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Abstract: Dynamic time warping under limited warping path length (LDTW) is a state-of-the-art
time series similarity evaluation method. However, it suffers from high space-time complexity, which
makes some large-scale series evaluations impossible. In this paper, an alternating matrix with a
concise structure is proposed to replace the complex three-dimensional matrix in LDTW and reduce
the high complexity. Furthermore, an evolutionary chain tree is proposed to represent the warping
paths and ensure an effective retrieval of the optimal one. Experiments using the benchmark platform
offered by the University of California-Riverside show that our method uses 1.33% of the space, 82.7%
of the time used by LDTW on average, which proves the efficiency of the proposed method.

Keywords: dynamic time warping; time series; similarity evaluation; warping path; space-time
complexity

1. Introduction

As a common data type, time series is a sequence of discrete data obtained from a
target with a fixed frequency in a period. A fundamental task regarding the time series is to
measure the similarity between two given ones, which is critical to downstream works in
terms of classification [1–5], clustering [6–10] and pattern recognition [11–14]. The dynamic
time warping (DTW) [15] algorithm and its variants [16–18] are competent in similarity
evaluation [19].

Given series X and Y, if they are of the same length N, then the similarity S could be
described as Expression (1).

S =
N

∑
i=1
‖xi − yi‖ (1)

where ‖•‖ stands for the Euclidean distance, xi and yi are the ith node of X and Y, respec-
tively. However, more generally, the length of X and Y may not be the same. A key feature
of DTW is that it can deal with two series of different lengths.

Let N and M be the length of X and Y, respectively; DTW finds the similarity by main-
taining a two-dimensional cumulative distance matrix (CDM) D as shown in Expression (2).
The algorithm calculates each element of D in row-major order (i.e., from left to right, from
top to bottom), which starts from d1,1 till dN,M according to Expression (3).
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D =



d1,1 · · · d1,M

...

. . .
di−1,j−1 di−1,j

di,j−1 di,j
. . .

...

dN,1 · · · dN,M


(2)

di,j = dis(xi, yj) + min(di−1,j, di,j−1, di−1,j−1) (3)

where dis(•) is the distance between two nodes. After the traversal, dN,M will hold the
value of the similarity. The matching results (or the optimal warping path in other words)
could be determined according to the CDM.

For the evaluation of series with different lengths, as depicted in Figure 1, DTW aims
to find the optimal alignment between X and Y [20], and a node in X may be matched
with multiple nodes in Y (and vice versa). However, if too many nodes (marked within a
green dotted circle in Figure 1) are matched with the same one (marked within a red solid
circle in Figure 1) which is unreasonable in a real case, it is referred to as the well-known
pathological alignment problem of DTW.
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Figure 1. Demonstration of the pathological alignment problem of DTW, where one node in X
(marked with the red solid circle) is matched with too many nodes in Y (marked within the green
dotted circle).

To solve that, Zhang et al. [21] presented a state-of-the-art method named dynamic
time warping under limited warping path length (LDTW). By limiting the length of the
warping path in a third dimension (see Figure 2), the pathological alignment problem
could be relieved. As a result, LDTW boosts the accuracy against other variants [22–25]
on the benchmark platform offered by the University of California-Riverside (UCR) [26].
However, it also leads to a much higher space-time consumption.

To reduce the complexity of LDTW, an alternating matrix whose size is much smaller
than the three-dimensional CDM used in LDTW is presented, and an evolutionary tree is
introduced to represent the warping paths as well. The main contributions of this paper
are twofold:

(1) A two-channel matrix with an alternating scheme is proposed for similarity calculation.
(2) A chain tree with an evolutionary scheme is proposed to find the optimal warping

path with the similarity calculation process simultaneously.

The rest of this paper is organized as follows. The preliminary is given in Section 2.
Section 3 presents the proposed method. The experiment and results are shown in Section 4.
Section 5 concludes the work.
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Figure 2. Comparison of the space and calculated amount between LDTW and DTW (tested on UCR
data named SyntheticControl). The biggest cube is the CDM of LDTW, while the bottom part is the
CDM of DTW.

2. Preliminary
2.1. DTW

DTW is a dynamic programming algorithm for calculating the similarity of two
sequences, especially those of different lengths [27]. Given time series X and Y defined by
Expression (4): {

X = {xi|1 ≤ i ≤ N}
Y =

{
yj
∣∣1 ≤ j ≤ M

} (4)

where N and M are the lengths of X and Y, respectively. If P(X,Y) defined by Expression (5)
is a warping path of X and Y, each path node pt could be defined by a pair of nodes of X
and Y as shown in Expression (6).

P(X, Y) = {pt|1 ≤ t ≤ L} (5)

pt = (xi, yj)(i ∈ [1, N], j ∈ [1, M]) (6)

In addition, the warping path also abides by the following restrains.

(1) p1 = (x1, y1),pL = (xN , yM);
(2) if pt = (xi, yj) and pt+1 = (xi′ , yj′), then 0 ≤ i− i′ ≤ 1, 0 ≤ j− j′ ≤ 1.

Let AX,Y denote all the warping paths of X and Y, DTW aims to find an optimal one
PO(X, Y) that possesses minimum cumulative distance as shown in Expression (7).

min
P(X,Y)∈AX,Y

∑
(xi ,yj)∈P(X,Y)

dis(xi, yj) (7)

where dis(xi, yj) is the distance between two nodes xi and yj among a warping path P(X, Y).
The problem could be solved in a dynamic programming way. Namely, let Xs

e(or
Ys

e ) denote the subset of X (or Y) that starts from the sth node to the eth node, the cumu-
lative distance of PO(X1

i , Y1
j ) consists of the node distance dis(xi, yj) and the minimum

value among CD[PO(X1
i−1, Y1

j )], CD[PO(X1
i , Y1

j−1)] and CD[PO(X1
i−1, Y1

j−1)] as described in
Expression (8).

dis(xi, yj) + min
{

CD[PO(X1
i−1, Y1

j )], CD[PO(X1
i , Y1

j−1)], CD[PO(X1
i−1, Y1

j−1)]
}

(8)

where CD[•] indicates the cumulative distance of a path. This is the reason for DTW to
maintain the CDM and calculate according to Expression (3), which is another version of
Expression (8).
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2.2. LDTW

To ease the pathological alignment problem, besides the series length, LDTW takes the
warping path length into consideration as well, which extends the original two-dimensional
CDM of size N ×M to a three-dimensional matrix of size N ×M× LUB, where N and M
are the lengths of two series, LUB is the upper bound of the warping path length, the range
of which is [max(N, M) + 1, N + M− 2] under the rule of DTW (see Ref. [21] for the details
about LUB). For example, Figure 2 showed a case that applies LDTW on UCR data named
SyntheticControl, where N = M = 60, LUB= 79. The space used by LDTW is a cubic matrix
of size 60× 60× 79. By contrast, DTW only uses the bottom of the cube. The elements that
participated in the calculation are colored in the figure as well, which is 18490 in total for
LDTW and 3600 for DTW. It shows that, compared to DTW, the time and space complexity
of LDTW is greatly increased.

In this paper, a matrix of size 2 × M × LUB is used to replace the above three-
dimensional CDM with an alternating scheme, which reduces the cost of time and space dra-
matically.

3. The Proposed Method

There are two goals for DTW and the variant algorithms in general, which are finding
(1) the similarity and (2) the optimal warping path of two given time series. This section
will present our solutions, respectively.

3.1. The Alternating Matrix Based Similarity Calculation

The primary innovation of the proposed method is the usage of a two-channel matrix
with an alternating scheme, which can replace the three-dimensional CDM of LDTW and
save a lot of computer memory.

As illustrated in Figure 3, the proposed matrix has two channels indicated by Dpre and
Dcur, respectively. It could be seen as a subset of the three-dimensional CDM and travels
over the CDM space during the similarity calculation process step by step. In each step,
data in Dpre stand for the calculated result of the previous step. Moreover, it is reserved to
participate in the calculation of the current step, which happens in Dcur. The last thing to
accomplish in each step is to alternate the role of the two channels, in other words Dcur(or
Dpre) in Step i will be Dpre(or Dcur) in Step i + 1, which is the main reason why we call our
matrix the alternating matrix (AM).
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The calculation workflow can be seen in Figure 4. The system takes the above-
mentioned X, N, Y, M, LUB as input and outputs the similarity S which equals to a specific
element of the AM (i.e., min(

{
Dpre[M][s]

∣∣minS ≤ s ≤ LUB
}
)). The core step is the update

of the AM, which is described in Algorithm 1. In the beginning, the algorithm travels over Y
and the warping path dimension as shown from Step 1 to Step 4, where minS and maxS are
the ranges calculated by functions named MinStep() and MaxStep(), respectively. Readers
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can find the calculation details in Ref. [21]. Step 5 specifies how an element Dcur(j, s), as
shown in Figure 3, is determined by pre-calculated Dpre(j, s − 1),Dpre(j − 1, s − 1) and
Dcur(j− 1, s− 1). Channel Dpre will be reset in Step 9 before the alternating process, for it
will become Dcur in the next round of iteration. The iteration stops when i becomes larger
than N.

Algorithm 1: AM Update

Input: X, Y, N, M, D, i, cur, pre, LUB
Ouput: updated D
1 for j from 1 to M do
2 minS←MinStep(i, j), maxS←MaxStep(i, j, N, M, LUB)
3 if minS < maxS do
4 for s from minS to maxS do
5 Dcur[j][s]← min

{
Dpre[j][s− 1], Dcur[j− 1][s− 1], Dpre[j− 1][s− 1]

}
+dis(xi, yj)

6 end for
7 end if
8 end for
9 reset Dpre
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3.2. The Evolutionary Chain Tree Based Optimal Warping Path Determination

Besides the similarity, we can also find the corresponding warping path, which shows
the matching pairs of two series. To achieve that, a chain tree with an evolutionary scheme
is proposed. We also modified the structure of the AM, where each element possesses not
only a value but also a pointer.

For example, the nodes and links of the chain tree are shown as dots and arrows in
Figure 5, and six AM elements are drawn as cubes. Each cube is divided into two parts, the
top part is the pointer domain leading to a corresponding tree node, while the bottom part
is the value domain for the storage of the cumulative distance.

The above tree is referred to as the evolutionary chain tree (ECT) because we use a
chain tree to represent the warping paths and the tree is growing and pruning dynamically
during the process. The usage of ECT is another major contribution of this work.

With the ECT, the workflow demonstrated in Figure 4 can be extended to an updated
version shown in Figure 6. The main differences are marked as blocks in grey, which
include the growing and pruning of the ECT, and the retrieval of the optimal warping path.
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3.2.1. Growing

The scale of ECT grows after each update step of AM. Specifically, as soon as the
computation in Dcur finished, tree nodes will be created and linked to the ECT. Each tree
node is initialized as a structure p shown in Expression (9).

p : (prior = null, data = 0b0000) (9)

where prior is the pointer that leads to a prior tree node. Description of data will be
given later.

If a node ps(cur, j) is initialized and linked from AM element Dcur(j, s) as shown in
Figure 7a, the next question is which node is its precursor. According to Step 5 in Algorithm
1, Dcur(j, s) is partially determined by the minimum among Dpre(j, s− 1), Dpre(j− 1, s− 1)
and Dcur(j− 1, s− 1). Therefore, the precursor of ps(cur, j) is the tree node that links from
the minimum among Dpre(j, s− 1), Dpre(j− 1, s− 1) and Dcur(j− 1, s− 1) as well. The
above processes are shown in Algorithm 2, from Steps 5 to Step 7.
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9         end for 

10     end if 

11 end for 

Table 1. Definition of the higher two-digit data term for tree node ps(cur, j). 

 1( , )sp pre j−  1( , )sp cur j−  1( , 1)sp pre j− −  

( , )sp cur j  0b01 0b10 0b11 

  

Figure 7. The potential precursor (a) and successors (b) of a tree node ps(xi, yj).

The data term of a tree node p is a four-digit value. The higher two digits are defined
in Table 1, which is a clue to finding all the X and Y indexes of the optimal warping path
nodes since we did not save them. Specifically, when retrieving the optimal warping path,
it begins from the tree node linked from min(

{
Dpre[M][s]

∣∣minS ≤ s ≤ LUB
}
) backwards

to the first one following the pointers. Because the indexes of the last node are known,
with the higher two digits, it is easy to find the indexes of the rests. While the lower two
digits stand for the number of its successors, which is no more than three as shown in
Figure 7b. The lower two digits are crucial to the pruning process introduced in the next
section. Step 8 in Algorithm 2 describes the process related to the data term accordingly.

Algorithm 2: ECT Growing

Input: N, M, D, i, cur, pre, LUB
Ouput: updated D
1 for j from 1 to M do
2 minS←MinStep(i, j), maxS←MaxStep(i, j, N, M, LUB)
3 if minS < maxS do
4 for s from minS to maxS do
5 initialize p : (prior = null, data = 0b0000) , Dcur[j][s].ptr ← p
6 q←min{Dpre [j][s−1], Dpre [j-1][s−1], Dcur [j-1][s−1]}
7 p.prior ← q.ptr

8
p.data←


0b0100, i f q = Dpre[j][s− 1]
0b1000, i f q = Dcur[j− 1][s− 1], p.prior.data ++
0b1100, i f q = Dpre[j− 1][s− 1]

9 end for
10 end if
11 end for

Table 1. Definition of the higher two-digit data term for tree node ps(cur, j).

ps−1(pre,j) ps−1(cur,j) ps−1(pre,j−1)

ps(cur, j) 0b01 0b10 0b11

3.2.2. Pruning

As the ECT grows, some branches lose their activity. Figure 8a demonstrates such a
case, where two branches are not growing after new nodes have been added to ECT. Those
branches can be pruned to save memory; the pruning result is shown in Figure 8b.
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Figure 8. Illustration of ECT before (a) and after (b) pruning.

In our method, the pruning starts from leaf nodes drawn as circles in Figure 8a. They
can be found from Dpre as shown in Algorithm 3, Step 5. If their lower two-digit data term
equals 0b00, then they need to be removed because it means they have no successor.

Algorithm 3: ECT Pruning

Input: N, M, D, i, cur, pre, LUB
Ouput: updated D
1 for j from 1 to M do
2 minS←MinStep(i−1, j), maxS←MaxStep(i−1, j, N, M, LUB)
3 if minS < maxS do
4 for s from minS to maxS do
5 p← Dpre[j][s].ptr
6 while lower(p.data) equal to 0b00 do
7 q←p, p←p.prior, p.data–, delete q
8 end while
9 end for
10 end if
11 end for

Figure 9a shows the final ECT applying the proposed method on SyntheticControl.
Moreover, if no pruning is used, it would look like the one shown in Figure 9b. Figure 9c
shows the optimal warping path.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 12 
 

 

   

(a) (b) (c) 

Figure 9. The final ECT (a) with pruning and (b) without pruning. (c) The optimal warping path 

that extracted from the final ECT. 

4. Experiments and Results 

The proposed method was implemented using the C++ programming language. The 

public dataset UCR [26] was adopted for the 1-NN classification tests on a desktop com-

puter with AMD Ryzen 7 5800X 3.80 GHz CPU, 64 GB memory. We compared our method 

with LDTW in terms of time and space consumption. 

4.1. Comparisons 

To compare our method with LDTW in space costs, we tested it on all species in UCR. 

We selected the result of 15 data points for showing, and each is of a different name and 

length as described in the first and second columns of Table 2. There are two key phases 

in our method, namely the similarity calculation phase and optimal warping path deter-

mination phase, therefore we recorded the space cost of them as Ph1(MB) and Ph2(MB). 

As the table shows, our method uses 1.33% of the space used by LDTW on average. 

Table 2. Comparisons between LDTW and our method in terms of space costs. 

Data Name Length LDTW(MB) 
Our Method 

Ph1(MB) Ph2(MB) Total(MB) 

SyntheticControl 60 1.02 0.03 0.01 0.04 

ProximalPhalanxOA

G 
80 1.95 0.05 0.00 0.05 

MedicalImages 99 3.89 0.08 0.01 0.09 

CBF 128 12.75 0.20 0.25 0.45 

ArrowHead 251 60.32 0.48 0.00 0.48 

Lightning7 319 132.76 0.83 0.13 0.96 

ToeSegmentation2 343 169.64 0.99 0.31 1.30 

FaceFour 350 180.85 1.03 0.25 1.29 

OSULeaf 427 321.33 1.51 0.47 1.98 

Meat 448 343.00 1.53 0.00 1.53 

Beef 470 400.27 1.70 0.02 1.72 

ShapeletSim 500 567.44 2.27 0.91 3.18 

Car 577 755.66 2.62 0.12 2.74 

Lightning2 637 1211.99 3.81 4.40 8.21 

ScreenType 720 1657.18 4.60 15.39 19.99 

Figure 9. The final ECT (a) with pruning and (b) without pruning. (c) The optimal warping path that
extracted from the final ECT.



Sensors 2022, 22, 5305 9 of 12

4. Experiments and Results

The proposed method was implemented using the C++ programming language. The
public dataset UCR [26] was adopted for the 1-NN classification tests on a desktop computer
with AMD Ryzen 7 5800X 3.80 GHz CPU, 64 GB memory. We compared our method with
LDTW in terms of time and space consumption.

4.1. Comparisons

To compare our method with LDTW in space costs, we tested it on all species in
UCR. We selected the result of 15 data points for showing, and each is of a different name
and length as described in the first and second columns of Table 2. There are two key
phases in our method, namely the similarity calculation phase and optimal warping path
determination phase, therefore we recorded the space cost of them as Ph1(MB) and Ph2(MB).
As the table shows, our method uses 1.33% of the space used by LDTW on average.

Table 2. Comparisons between LDTW and our method in terms of space costs.

Data Name Length LDTW(MB)
Our Method

Ph1 (MB) Ph2 (MB) Total (MB)

SyntheticControl 60 1.02 0.03 0.01 0.04
ProximalPhalanxOAG 80 1.95 0.05 0.00 0.05

MedicalImages 99 3.89 0.08 0.01 0.09
CBF 128 12.75 0.20 0.25 0.45

ArrowHead 251 60.32 0.48 0.00 0.48
Lightning7 319 132.76 0.83 0.13 0.96

ToeSegmentation2 343 169.64 0.99 0.31 1.30
FaceFour 350 180.85 1.03 0.25 1.29
OSULeaf 427 321.33 1.51 0.47 1.98

Meat 448 343.00 1.53 0.00 1.53
Beef 470 400.27 1.70 0.02 1.72

ShapeletSim 500 567.44 2.27 0.91 3.18
Car 577 755.66 2.62 0.12 2.74

Lightning2 637 1211.99 3.81 4.40 8.21
ScreenType 720 1657.18 4.60 15.39 19.99

Our comparison was also completed in time costs. According to the results shown in
Figure 10, there are 15 data points which are organized in ascending order of scale in the
first column of Table 2 in the horizontal direction, and there are the specific time costs (ms)
of our method and LDTW in the vertical direction. As the scale of the time series increases
from left to right, the superiority of our method becomes more obvious.
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4.2. Ablation Experiment

To show the contribution of the pruning proposed in our method, system performance
with and without pruning is investigated. As Figure 11 shows, the space consumption
could be greatly reduced with the pruning process. In addition, it is normal that the space
cost rises along with the increase of parameter LUB. With the help of pruning, few variations
have been found in Figure 11, compared to the case without pruning which is sensitive to
the choice of LUB. The scales of the data used in Figure 11 are listed in Table 3.
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Figure 11. The ablation experiment results. The horizontal axis is the parameter LUB, the vertical axis
is the memory cost running on different data. *-P and *-NP stand for the method with and without
pruning, respectively.

Table 3. The scales of the data shown in Figure 11.

Data FaceFour BeetleFly Worms ACSF1

Scale 350 × 350 512 × 512 900 × 900 1460 × 1460

5. Discussion

Thanks to the proposed alternating matrix, great achievement has been made in
reducing the memory cost compared to the LDTW method. The price of this huge deflation
is the need for an additional data structure to maintain the warping paths, as well as a
new strategy for optimal warping path retrieval. We solve that problem by the proposed
evolutionary chain tree, which will sacrifice little time and space, but it is just a drop in
the ocean compared to the contributions. The performance of the proposed method still
outranges the LDTW a lot.

Another issue is about the choice of LUB, which is the only parameter in this method.
The usage and setting criteria of LUB in our work follow the idea introduced by the LDTW
algorithm [21]. In experiments, we found that different values of LUB may slightly alter the
accuracy, but it is insensitive to our final space costs as shown in the ablation experiment.
Therefore, to get a fairer comparison, we adopted the same method as [21] for LUB to keep
a similar parameters environment.

6. Conclusions

This paper proposes a novel resolution for recording and exploding wrapping paths
with much less space-time complexity. Firstly, a two-channel matrix is created and trav-
els over the entire cumulative distance space with an alternating scheme to calculate the
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similarity. Secondly, a chain tree is involved to record all warping paths, and the tree is
gradually growing and pruned along with the matrix alternating simultaneously, which
ensures an efficient retrieval of the optimal path. Experiments running on the UCR bench-
mark show that our method uses 1.33% of the space, 82.7% of the time used by LDTW on
average. Future work would focus on improving the evaluation accuracy.
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