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Abstract

The development of brain function in young infants is poorly understood. The core chal-
lenge is that infants have a limited behavioral repertoire through which brain function can be
expressed. Neuroimaging with fMIRI has great potential as a way of characterizing typical
development, and detecting abnormal development early. But, a number of methodological
challenges must first be tackled to improve the robustness and sensitivity of neonatal fMRI.
A critical one of these, addressed here, is that the hemodynamic response function (HRF)
in pre-term and term neonates differs from that in adults, which has a number of implications
for fMRI. We created a realistic model of noise in fMRI data, using resting-state fMRI data
from infants and adults, and then conducted simulations to assess the effect of HRF of the
power of different stimulation protocols and analysis assumptions (HRF modeling). We
found that neonatal fMRI is most powerful if block-durations are kept at the lower range of
those typically used in adults (full on/off cycle duration 25-30s). Furthermore, we show that
it is important to use the age-appropriate HRF during analysis, as mismatches can lead to
reduced power or even inverted signal. Where the appropriate HRF is not known (for exam-
ple due to potential developmental delay), a flexible basis set performs well, and allows
accurate post-hoc estimation of the HRF.

Introduction

Perinatal brain injury can be caused by adverse events such as hypoxia, hemorrhage and stroke
[1], and brain development can be altered by extremely premature birth [2]. The consequences
vary from infant to infant: in some cases function develops normally, even though substantial
brain injury is seen with ultrasound or anatomical MRI; in some, it becomes apparent in the
first postnatal years that basic functions (i.e., motor, audition or vision) are affected; and in oth-
ers higher-level cognitive or behavioral impairments emerge at preschool age or later. Unfortu-
nately, it is difficult to assess brain function [3], and the current attitude is often to “wait and
see” what problems emerge. This makes it difficult to focus care and support on infants that
need it most, prevents targeted interventions early (when plasticity is high and they are most
effective), and impedes the development of new interventions.
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A fundamental challenge in assessing function is the limited behavioral repertoire of young
infants. A promising solution is to use neuroimaging to assess brain function, as this doesn’t
require a behavioral response. fMRI has been used in neonates to measure the brain activity
evoked by visual [4,5], auditory [6-8] and somatosensory [9] stimulation. However, there are a
number of methodological challenges that need to be addressed to improve the robustness of
the signal [10]. This manuscript focuses on one key challenge. fMRI does not measure neural
activity directly, but instead a hemodynamic signal sensitive to blood oxygenation. The hemo-
dynamic response is delayed relative to the neural activation, likely due to both the time taken
for neurotransmitters to signal opening of arterioles, and for blood to flow through the capil-
lary bed and into draining veins [11]. The temporal profile of this delay is known as the hemo-
dynamic response function (HRF). In adults, if a stimulus evokes a short burst of neural
activity there is a peak in the HRF around 5 seconds later [12]. In infants the HRF has a differ-
ent size and shape (Fig 1A), although there has not yet emerged a consensus across studies
using fMRI [13,14,15], near-infrared spectroscopy (NIRS) [16, 17, 18], and optical imaging
[19]. At term age or earlier, the HRF has been shown to peak later (6-12s) in both mice [14,19]
and humans [13]. The polarity of the HRF has sometimes been found to be reversed [6,19] and
is sometimes biphasic, with positive and then negative lobes [13,19].

We consider two consequences of the altered HRF. First, conventional fMRI analyses pro-
ceed by generating a model of the expected signal, and comparing this to the fMRI time-course.
If an incorrect model of the HRF is used, power to detect brain activity may be reduced. A sec-
ond important consequence is more subtle: the altered HRF will affect which protocols of stim-
ulation will yield the best sensitivity. As an illustration, Fig 1B and 1c show the expected HRF
for two different block designs that yield quite different power. The HRF blurs the response to
events close in time-in other words, it acts as a low-pass (temporal smoothing) filter, so reduc-
ing the power of faster designs. However, opposing this, the noise in fMRI drifts over time, and
contains greater power at lower frequencies. The effect of this is that if the fMRI stimulation
changes on a slower cycle it will be harder to detect the signal against the larger amplitude of
noise. These two effects are such that each dominates at extremes, and in between there is an
optimum. Measurements in adults have suggested that the maximal power is obtained with on/
off stimulation cycles of around 24-60 s in duration [20,21,22, http://www.mccauslandcenter.
sc.edu/CRNL/tools/fmrisim). However, no such optimization has been done for infants, and
this forms the second goal of our paper.

Methods
Overview

The power of various stimulation protocols and analysis methods was assessed using simula-
tion: standard statistical measures (t- and F-statistics) were computed to indicate how well a
synthesized BOLD fMRI signal could be detected in well-characterized fMRI noise, given a par-
ticular model of the hemodynamic response. A realistic model of fMRI noise was obtained
from analysis of adult and neonate resting-state fMRI data. Simulated signal was obtained by
convolving a range of stimulation paradigms with three HRFs previously measured empirically
in adults and infants (Arichi et al., 2012). Analyses then proceeded assuming either the correct
or mismatching HRFs.

Statistics of noise

Characterizing Noise: Resting-state MRI acquisitions. The power in an fMRI analysis
(and thus the accuracy of any simulation) depends not just on the strength of the signal but on
the nature of the noise. For a model of noise in the brain, we used fMRI data acquired during
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Fig 1. (a) The hemodynamic response (HRF) to a brief 1-second stimulation at three ages (Arichi et al, 2012). In adults the HRF is dominated by a positive
peak, while at 38 weeks gestational age (GA) neonates have positive and negative peaks of similar magnitude. At 32 weeks GA the HRF is dominated by a
positive peak, but it is much delayed. (b) The form of the HRF affects the power of different stimulation designs. To illustrate this, the response to a 30s-long
cycle of stimulation (yellow) and rest was calculated by convolving the HRFs with a boxcar. For this design, at all three ages, there was substantial
modulation of the BOLD signal through time. The signal in adults and 38 week infants was highly correlated, but at 32 weeks the signal has a different phase.
(c) In contrast, for 45s of stimulation is followed by 45s of rest, the 38 week infants only have small peaks of modulation in the BOLD signal, and so much
reduced power would be expected.

doi:10.1371/journal.pone.0120202.g001

resting in adults (N = 26) and newborns (N = 5). The adult data were acquired using a 3T Sie-
mens Tim Trio MRI scanner and the infant data using a 3T Philips Acheiva MRI scanner.

The adult data was the Marguilies subset of the fc1000 public domain resting-state dataset
(http://www.nitrc.org/frs?group_id=296), obtained in 13 males and 13 females, comprising
195 gradient-echo EPI scans with TR = 2.3 s, 34 slices, a matrix size of 70x70, voxel size
3x3x4mm. An MPRAGE T1-weighted anatomical image was acquired in each adult, matrix
size 176x256x256, 1-mm isotropic voxels.

5 neonates (3 female, 2 male; post-menstrual age at scan 40.3 +/- 2.4 weeks) were scanned at
the Hammersmith Hospital. They were all born prematurely and had no overt brain injury
(Table 1). One infant was diagnosed with chronic lung disease. fMRI comprised 256 gradient-
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Table 1. Demographic and clinical details of the neonates.

Subject

1056
1070
1131
922
946

Gestation at

birth

41+1
43+3
41+4
40+2
36+0

Post-Menstrual
age at scan

29+1
25+5
39+0
33+5
36+4

Birth Head Intra-ventricular Days on Chronic sepsis
weight circumference at haemorrhage(Levene ventilation Lung
birth classification)* disease

970 25.8 none 1 day no no

815 23 1 6 days yes no
3571 34.5 none none no no
2260 33 none none no no
2176 32 none none no no

*Arch Dis Child 1982,57:410-417 10.1136/adc.57.6.410.

doi:10.1371/journal.pone.0120202.t001

echo EPI scans with TR = 2 s, 22 slices, a matrix size of 80x80, voxel size 2.5x2.5x4mm. Due to
developmental differences in tissue composition and water content, the relaxation times of
grey and white matter markedly differ in neonates in comparison to standard adult values [23],
and T1-weighting gives poor contrast, so a T2-weighted sequence was used for anatomy
(matrix size 256 x 256, 95 slices, 0.86x0.86x1mm).

Resting-state analysis. Both infant and adult data were processed using the parallel-pro-
cessing automatic analysis software [24]) to pipeline SPM 8 and custom-matlab modules. Pro-
cessing comprised motion correction and smoothing with a Gaussian kernel of FWHM 10mm.
Note that we did not regress out signals from the white matter or ventricles (common in rest-
ing-state analyses) as this is not typically done in fMRI activation studies, which we wished to
simulate.

The time-series statistics were characterised in grey matter, as this is of most interest in acti-
vation studies. For the adults we normalized and segmented anatomical images and created a
mask comprising voxels with a greater than 50% probability of grey matter; while in the infants,
due to the difficulty of normalization and segmentation, we manually drew a grey-matter mask
on a portion of the right lateral frontal lobe of the un-normalized anatomical images. As can be
seen in the results, when motion was of a similar magnitude, similar noise statistics were
obtained in infants and adults.

Summarizing the statistics of the noise. It is well established that fMRI noise is strongly
auto-correlated (i.e., the noise on one scan predicts the next), and has strong power at low fre-
quencies [25]. It is often characterized as having a form

P =G+ W
where p = power, f = frequency, x, A and W are constants

The exponent x has been taken to be 0.67 [26] and 1 [12,25,27]. We calculated the power
spectrum for each grey matter voxel, and then averaged this across voxels.

Synthesizing noise with fMRI statistics using a simple model. To ensure that the noise
was well characterized, and to allow for simple extension and replication, we wished to synthe-
size noise with the same statistics as the measured resting-state noise. Surprisingly, we did not
find an existing tool for this, and further, there was no consensus on the best approach. Thus,
in pilot work using the adult data, we tested three approaches to synthesizing noise with fMRI-
like statistics. The first was to measure the lag-1 autocorrelation of the fMRI time-series, and
then to synthesize noise with this autocorrelation. This time domain model was found to be
wanting, as it underestimated the magnitude of very low frequency fluctuations in the power
spectrum, which have an important impact on the power of slow block designs. The second
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method was to measure the power spectrum of the fMRI noise, and to synthesize noise with
this power spectrum. The measured adult noise was fit well by a linear model of log (power)
against log (frequency). The frequency domain synthesis comprised magnitudes taken from
this model of the power spectrum and random phases, which was then transformed to the time
domain using a Fourier Transform. The resulting noise had similar amplitude histograms, and
appeared visually similar, to the original noise. The third method formed a balance between
the time-domain and frequency domain methods above, and was based on the discrete wavelet
transform (DWT) analysis of fMRI noise by [28]. We performed a multi-scale DWT using the
Daubechies wavelet, either of order 1, 2 or 4, with 7 levels of decomposition. We then summa-
rized the distributions of the wavelet components at each of these levels. To synthesize noise,
random wavelet domain components were generated from these distributions and the wavelets
reconstructed into the time domain. This was found to give similar final results to the synthesis
of fMRI noise in the frequency domain above, but requires a model of the noise with many
more parameters. We thus report only the simpler yet equally effective frequency-domain
noise synthesis.

Power as a function of paradigm block length and HRF

Choice of hemodynamic responses. Arichi et al (2012) measured the HRF in pre-term
and term infants, and adults, for a 1-second somatosensory stimulation. The resulting curves
show a broad range of morphology-delayed in pre-term infants relative to adults, but still
broadly monophasic; and biphasic in term infants (Fig 1a). For our simulations, we used Ari-
chi’s hemodynamic measurements for adults, premature infants of 32 weeks gestational age
(GA), and term infants at 38 weeks GA. These are the only measurements of the hemodynamic
response to a brief event in infants (that we know of), and they have a broad range of morphol-
ogy, ensuring our simulations span a range of possibilities.

Simulated stimulation. Block designs, in which for example a stimulation block is alter-
nated with a rest block, are simple and robust [29]. We analyzed the power of block designs
spanning 24 block lengths, from rapid (4-s cycle period comprising 2 s on, 2 s off) to slow (97 s
cycles comprising 48.5 s on, 48.5 s off), on a log scale (i.e., 2A2 to 2/6.6). To simulate the fMRI
signal that would be obtained in adults, and infants of 32 and 38 weeks GA, box-cars corre-
sponding to each block design were convolved with the corresponding empirical HRF. For
each paradigm/HRF combination, this signal was combined with 1000 samples of synthesised
noise.

Matching and mismatched HRFs. In fMRI studies, analyses typically begin with the crea-
tion of a model of the signal, by convolving the expected neural activity with the HRF. In the
literature, many authors have used mismatched responses, for example by assuming the HRF
of infants is the same as adults. To assess the effect of a mismatch, we analyzed the data simu-
lated with each of the three HRFs using three different models (each of the possible HRFs). The
fit of each model to the simulated data was estimated using the general linear model using
expectation-maximization in SPM 8. Each model contained two columns: the convolved box-
car, and the session mean. The power of the model to detect the simulated activation was
assessed using an SPM-T statistic for the first of these two columns.

Flexible basis set

In practice, it may often be unclear which HRF is appropriate for a participant. Infants develop
at different rates, especially when they have faced some challenge such as being born with very
low birth weight, or requiring an extended period of mechanical ventilation. It is not yet
known under what circumstances “HRF age” mismatches from “chronological age”, or the
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extent of this mismatch. We thus developed a flexible basis set, using a procedure from FSL’s
“FLOBS” (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLOBS). First, the three HRFs were fitted to a set
of half-cosine functions, allowing each to be parameterized by a set of delays and amplitudes.
Second, in this parameter space we interpolated between the 32- and 38-week HRFs, and the
38 week and adult HRFs. Third, we reconstructed a set of HRFs, and conducted Principal Com-
ponent Analysis. The top three components accounted for >99% of the variance, and fit well
the original Arichi or interpolated HRF functions. They thus form an effective flexible basis set.
A model using this basis set contained four columns: the boxcar convolved with each of the
three basis functions, and the session mean. The power of the model to detect the simulated
activation was assessed using an SPM-F statistic for the F-contrast constructed as the identify
matrix. To facilitate comparison to the T statistic, this was then transformed by: adjusting for
the difference in the degrees of freedom in the two models, and taking the square root. The
resulting value thus corresponds to the T value from the two-column model that has the same
significance as the F statistic in the four-column model.

Power curves were constructed by calculating the appropriate t- or F-statistic for each of
three sets of simulated data, modeled with four possible basis sets, for each possible paradigm
length (for a total of 12 curves). Cubic interpolation with an accuracy of 0.1s was used to find
the peak of these curves, and hence the optimal paradigm period for each combination of
actual and predicted HRF.

To assess the quality of the HRFs as estimated from the flexible basis set, we reconstructed
the HRF by weighting the three basis functions with their estimated beta values, and calculated
the correlation over the duration of the true HRF (32.5 s). These correlation values were then
Fisher transformed to make them Gaussian, the mean and standard deviation calculated, and
the upper and lower bounds were then back transformed for display.

Results
Statistics of noise

The power spectrums of the noise derived from resting state data for adults and neonates are
shown in Fig 2. The adult noise was well described by a flat-spectrum (white) component,
added to a 1/f component. The neonate noise was similar in form, and for 2/5 participants,
similar in amplitude to adults, despite the different scanners and protocols. However, for 3/5 it
had substantially higher amplitude. To investigate whether this was related to greater move-
ment in these infants, we plot in panel (c) a summary measure of the maximum movement,
against the noise level averaged across frequency. It can be seen that the 3/5 infants with greater
noise did move more than the adults, but when movement was similar to adults, so the noise
magnitude was similar.

The noise average fit across adults was P(f) = % + 4.86 where f is the frequency in Hz,

and P the amplitude spectrum level. This was the model used to resynthesize fMRI noise for
both adults and infants. We confirmed that the resulting noise had a similar distribution of
standard deviations to the fMRI noise.

Power as a function of paradigm block length and HRF

Fig 3 shows the resulting power of the paradigms as a function of block length (full on-off
cycle), for three “true” signal HRFs and four HRF models. The model predicted greatest power
in adults at a paradigm period of 24s. A slightly longer paradigm period (27.9s) was optimal
with the 32 week HRF signal and model, and one similar to the adults at 38 weeks (24.3s).
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Fig 2. To formally assess the efficacy of different designs, it is necessary to establish the
characteristics of the noise in the fMRI signal. In both adult (a) and neonatal (b) participants, spectra were
well fitted by flat-frequency spectrum component combined with a 1/f component. In 2/5 neonates the overall
level of noise was similar to adults, but in 3/5 neonates, the noise level was elevated. This increased level of
noise was associated with larger movement in these neonates (c).

doi:10.1371/journal.pone.0120202.g002

Paradigm power fell off with protocol period more steeply at 38 weeks (when the HRF is
biphasic) than in adults or at 32 weeks.

Not surprisingly, greatest power was obtained across all paradigm periods and for all true
HRFs when the correct model HRF was used. Modeling with a mismatched HRF had a strong
effect on power, in two cases (32 and 38 weeks GA mismatched with each other in either direc-
tion) almost entirely eliminating sensitivity to the signal. At 32 weeks GA, power shows a nega-
tive trend for rapid protocol alternations (around 16s) when the analysis was conducted using

HRF MODEL
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Fig 3. Simulation was used to assess the power of block designs varying in stimulation/rest cycle duration (x-axis of each subplot). Higher values
(y-axis of each subplot) correspond to greater statistical power. For example, in the top left subplot, peak statistical power was obtained with a block design of
total cycle length 24 s (i.e., 12 s stimulation, then 12 rest). These calculations were repeated for matched or mismatched HRFs during analysis (three rows—
true HRF used in simulation; four columns—HRF used for modeling). For the first three HRF columns, the SPM-T statistic is reported. For the flexible HRF
model in the fourth column, the square root of an adjusted F statistic is displayed so that the corresponding p-value will match that of the T statistics. The
mean +/- one standard deviation is shown. The grey bars show the distribution of fits to null data.

doi:10.1371/journal.pone.0120202.9003
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Fig 4. If the HRF for a participant is unknown, a flexible basis set might be useful. (a) We followed the “FLOBs” procedure (see text). The HRFs were
parameterized, to allow interpolation of shape between 32 and 38 weeks GA, and between 38 weeks and adults. The black curves show the original HRFs,
and the red curves some illustrative interpolated values. (b) Principal components analysis was then used to find a basis set that captured the variance in the
interpolated set. Three components captured 99.7% of the variance.

doi:10.1371/journal.pone.0120202.g004

the adult HRF. The relationship of this to reports in the literature of “negative activations” in
neonatal fMRI studies is addressed in the Discussion.

Flexible basis set

The goal of the flexible basis set is to capture brain activity when the HRF is at some unknown
point in the continuum from 32 to 38 weeks GA, or 38 weeks to adult. To capture this range,
the HRFs were parameterized and then the parameters interpolated. The resulting set of inter-
polated HRFs is shown in Fig 4A. The variance in this set was then summarized in a small
number of components using principal components analysis (PCA). Three components were
found to capture 99.7% of the variance in the interpolated set (Fig 4B).

This flexible HRF basis set recovered signal for all three true HRFs, but gave less power relative
to the case where the true HRF is known (see Fig 3, for adults, 32 weeks, 38 weeks mean SPM-T
with known HRF 9.41, 4.12, 5.08; with flexible HRF 6.55, 2.85, 3.52). Thus, where the correct
HRF is known, using it is preferred, but where there is uncertainty this flexible model is effective.

A further advantage of the flexible basis set is that it allows the HRF to be estimated. Fig 5
shows the quality of this estimation, as a function of stimulation paradigm. For stimulus para-
digms with a full on/off periods less than 24s, the HRF was fairly poorly estimated, as the HRF
of each block overlaps with the next. For paradigms greater than 60s in period, there are so few
onsets that it is difficult to estimate the HRF. In between, the HRF is quite well estimated (adult
r>0.93; 32 weeks r>0.69; 38 weeks r>0.80).

For the flexible HRF model, three columns were used. This is displayed as the square root of
an adjusted F statistic, which was designed to be comparable to the T statistics, so that similar
values correspond to the same p values. This was a good approximation everywhere except
when there was a very low signal level, as the F statistic is always positive and so unlike the T, it
does not have an expected value of zero when averaged across many simulations. To gauge
this, we also show in grey the T and F values in a null (no signal) design.

Discussion

Choosing the correct HRF for modeling was found to be critical for neonatal fMRI. A mis-
matching HRF can eliminate all power in a block design: in some cases, a mismatched HRF
even artifactually yielded a negative signal, but only for short on/off paradigm durations of
around 16s. There are a number of reports in the literature of negative fMRI signal in newborns
or very young infants [4,6,30-32]. These studies used on/off protocols with cycles greater than
60 s, and so the types of HRF mismatches tested in our modeling cannot explain the negative
signal observed. Furthermore, other authors that have shown only positive fMRI signal [5],
and so the conditions modulating signal sign are still unclear.

The HREF differentially affected the power of stimulation protocols of different durations. At
all three ages, the optimal on/off stimulation period is around 25s. This is in a similar range to
the lower end of recommendations for optimal power in adults, of a block length of around 24-
60s (Skudlarski et al. 1999; Carter et al. 2008; Dale 1999; http://www.mccauslandcenter.sc.edu/
CRNL/tools/fmrisim). However, our modeling shows that for neonates, longer cycles often
used in adults yield much less power when the HRF is biphasic at 38 weeks (bottom row, third
column of Fig 3). These long designs are affected even more dramatically by a mismatch in the

PLOS ONE | DOI:10.1371/journal.pone.0120202 August 12,2015 10/13
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Fig 5. The flexible basis set can be used to estimate the form of the HRF. Here we show the accuracy of
the estimation of the HRF for adult, 32 week GA and 38 week GA, as a function of the block design timing
(stimulation/rest cycle, x-axis). Correlation was used to assess the similarity of the true (simulated) HRF to
the HRF estimated from the flexible model. The mean +/- one standard deviation is shown (calculated in
Fisher-transformed space, and then back-transformed).

doi:10.1371/journal.pone.0120202.g005

HREF (top row, third column of Fig 3). A key recommendation from this work, therefore, is that
slow block designs should be avoided in infants. We suggest 24-30 s for the full on/off cycle.

Given the strength of the effect of the HRF on the power of fMRI designs, and the extent to
which it changes through the age range, it is important for future work to replicate, generalize
and extend Arcihi et al’s (2012) measurements of the HRF to a somatosensory stimulus. It will
be useful to characterize: the robustness of these results; degree of variability across individuals
in the HRF as a function of age (i.e., cross-sectionally); the effect of brain injury on the develop-
ment of the HRF; and whether the HRF develops at the same rate in all brain regions.

The flexible basis set was effective in recovering signal from the diverse range of HRFs
tested. The PCA analysis showed it captured almost all of the variance from Arichi’s three
HRFs, and the temporally-interpolated HRF set, using a linear model with just three compo-
nents. This simple model will be more robust than a more general (e.g., finite impulse response,
Lee et al, 2012) basis sets that has a greater number of degrees of freedom. However, they will
fail if an infant has an HRF distinct from Arichi’s set.

In sum, using simulations with an accurate noise model we found that stimulation para-
digms for newborn fMRI must be carefully chosen, as the power is optimal for a narrower
range of paradigms than for adults. For block designs, we recommend full on/off cycle dura-
tions of 20-30s. Furthermore, we have shown that it is important to analyze newborn data with
the correct HRF, or to use a flexible basis set where the correct HRF is unknown.
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