fruits and cut fruits and vegetables to reduce lipid oxidation [12]. The
discreet applications of the alginate hydrogels necessitate deriving the size range and
shape of these gel particles, which can show superior functions in the biosystems. A vast
majority of studies related to alginate gelation, structure, and application are based on
alginate gel particles measurements ranging between >1 mm (macro), 0.2–1000 µm (micro),
and <0.2 µm (nano), containing calcium ions as the most frequently used cross-linking
agent [13,14]. The structural analysis has revealed that divalent and trivalent cations are
able to form a complex with the G-units of two alginate linear polymer chains, forming
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a cooperative egg-box structure; thereby, two linear chains of polymer are linked by a
cross-link [15–17]. The naturally occurring alginate’s affinity for divalent cations differ in
the following order: Pb > Cu > Cd >Ba > Sr > Ca > Co, Ni, Zn > Mn [18,19]. This evokes
the pre-eminent importance for the choice of ions in the preparation and application of
alginate gel particles [20,21]. The insight into the chain folding mechanism of alginates and
the local structures of alginate gels, developed by the interactions between uronic units
and cross-linking ions, have been provided by computational studies [17,22,23]. Varied
metal cations (Cu2+, Zn2+, Sr2+, etc.), other than Ca2+, are increasingly explored in novel
production techniques or to tailor the properties of alginates in the development of new
functional biomaterials. Studies have revealed the application of calcium ion cross-linked
alginate (Ca–alginate) capsules [24] for encapsulation of magnetic iron oxide nanoparticles
and its application as contrast agents in magnetic resonance imaging (MRI). Later, Morch
et al. [21] showed that alginate gels cross-linked with manganese cations (Mn–alginate)
with lower stability can be exploited as a system for controlled release of manganese ions
(Mn2+) applicable in the manganese-enhanced MRI (MEMRI). These reports indicate that
the mechanical properties of alginate hydrogels can be modulated with different divalent
cations as needed. Furthermore, magnetically responsive hydrogels spheres can also be
fabricated by cross-linking with paramagnetic ions-Ho3+ which assemble in magnetic field
gradients. Winkleman et al. showed that it can be used as a matrix to introduce recover-
able sensors or reagents to aqueous mixtures [25]. The creation of cross-linking with the
available pool of cations has been realized to provide the starting material of investigations
into their potential role in biological estimations. Calcium ion cross-linked alginate (Ca–
alginate) is known to be an unfavorable substrate for cell-cultures; whereas, Fe–alginate is
able to overcome the deficiencies of Ca–alginate, such as poor protein adsorptive capacity.
Thus, Fe–alginate is an effective alternate as cell culture media [26]. As an alternate to Ca2+,
both Ba2+ and Sr2+ produce stronger, yet still biocompatible, alginate gels [20,27–29]. The
continued investigations into the photo-induced transition of Fe (III)/ Fe (II) alginates by
Giammanco et al. [30] have shown that visible-light-responsive alginate gel beads, cross-
linked with Fe (III) (Fe–alginate), can act as stable carriers for different molecules as diverse
as the dye Congo Red, the vitamin folic acid, and the antibiotic chloramphenicol. The
requisite abstraction and control of the Fe–alginate beads are relayed through their photo-
responsive nature, which have been exploited for the controlled-release of the encapsulated
cargo [30]. Microcapsules of alginate biopolymer cross-linked with Ni2+ and Co2+ have
been exploited as templates for the controlled growth of Cobalt (Co) and Nickel (Ni) mag-
netic nanoparticles and Co–Ni nanoalloys [31]. Similarly, sodium alginate polymer with
high guluronate content was ion-exchanged with transition-metal ions for the development
of heterogeneous catalysts in the industrial application [32]. Iron binding properties of
alginates are routinely used in the fabrication of iron–oxide nanoparticles [33]. In acidic
pH conditions comparable to gastric juices, alginate and iron interact to form iron–oxide
centered nanoparticles [34]. Alginate microbeads, made of high-G alginate gelled with a
combination of calcium and a low concentration of barium ions, is recommended for islet
transplantation in mice [20,35]. Alginate gel beads with a combination of Ca2+ and Co2+

can be used for the encapsulation of human adipose-derived mesenchymal stem cells and
their application in cartilage repair [36]. Thus, unique functional properties can be added
into the alginate hydrogel polymer network by incorporating the specific metal ions.

A vast majority of alginate particles exist as spheres or beads, synthesized by either
internal or external gelation [16,37,38]. However, the formation of alginate nanogels is less
common in comparison with nanoparticles of other synthetic polymers [14]. Nanoparticles
smaller than 1 µm have many advantages over larger alginate particles in having high sur-
face/volume ratio, high reactivity, and catalytic activity, and so on [39,40]. These properties
enable higher encapsulation efficiency of biomolecules in the 3D architecture of hydrogels,
lower inactivation of the bioactive molecule due to lower molecular orientation problems,
and a wet environment, which improves biomolecular stability [41,42]. The preparation
method used to obtain nanoparticles defines the nano-sized system as nano-aggregate [43],
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nano-capsules [44,45], and nano-spheres [46,47]. This calcium-based nanogel particle can be
synthesized by adjusting the polymer concentration and calcium ion concentration [48]. It
can be used for encapsulation of ferrous ions, which could be exploited for oral delivery of
iron [49]. Xue et al. have shown that the pH responsive property of anionic sodium alginate
(SA) can be used for the encapsulation of cationic doxorubicin (DOX) via electrostatic inter-
actions, followed by in situ cross-linking with calcium ions under ultrasonic bath. These
pH-responsive nanogels can be further used for cancer therapy [50]. Typically, alginate
nanogels cross-linked with calcium ions are expended for various preparation methods and
applications [46,50–54]. As an alternative to calcium, we reported the synthesis of barium–
alginate and strontium–alginate nanogels [55]. The comparison of the physicochemical
characteristics and enzyme encapsulation abilities of these nanogels revealed the superior
mechanical and biocompatible nature of barium–alginate nanogel.

In the present study, we used reverse micellar aggregates of lipophilic surfactant as a
template for alginate nanogel synthesis. The critical concentration of surfactant required for
the generation of a stable reverse-micellar template for alginate nanogel is not documented.
We report the inceptive details of determining the critical micelle concentration (CMC)
of surfactant in the alginate sol/hexane-system required for the templating of nanogel
synthesis. The template has been used for the development of alginate nanogel cross-
linked with different 3d transition metal cations. Urea has always been an analyte that has
received much attention because of its vital effect in clinical applications [56], food analyses,
enzymatic micromotors and nanomotors [57]. The urease–urea reaction is extensively used
in synthesizing photonic devices, biomaterials, sensors, and actuators, etc., all composed
of polymeric materials [58]. In these immobilized, urease enzyme-based systems, the
critical issue is maintaining the stability, activity, and function of the enzyme as close
as possible to its native state [59]. The application of immobilized enzymes is preferred
due to their ease of handling, prolonged availability, robustness, increased resistance to
environmental changes, and reusability [60]. The characteristics of immobilized enzymes
are controlled by the properties of both the enzyme and the support matrix. The present
study is designed to prepare alginate nanogels using various polyvalent ions (Mn2+, Fe3+,
and Co2+) as cross-links, and to compare the effects of these cross-links on the morphology,
surface charge, protein (urease enzyme) encapsulation properties, and stability of the
resulting nanogels. The success of urease immobilization was determined by the study of
various immobilization parameters, i.e., enzyme loading and specific enzyme activity. Our
study suggests new directions for the development of alginate nanogels cross-linked with
transition metal cations (Mn2+, Fe3+, and Co2+) for different applications, including food
and beverages, biosensors, wastewater treatment, and dialysate regeneration, etc.

2. Materials and Methods

Sodium alginate (mol. wt. 120,000–190,000), urease, and sorbitan monolaurate
(Span 20) were purchased from Sigma-Aldrich, New Delhi, India. Calcium chloride,
manganous chloride, ferrous chloride, cobalt chloride, sodium chloride, Nessler’s reagent,
and urea were supplied by Fisher Scientific, New Delhi, India. Hexane was supplied by
CDH, New Delhi, India. All chemicals were of analytical grade (AR) and were used as
received. Triple distilled water was used throughout the experiments.

2.1. Preparation of Alginate Nanogels and Encapsulation of Urease Enzyme

The alginate nanogels, cross-linked with different transition metal cations, were pre-
pared as reported earlier (55). In brief, the organic phase (hexane, 10 mL), containing Span
20, was taken in a vial, and the sodium alginate solution (0.2%) was prepared in Tris-acetate-
saline buffer (100 mM, pH 7.2) was added dropwise under constant stirring at 500 rotations
per minute (rpm). Different phases appeared (transparent to turbid) during the process of
adding alginate solution at different surfactant concentrations, which lead to the formation
of water-in-oil reverse micelles (W/O). The reverse micelles so formed was characterized
using dynamic light scattering (DLS) instrument and the size of microemulsion droplets
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were determined. The alginate nanogel particles were prepared by using W/O reverse
micelle with droplet size 110 nm. The W/O reverse micelle was stirred for 30 min and
10 mL (100 mM) of filtered solutions containing divalent cations (MnCl2, FeCl3, CoCl2) were
added dropwise, which led to cross-linking of the polymer chains. After careful washing
with deionized water to remove surfactant and hexane, the vial was centrifuged at 3000× g
for 30 min, and small white pellets of alginate nanogels were obtained. The pellets were
re-suspended in Tris-acetate-saline buffer for successive studies. The overall procedure for
the encapsulation of urease into the alginate nanogels was same as described above, except
that the urease enzyme was pre-mixed with 0.2% alginate solution.

2.2. Characterization
2.2.1. Size Determination and Surface Charge Studies

The microemulsion or the colloidal suspension of alginate nanogels, or both (1 mL
sample), was placed in a quartz cuvette and analyzed using DLS (Malvern Zetasizer-Nano
ZS (Malvern, UK) instrument, S-90) to estimate the mean hydrodynamic diameter and
the polydispersity index (PDI). The mean hydrodynamic radii and intensity-averaged size
distributions were obtained from the raw data using the general-purpose inverse Laplace
transformation method provided in the instrument software. The PDIs were estimated
from cumulant analysis, which is also provided with the instrument software.

To measure the zeta potential in the electrophoretic light scattering (ELS) mode, the
alginate nanogels, containing different cross-link ions (Mn2+, Fe3+, Co2+) with 0.5 w/v
particle concentration, were suspended in water and placed in a standard cell slowly to
avoid air bubbles. When the cell was inserted into the Zetasizer, electrodes positioned on
either side of the cell holder supplied the voltage necessary to perform electrophoresis. The
zeta potentials were calculated automatically at 25 ◦C by the instrument, determining the
electrophoretic mobility using the Henry equation [61]. Each sample was run in triplicate,
and the average of the three readings was reported.

2.2.2. SEM-EDX Measurement

The surface morphologies (shape and formation of aggregates) and sizes of alginate
nanogels were studied using scanning electron microscopy (SEM). Specimen preparation
was performed as follows: the lyophilized nanogels were first suspended in ethanol,
mounted on stubs and sputter-coated with gold. Micrographs were taken using an SEM
instrument (Model S-4800 microscope, Hitachi, Tokyo, Japan). The nanogels mounted on
stubs were further used to analyze the presence of metal cations by using an electron probe
X-ray microanalyzer in energy dispersive X-ray spectrometry (EDX) mode.

2.2.3. FT-IR Spectral Study

Samples of sodium alginate, urease, and encapsulated urease in different alginate
nanogels cross-linked with Mn2+, Fe3+, and Co2+ were lyophilized before performing
the FT-IR analysis. The FT-IR spectra were recorded on a Perkin-Elmer spectrometer
(model: Spectrum RXI–Mid IR). The spectra were collected from 4000 to 400 cm−1 in the
transmission mode.

2.3. Enzyme Assay

Enzyme activity of soluble and immobilized urease was determined by a spectropho-
tometric method [62]. The appropriate amount of soluble or immobilized urease was
incubated in 0.1 M urea with intermittent shaking. The amount of NH3 liberated after incu-
bation for a fixed time interval was determined using Nessler’s reagent. The absorbance
was measured spectrophotometrically at 525 nm (Shimadzu UV-Vis spectrophotometer,
Kyoto, Japan, UV-1800). One unit of urease activity liberated 1 µmol of NH3 from 0.1 M
urea per min, under the standard assay conditions (0.05 M Tris-acetate buffer, pH 7.2,
and 37 ◦C). The protein content in the alginate nanogel was determined by the method
of de-cross-linking the alginate nanogels in brine solution, given by Pignolet et al. [63].
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In this method, the breaking of cation–alginate cross-links releases urease protein, which
was further estimated by Bradford’s method [64]. The residual protein content of the
wash solution was also determined by the Bradford method of protein estimation [64].
The enzyme loading efficiencies and loading capacities of the nanogels were calculated as
follows:

A. Enzyme loading efficiency = (Wt. of urease in alginate sol-Wt.
of residual urease)/(Wt. of urease in alginate sol) × 100

(1)

B. Loading Capacity = (Wt. of urease in alginate sol-Wt.
of residual urease)/(Polymer weight)

(2)

C. Percent immobilization (%) =
Specific activity of immobilized urease

Specific activity of soluble urease
× 100 (3)

The specific activity of immobilized urease was determined as detailed above. The
specific activity of soluble urease was calculated by subtracting the specific activity of
urease during washing (unbound urease) from the specific activity of total soluble enzyme.

2.4. Steady-State Kinetics

The effect of the substrate concentrations on urease activity was investigated at 25 ◦C
by varying the urea concentration from 1 mM to 30 mM at optimum pH 7.2 for soluble
and immobilized enzymes. The enzyme assay was performed as described earlier. Km
and Vmax were determined from a Lineweaver–Burk plot and the turnover numbers (Kcat)
were calculated.

2.5. Storage and Stability Studies of Urease in Nanogels

The soluble and immobilized urease were stored in 100 mM Tris-acetate-saline buffer
at pH 7.2 and 4 ◦C. The activity was determined and recorded for four weeks at regular
intervals for stored urease (immobilized and soluble) using the assay method (described in
Section 2.3) under similar conditions. The percent residual activity was plotted against the
number of days. The stability of immobilized urease enzyme in different nanogels with
90% residual enzyme activity was calculated in a Tris-acetate-saline buffer. The effect of
substrate concentration on urease activity was investigated at 37 ◦C, by varying the urea
concentration from 1 to 30 mM at optimum pH for soluble and immobilized enzyme.

3. Results and discussion
3.1. Alginate Nanogels by Emulsification Method

In the past two decades, tremendous efforts have been made towards the develop-
ment of synthetic strategies for nanostructured materials with well-controlled size, shape,
composition, and spatial arrangement [65,66]. Application of a pre-existing nanostructured
template is one of the most effective strategies towards achieving this goal. Typically,
nanomaterials synthesized by templating strategies hold a well-defined size, shape, and
configuration, which usually benefits from the directing effect of the templates [66,67]. The
application of microemulsion as a template is one of the most promising approaches for
the synthesis of nanomaterials as they form a colloidal system with droplet sizes generally
less than 100 nm [68–70]. The central idea of using thermodynamically stable surfactant
templates (microemulsion) is to turn the dynamic molecular aggregates into a chemically
and mechanically stable supramolecular material through templating reactions [71,72].
Water is usually considered as a necessary component of microemulsions; however, if the
water in usual microemulsion recipes is replaced with a polar hydrophilic compound or
polymer—such as sodium alginate sol (Na–alginate)— that is immiscible with the nonpolar
phase, then microemulsions can also form. A substantial amount of literature is available
about the nature of water in reverse micelles, formed from ionic surfactants such as AOT;
however, significantly less is known about the nonionic reverse micelles with aqueous
phase other than water [68,73].
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Here, we chose the commonly employed W/O microemulsion of a nonionic surfactant
for the preparation of alginate nanogels in an aqueous alginate (alginate sol)–hexane bipha-
sic system. Hexane was chosen as oil phase because of its low dielectric constant and better
optical contrast with the surfactant used in our study. Span 20 is a hydrophobic nonionic
surfactant with a low hydrophilic–lipophilic balance (HLB = 8.6). It is a biodegradable
surfactant that does not show much pronounced interaction with the polyvalent cations
(Mn2+, Fe3+, and Co2+), as compared with the anionic and cationic surfactants, such as
AOT (sodium bis[2-ethylhexyl] sulfosuccinate) or CTAB (cetyltri-methylammonium bro-
mide). The critical micelle concentration (CMC) of lipophilic surfactant Span 20 in the
hexane–water interface is reported in the literature [74,75], but the interfacial elasticities
of Span 20 are influenced by the salt present in the aqueous phase [76]. Thus, for the
development of microemulsion as template for alginate nanogel synthesis, it is desirable
to form a stable emulsion/microemulsion of alginate sol–hexane bi-phasic system with a
minimum concentration of surfactant. Hence, we applied DLS to study the microemulsion
in the alginate sol–hexane system, which allows measurement of the reverse micelles’
hydrodynamic size and provides information on the surfactant’s CMC and formation
of stable aggregation as template [77,78]. The results are shown in Figure 1. Each data
point was averaged from three independent measurements, and the standard deviation
was calculated. The hydrodynamic diameter of Span 20 aggregates in hexane initially
increases with surfactant concentration and poly dispersity index (PDI) value (0.3–0.8),
then remains roughly constant at around 110 nm (PDI value = 0.3–0.5) over a wide range of
concentrations. The higher poly dispersity index of reverse micelles at the lower surfactant
concentration suggests a larger variability in the size of aggregate formed by Span 20;
additionally, the reverse micelles’ diameter become smaller with lower variability, as the
increase in the surfactant concentration form stabilizes the aggregates [79].

Polymers 2022, 13, x FOR PEER REVIEW 7 of 25 
 

 

 

Figure 1. Apparent hydrodynamic diameter of aggregates formed by SPAN 20 in hexane, measured 

by DLS. Error bars are standard deviations. 

The DLS results indicate a plateau value (reverse micelle size) above the CMC 

(10mM), confirming spherical structures of reverse micelles. According to the literature, 

relatively larger microstructures are formed by Span 20-based surfactants [80], which is 

consistent with our DLS data shown in Figure 1. A value of about 110 nm for the hydro-

dynamic diameter for Span 20 reverse micelles in hexane can be inferred from the plateau 

in Figure 1. Alginate nanogel synthesis requires a stable template as nanoreactor for con-

trolling the size of nanogels. Hence, at a fixed surfactant solution in hexane, a different 

volume of aqueous phase was dispersed by magnetic stirring (500 rpm) and the swollen 

reverse micelles or microemulsion droplets obtained in this way were studied with the 

DLS technique. As sodium alginate sol is insoluble in oil (hexane), the alginate polymer is 

confined within the aqueous nanophase, forming a droplet with defined dimensions. The 

phase stability and the droplet size of the resulting microemulsion is significantly affected 

by the amount of alginate sol added. The trial compositions were plotted on a ternary 

phase diagram, as shown in Figure 2. 

H
yd

ro
d

yn
am

ic
 d

ia
m

et
e

r 
(n

m
)

Concentration [C Span 20 (mM)]

Figure 1. Apparent hydrodynamic diameter of aggregates formed by SPAN 20 in hexane, measured
by DLS. Error bars are standard deviations.

The DLS results indicate a plateau value (reverse micelle size) above the CMC (10 mM),
confirming spherical structures of reverse micelles. According to the literature, relatively
larger microstructures are formed by Span 20-based surfactants [80], which is consistent
with our DLS data shown in Figure 1. A value of about 110 nm for the hydrodynamic
diameter for Span 20 reverse micelles in hexane can be inferred from the plateau in Figure 1.
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Alginate nanogel synthesis requires a stable template as nanoreactor for controlling the size
of nanogels. Hence, at a fixed surfactant solution in hexane, a different volume of aqueous
phase was dispersed by magnetic stirring (500 rpm) and the swollen reverse micelles or
microemulsion droplets obtained in this way were studied with the DLS technique. As
sodium alginate sol is insoluble in oil (hexane), the alginate polymer is confined within the
aqueous nanophase, forming a droplet with defined dimensions. The phase stability and
the droplet size of the resulting microemulsion is significantly affected by the amount of
alginate sol added. The trial compositions were plotted on a ternary phase diagram, as
shown in Figure 2.
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) correspond to the microemulsion regions where the micelle size varies from 110 nm
to 231 nm, 431 nm to 586 nm, and 886 nm to 1163 nm, respectively.

At the constant Span 20 to hexane ratio, for a low alginate sol concentration, a visually
transparent microemulsion region appeared, represented as square points in the phase
diagram (Figure 2). The droplet size was 139± 3.43 (std) nm at point A in the ternary phase
diagram for Span 20 (Figure 2); the corresponding microemulsion is shown in Figure 3 (A’).
As the alginate aqueous phase concentration increases, the system becomes slightly turbid
and translucent, see the circles in Figure 3, where point B’ represents a (micro) emulsion,
with droplet size 311 ± 10 nm. At still higher alginate phase concentration, microemulsions
with a milky appearance were obtained, as shown by the triangles in Figure 2, where, at
point C’, the droplet size is 971 ± 5.25 nm. The corresponding microemulsions at points B’
and C’ are shown in Figure 3B’,C’, respectively.

For all systems studied, droplet size increases as the amount of aqueous phase in-
creases. Thus, at the concentration of dispersed phase (alginate solution), showing droplet
size 140 nm, the swollen reverse micelles were chosen as a template for the nanogel synthe-
sis. In the present sol–gel process, based on microemulsion polymerization, the spherically
swollen reverse micelles act as a water pool, enclosing the alginate sol [81,82]. Subsequent
addition of divalent cation solutions (MnCl2, FeCl3, and CoCl2) induces gelation of these
sol pools, with simultaneous phase separation and production of spherical gel particles
containing Mn2+, Fe3+, or Co2+as cross-linkers, with a different hydrodynamic diameter
than the original microemulsion droplets, as shown in Table 1. We used an alginate polymer
with high mannuronate (M) content, because this composition is more stable for NaCl
treatment [83]. Alginate nanogels, cross-linked with Mn2+, Fe3+, or Co2+ do not show
any gradation in the hydrodynamic diameter. Although they have similar ionic radii,
their affinity for mannuronate and guluronate are different. The hydrodynamic diameter



Polymers 2022, 14, 1277 8 of 24

of Mn–alginate nanogels are larger (275 nm) than the swollen reverse micelles (139 nm);
whereas, Fe–alginate and Co–alginate shows smaller sizes. A simulation study in the
literature [84,85] suggests that changes in the ion-binding mode of transition elements
controls chain–chain association within junction zones, which could affect the size of corre-
sponding nanogels. Interpretation from the literature [17,86–88] and quantum chemical
calculations [23] suggest that 3d metallic ion forms different structural forms as a result
of cooperative associations of several macromolecular chains of sodium alginate, which
depends on the nature of the cation or the structure of the alginate chain. Co2+ show smaller
cooperative interaction, and in Mn2+, cooperative interchain association is absent. These
variations signify the altered internal morphology of metallic alginates, which could affect
the size and shape of corresponding alginate nanogels.
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Table 1. DLS data obtained from microemulsion with different divalent cation solutions collected
before, and 1 h after, the addition of divalent cation solutions.

S. No.
Gelling
Solution

(0.1 M–2 mL)

Droplet Size of
Microemulsion without

Aqueous Phase (nm)
before Gelation

Recovered
Nanogels with
Cations (nm)

after Gelation

Shape Cationic
Size (Å)

Number of
Cross-Linking

Ions (ICPMS) (PPM)

1. MnCl2 110 ± 1.42 275 ± 3.12 Spherical 0.67 197

2. FeCl3 110 ± 1.42 120 ± 5.77 Spherical 0.61 248

3. CoCl2 110 ± 1.42 7.6 ± 3.38 Spherical 0.65 186

Note: The DLS measurement data of microemulsion droplets and nanogels are given in supplementary files as
Figures S1, S2A’–C’ and S3A–C.

3.2. Morphology Analysis by SEM& EDX Studies

The DLS-based studies provide ensemble averages of apparent particle radii. Fur-
ther insight into the characters of colloidal nanogels morphology and dimensions were
examined by studying the smears or films of colloidal nanogels in maximum swelling
condition in Tris-buffer at pH 7.2 using SEM. The SEM micrographs of the nanogels are
shown Figure 4A–C.
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The spherical alginate nanogels containing the polyvalent cations (Mn2+, Fe3+, or
Co2+) have much smaller diameters than the hydrodynamic diameters measured by DLS
and are relatively monodisperse. The particle size of alginate nanogels cross-linked with
Mn2+, Fe3+, or Co2+ show no gradation, as observed in the DLS measurement studies. Mn–
alginate and Co–alginate are spherical, whereas, Fe–alginate is elongated and rice-shaped
under the same preparation condition. Thus, nanophase confinement of sodium alginate
polymers during microemulsion polymerization does not control the gel size and shape.
The interaction of ionic polysaccharides with gelling solution leads to the formation of
junction zones that may affect the hydrodynamic size and shape of the nanogels. Studies of
polyelectrolyte complexation in the various oil-in-water interfaces suggests that shape of
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particles can be easily tuned by the interfacial tension [37,89,90]. Thus, it can be concluded
that the dimension of the template is not the key parameter in controlling the shape and
size of nanomaterial [91]. The poly(lactide-co-glycolide) (PLGA) particles shape can be
tailored by the balance between the polymer viscosity and the interfacial tension [92].
Similarly, different shapes of alginate particles cross-linked with Ca2+ ions can be obtained
by changing the pH of the gelation solution, as it gives rise to a change in the interfacial
tension [93]. A comparison of the cross-linking ability of Ca2+ and Ba2+ for gelation
process by Chuang et al. suggests that Ba2+, acting as a cross-linker, had a less impact
on the particle shape than Ca2+, due to a higher affinity in alginate intermolecular cross-
linking [37]. In the present work, we used Tris-acetate-saline buffer (pH-7.2, 0.1 M) for the
preparation of alginate sol and the development of the microemulsion for the encapsulation
of protein in the nanogels cross-linked with Mn2+, Fe3+, or Co2+ ions, under physiologically
compatible pH conditions. The pH of the gelling solutions of the MnCl2 (pH = 5.20) and
CoCl2 (pH = 5.30) salts were similar, and they form spherical particle of different sizes. In
the case of Fe–alginate synthesis, the gelling solution of FeCl3 has pH 2.46, which could
affect the interfacial tension of alginate sol/hexane/Span 20 microemulsion, resulting into
the anisotropic shape (rice shaped) of Fe–alginate nanogels. The results corroborate the
observations reported by Chuang et al. [37].

We have used a 0.1 M gelling solution to replace the sodium ions from the linear
polymeric chain of sodium alginate. Thus, to confirm the replacement of sodium ions by
divalent gelling ions, EDX spectra were recorded as shown in Figure 4A’–C’. The spectra
shows the relative proportion of elements present in the different nanogels and contain
cation peaks for the replacement of polyvalent cations (Mn2+, Fe3+, or Co2+). A small
characteristic peak for sodium ion was also observed in the spectra, suggesting partial
removal of Na+ by polyvalent cations, which forms 3D junction zones in the alginate
nanogel structure.

3.3. Characterization of Alginate Nanogels Cross-Linked with Polyvalent Cations (Mn, Fe, or Co)
by FT-IR Studies

Sodium alginate (powder), lyophilized alginate nanogels containing different cations,
and urease-encapsulated nanogels were analyzed using an FT-IR spectrophotometer to
study cation–alginate interactions before and after gelation and encapsulation of proteins.
The spectra of the cross-linked alginate nanogels are quite similar. The corresponding FT-IR
spectra are given in the supplementary file (Figure S4a–d). There are four particularly
relevant spectral bands in the alginate nanogels prepared and tested under the same
conditions as those shown in Table 2A. The ν(O-H) (1) bands are broadened and shifted
to lower wave numbers in nanogel structure cross-linked with polyvalent cation (Mn2+,
Fe3+, or Co2+), compared with linear polymeric Na–alginates, indicating that the O–H bond
is weakened due to hydrogen bonding in the gel structure [94]. The ratio of intensities
of ν(C=O) (2) and ν(C-OH) (3) suggests the presence of a protonated carboxylic group
in the nanogels [95]. Band (4) indicates the presence of an O-glycosidic bond between
β-d-mannuronic and α-l-guluronic acid residues in the linear alginate chain [96]. The
bands in these regions are broadened and smoothed with a shift to lower wave number
relative to sodium alginate in alginate nanogels formed by Mn2+, Fe3 +, and Co2+, and
do not show much deviation. This suggests that the O-glycosidic bonds between β-d-
mannuronic and α-l-guluronic acid residues in the metallic alginate gels are not perturbed
due to gel formation.

The FT-IR spectra of all the urease-encapsulated cross-linked alginates are shown
in Table 2B. They are quite similar to corresponding metal alginates showing ν(O-H) (1)
bands, symmetric and asymmetric stretching bands of carboxylic acid (νsym(COO−) (2),
νasym(COO−) (3)) given in Table 2A, but they show a small shift in their positions. These
observable changes could be due to the overlapping with the characteristic vibrational
bands of encapsulated proteins [97]. In the spectra of the urease-bound metal alginates,
a significant new peak (5) appears at about 1250 cm−1, due to C–N stretching vibrations,
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which suggest proper encapsulation of urease in the alginate matrix [98]. The character-
istic amide band for protein are non-distinguishable, as it is reported that these infrared
bands are broad and often overlap with neighboring bands to produce a complex absorp-
tion profile [99]. The corresponding FT-IR spectra are given in the supplementary file
Figure S5a–d.

Table 2. (A) FT-IR spectral bands of alginate salt and nanogels cross-linked with 3d metallic ions
(Mn2+, Fe3+, and Co2+). (B) FT-IR spectral bands of urease (lyophilized) and urease-encapsulated
alginate nanogels formed by Mn2+, Fe3+, and Co2+.

(A)

Spectral Band Na–Alginate
Salt (Powder)

Mn–Alginate
Lyophilized

Nanogel

Fe–Alginate
Lyophilized

Nanogel

Co–Alginate
Lyophilized

Nanogel

ν(O–H) (1) 3496 3472 3482 3512

ν(C = O) (2) 1646 1644 1648 1672

ν(C–OH) (3) 1474 1447 1464 1464

ν(OC–OH) (4) 1110 1116 1118 1134

(B)

Spectral Band Urease (Free)
Urease-

Encapsulated
Mn–Alginate

Urease-
Encapsulated
Fe–Alginate

Urease-
Encapsulated
Co–Alginate

ν(O–H) (1) 3412 3420 3382 3448

νsym(COO−) (2) 1610 1640 1599 1652

νasym(COO−) (3) — 1439 1404 1452

ν(OC–OH) (4) 1458 1110 1074 1116

3.4. Surface Charge and Stability

The interaction of a protein with polymers and the other biomaterials used in biomedi-
cal applications has characteristic electrical properties, such as the local electrostatic charge
distribution and the electrical double layer potential, which play significant roles in defin-
ing the biological interactions, aggregation behavior, and stability [100]. The zeta potential
(ZP) is an indicator of the surface charge properties of a colloid or a particle in solution and
depends on the surface potential and the thickness of the electric double layer. The zeta
potentials of nanoparticles with charged functional groups at the surface are measured to
determine their colloidal stability by coulombic repulsion [101], which is important for their
applications. The alginate sol present in the microemulsion shows highest zeta potential
(−57.13 ± 0.33) confirming the stability of the microemulsion templates by coulombic
repulsion and the presence of a negatively-charged carboxylic functional group in the aque-
ous droplets. The alginate nanogels were formed by electrostatic interaction between the
negatively charged carboxylic groups and hydroxyl groups of alginate polymer chain and
the positively charged polyvalent cations (Mn2+, Fe3+, and Co2+) that form a cross-linked
network containing a large fraction of water in the microstructure. Thus, the negative
charge decreases during the gelation of alginate sol. The negative zeta potential values
shown in Table 3 indicate an open and porous gel network with free carboxylic groups
at the surfaces of the alginate nanogels, which cause electrostatic repulsion among the
nanogel structures [102,103]. Among all the alginate nanogels studied, Fe–alginate nanogel
has highest value, which suggests that it has a more open gel network and coulombic
stability than the other cross-linked alginate nanogels. The corresponding zeta potential
graphs are given in the supplementary files (Figure S6a–d).
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Table 3. Zeta potentials of linear sodium alginate chain and alginate nanogels cross-linked with
divalent cations (Mn2+, Fe3+, and Co2+).

S. No. Type of Alginates Zeta Potential (mV)

1. Sodium alginate
(microemulsion droplet) −57.13 ± 0.33

2. Mn–alginate nanogels −2.63 ± 0.02

3. Fe–alginate nanogels −8.78 ± 0.02

4. Co–alginate nanogels −4.83 ± 0.02

3.5. Enzyme Assay, Using Urease Enzyme Encapsulated in Alginate Nanogels

The immobilization technique combines the advantage of microemulsion technology
to form alginate-based nano-droplets and alginate’s gelling property to encapsulate urease
providing them a gentle hydrated and nontoxic environment with higher enzyme activity
retention. The efficacy of enzyme immobilization technique was studied by evaluating
various immobilization parameters, enzyme kinetics, reusability, storage, and stability
studies in the alginate nanogels cross-linked with different polyvalent cations (Mn2+,
Fe3+, and Co2+) to choose the best matrix for the immobilization of proteins. Literature
studies [104–106] suggest that size of alginate particles formed by gelation method increases
with the increase in the concentration of alginate sol. In the present study, we have
determined the effect of alginate solutions on the development of swollen revere micelles,
and it was found that 0.2% alginate sol (w/v) is suitable for the development of urease-
encapsulated alginate nanogels cross-linked by different cations (Mn2+, Fe3+, or Co2+) with
the size of about 100 nm. Hence, for the immobilization of urease in alginate nanogels,
different concentration of lyophilized urease was pre-mixed with 0.2% alginate sol to form
urease-encapsulated alginate nanogels. During encapsulation of urease by the sol–gel
transformation, a fraction of protein is immobilized in the 3D structure of alginate nanogels,
while the rest remain unbound. Enzyme loading efficiency and percent immobilization are
determined to describe efficacy of enzyme immobilization inside a solid support as it gives
insight about the activity of immobilized enzyme [55]. By comparing these parameters, we
can predict the activity per unit mass of bound protein in the solid support. A comparison of
percent immobilization and enzyme loading efficiency (Table 4) suggests that, as we increase
the concentration of protein in the premix alginate sol from 1 mg per ml to 5 mg per ml,
percent immobilization value (i.e., the specific activity of immobilized enzyme) increases,
while a further increase in the protein concentration (7 mg/mL) has an adverse effect
on percent immobilization. Percent immobilization represents the fraction of biocatalyst
activity present in the solid support, in comparison to the specific activity of total soluble
enzyme used in the sol–gel transformation process [62]. As concentration of protein in
premix sol increases, over-crowding of protein molecule in the nanogel microenvironment
may hinder the internal diffusion of the reactant or product and, thus, the enzyme activity
decreases. The immobilized enzyme expresses only a fraction of the expected activity due
to enzyme inactivation, steric hindrances, or mass-transfer limitations, while the unbound
enzyme may become inactive later [107–109].

Enzyme loading efficiency is simply the ratio of bound protein inside the alginate
nanogel structure and the total protein used in the pre-gel mixture. In cases of nanogels
cross-linked with 3d metallic ions (Mn2+, Fe3+, and Co2+), the percent immobilization
values are similar to, or lower than, the enzyme loading efficiency data (Table 4), suggesting
the partitioned microenvironment of alginate nanogel structure had no effect. But the
mass transfer limitations and steric hindrances could be relevant and pronounced in
these nanogel structures, which affects the enzyme activity by retarding the rate of the
biochemical reaction. Similar effects have been reported in many enzyme-immobilized
matrices [108–111], which supports our finding.
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Table 4. Parameters of enzyme immobilization measured in alginate nanogels cross-linked with
polyvalent cations (Mn2+, Fe3+, or Co2+).

S. No.
Type of Alginate

Nanogel Containing
Urease

Concentration of
Sodium Alginate

% (w/v)

Protein/mL of
Alginate Sol

(mg)

% Immobiliza-
tion

Enzyme
Loading

Efficiency (%)

Enzyme
Loading
Capacity

(10−3)

1. Urease 0.0 - - 100 -

2. Mn–alg 0.2 1 52.7 68.4 0.6793

0.2 5 58.0 52.5 0.5214

0.2 7 35.14 70.16 0.6968

3. Fe–alg 0.2 1 47.72 63 0.6257

0.2 5 75.3 76.9 0.7637

0.2 7 38.41 81.25 0.8069

4. Co–alg 0.2 1 48.32 67.2 0.6674

0.2 5 59.7 66.4 0.6594

0.2 7 35.17 80.8 0.8025

Note: All the readings are an average of six similar experiments.

3.5.1. pH Based Stability Studies

Enzymes are zwitter ionic in nature, in these, the charge distribution property changes
with the pH of the bulk phase. The rate of enzymatic hydrolysis of urea by immobilized
urease enzyme changes with pH of the medium. Thus, it is important to study the effect
of pH on the immobilized urease enzyme activity. We have measured the activity of
encapsulated urease in alginate nanogels cross-linked with Mn2+, Fe3+, and Co2+, as shown
in Figure 5, within the maximum urease activity range (pH 5–10), with 10 mM urea solution
at 37± 1 ◦C. The maximum urease activity (percent) measured by the enzyme assay method
(Section 2.3) was obtained at pH 7.2, as shown in Figure 5. Additionally, it is close to the
value reported in MSDS from the Sigma chemical Co. (i.e., 7.4), as they have used Tris-HCl
to measure pH optima. Howell, S.F., Sumner, and J.B. [112] have also studied the effect
of different buffers on urease activity and concluded that activity of enzyme depends on
the type of buffer, temperature, and salt concentration. Similarly, Illanes, Andrés, and
others [111,113] have also reported the effects of matrix on pH maxima of different enzyme.
Enzymes are poly ionic in nature and the charge property of proteins are governed by type
of buffer, salt, and temperature as it affects the charge distribution and protein structure. In
the present study, we studied the pH effect of a Tris-acetate-saline buffer for urease activity
measurement. There was no effect of different metal ions cross-linked in alginate gels on
the pH optima; thus, in the present study, pH-based microenvironments were important
for the functioning of enzyme active site leading to biochemical transformations.

3.5.2. Steady-State Kinetics

Measurements of the biocatalytic properties of urease immobilized on a solid support
(i.e., alginate nanogels) forms a heterogeneous system where enzyme is in one phase, and
the substrate or product is present in bulk aqueous phase, with a biochemical reaction taking
place at the surface or inside the nanoparticle (immobilized biocatalyst). Thus, substrate or
product diffuses through the nanogel pores which may affect the mass transport process.
The enzymatic hydrolysis of urea can be represented by the following overall reaction [114]:

(NH2)2CO + 2H2O → 2NH+
4 + CO2−

3 (4)
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Assuming a noncompetitive mechanism for ammonium detection, using Nessler’s
reagent [115] leads to the following rate expression:

r = Vmax·[S]/(KM + [S])(1 + [P]/KP) (5)

where [S] and [P] are the substrate and ammonium ion concentrations, respectively; Vmax is
the maximum reaction rate; Km is the Michaelis–Menten constant; and KP is the dissociation
constant for the enzyme–product complex.
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Kinetic data were analyzed by the initial rate method, and (Km) and Vmax values were
obtained from Lineweaver–Burk plots for the different nanogels, as shown in Table 5. The
range of concentration of urea studied was 1–30 mM (~6 mg/dL to 180 mg/dL), which can
be applied for measurements of blood serum urea in normal, as well as kidney, patients,
and milk–urea can be applied as food adulterant. The calibration curves were obtained for
alginates gels synthesized using MnCl2, FeCl3, and CoCl2 gelling solutions.

The Lineweaver–Burk plot was obtained at the enzyme concentration of 5 mg/mL
at which, maximum percent immobilization was obtained for all the different nanogels
studied (as give in supplementary file Figure S7a–c). The nature of the double reciprocal
plot is an indicator of enzyme–substrate interaction attributes in a heterogeneous system,
where the enzyme is immobilized inside a solid support and substrates or products present
in a bulk solution undergo mass transport. The various parameters of mass transport and
steric hindrance are difficult to calculate. But the nature of plot is showing non-linear
behavior with Mn–alginate, which suggests that internal diffusion restrictions and steric
hindrance is possible in enzyme–substrate interactions inside the gel matrix. But the linear
nature of double–reciprocal plot with Fe–alginate and Co–alginate suggests that carrier
matrix is compatible and expresses maximum activity with urea [111]. The Km value
obtained from the linear plot is smaller than the Km value reported for soluble urease in
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all the cases except for Mn–alginate, which indicates that entrapment of urease inside the
compartmentalized, porous nanogels is favorable [109,116].

Table 5. Kinetic parameters of immobilized urease enzyme in different alginate nanogels cross-linked
with Mn2+, Fe3+, and Co2+.

S. No.

Type of Alginate
Nanogel

Containing
Urease

Vmax
(mmol/min) Km (mM)

Linear Range of
Calibration

Curve
(mM)

Turn Over
No.

1. Urease – 2.4 – –

2. Mn–alg 1.16 2.597 5.0–15.0 49.42

3. Fe–alg 1.62 0.31 5.0–25.0 80.52

4. Co–alg 1.33 0.51 1.0–5.0 61.29
Note: All the readings are an average of six similar experiments.

3.5.3. Storage Stability of Urease in Nanogel

All forms of urease were stored at 4 ◦C in 100 mM Tris-acetate-saline buffers at pH 7.2.
The stabilities of the different urease preparations were determined by measuring the
specific enzyme activity of immobilized urease and soluble urease in Tris-acetate-saline
buffer at 25 ± 1 ◦C, using the urease assay method over a period of four weeks. The
percent (%) of residual activity, versus the number of days, is shown in Figure 6. Enzyme
activity retention depends on the nature of the carrier and the nature of the enzyme [116].
The zeta potential of alginate nanogels, reported in Table 3, has negative value and these
suggest the open porous structure of different nanogels. The pH value of urease is 5.97,
as reported in the literature [117]. Thus, at pH 7.2, the carboxylic function of the alginate
gel structure shows repulsion towards the negatively charged urease. With time, these
carboxylic functional group present on alginate matrix may change the microenvironment
of porous nanogels, leading to the loss of enzymes [111]. The encapsulated urease enzyme
in Fe–alginate nanogels showed maximum stability (90% activity), up to 6 days. The zeta
potential value, which is a measure of stability of nanogels in water, is also largest for the
Fe–alginate nanogels. Thus, colloidal stability helps in the retention of enzyme activity in
Fe–alginate nanogels.

3.6. Analytical Application of the Fe–Alginate Nanogels

The colloidal stability and enzyme activity retention of Fe–alginate is maximum
among all the nanogels synthesized in this study. It was applied to determine the urea
concentrations in anonymized blood serum samples obtained from the hospital. The
measurements were performed using standard addition methods in triplicate. To obtain
stable readings, the conditions for measurements (amount of particle, total test volume, and
incubation time) were established for a urea concentration of 180 mg/dL (30 mM) as test
analyte—which can be applied for the measurement of blood serum urea in normal humans
as well as kidney patients. This is much higher than the normal physiological range.

The results obtained with the present enzyme assay protocol and with the clinical
method [118] are compared in Table 6. The urea content obtained with the present system
was always higher than that measured by the clinical method, probably due to interference
from other compounds present in blood serum. In healthy subjects, blood urea levels
are typically in the range 7–20 mg/dL [118], which increases above 50 mg/dL in kidney
failure [119]. The present study shows that our method was satisfactorily applicable to
samples containing 5–25 mM (90.090–450.450 mg/dL) of blood glucose, with a relative
error of not more than 5%. Thus, the urease-encapsulated, Fe–alginate nanogel-based
measurement can identify a kidney patient.
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Table 6. Determination of urea in blood serum samples using the urease-encapsulated Fe–alginate
nanogels and a comparative spectrophotometric method used in clinical laboratories.

S. No.

Urea Concentration
(mg/dL)

(Clinical Method)
υE

Urea Concentration
(mg/dL)

(Present Method)
υA

Relative Error
[ υA−υE

υE
×100 ]

1. 35.8 36.4 ± 2.5 1.675

2. 50.4 52.4 ± 4.5 3.968

3. 82.5 85.1 ± 2.2 3.151

4. 116.4 119.6 ± 2.6 2.749

5. 129.8 135.4 ± 2.4 4.314

6. 138.4 145.1 ± 2.5 4.841

7 143 150.2 ± 3 5.034

4. Conclusions

Alginate nanogels of different sizes were successfully prepared using a mild method
that exploits surfactant self-assembly, as a template for converting molecular aggregates
into stable nanogels by ionotropic sol–gel transformation. In this work, we focused on the
basic properties of Span 20 surfactant, which forms stable, spherical reverse micellar-type
aggregates of well-defined size at 110 nm, and at a surfactant concentration above CMC
(10 mM). DLS measurement studies of different alginate nanogels indicate that the high
M–alginate nanogels obtained in the presence of Mn2+, Fe3+, and Co2+ showed no gradation
in the hydrodynamic diameter. Urease enzyme was successfully encapsulated in these
alginate nanogels. A comparative assay of urease enzyme demonstrates that Fe–alginate
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has 90% urease encapsulation efficiency, with the highest turnover number and linear range
of urea detection. Thus, bioactivity was best retained in the protein-loaded Fe–alginate
nanogels with anisotropic shape (rice shaped). The Fe–alginate nanogel was able to protect
and preserve enzyme activity and stability during particle formulation, recovery, and
storage in 100 mM Tris-acetate-saline buffer. The present study demonstrates that the shape
and size of the self-assembly template of Span 20 in alginate sol/hexane microemulsion
do not control the size and shape of nanogels formed with 3d transition metal ions (Mn2+,
Fe3+, and Co2+) as cross-linkers. The elongated, rice-shape of the Fe–alginate has the
influences on its morphology, which, in turn, affects both the loading capacity and the
catalytic activity of urease enzyme. The clinical study revealed that immobilized urease
in Fe–alginate nanogels can be used measure urea in blood serum samples. The nanogels
developed in this work are viewed as promising candidates for biosensing, drug delivery,
and many other applications, such as cellular targeting and uptake related to shape-specific
biological behaviors [120].

The structural elucidation of the alginate gels with cross linking to the cations have
emerged as part of vital data that can correlate the modulations at the level of stereo-
chemical and cross-linking architecture. These can further be utilized to investigate the
possible simulations of biological perturbations for demarcating effects of metal-bound
alginates. The studies conducted here have promising implications in biomedical research
indicating the crucial role played by the structural affiliations of the synthesized alginates
with bioactive enzymes, that can be extended to explore their applications within the
nano-framework.

5. Patents

The present research study is a part of our provisional patent application (Application
No. 202111045884, Indian Patent office).
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(B’) slightly turbid; and (C’) milky appearance. Figure S3. DLS measurement data of: (A) Mn-alginate
nanogel; (B) Fe-alginate nanogel; C) Co-alginate nanogel. Figure S4. FTIR spectra of (a) alginate salt
(sodium alginate) and nanogels cross-linked with:(b) Mn+2, (c) Fe+2, and (d) Co+2. Figure S5. FTIR
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cations (b) Mn+2, (c) Fe+2, and (d) Co+2. Figure S6. Zeta potentials of (a) sodium alginate (salt) and
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