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A commentary on

Spatial Olfactory Learning Contributes to Place Field Formation in the Hippocampus

by Zhang, S., and Manahan-Vaughan, D. (2015). Cereb. Cortex 25, 423–432.
doi: 10.1093/cercor/bht239

The discovery of place-representing neurons in the hippocampal formation has been recognized by
the Nobel Committee as a paradigm shift in Neuroscience (Burgess, 2014). Here we call attention to
an innovative paper of particular note (Zhang andManahan-Vaughan, 2015) that added important
findings to this field of study.

Zhang and Manahan-Vaughan investigated the contribution of olfactory cues to the formation
of place fields in hippocampal neurons. For this purpose, they put male Wistar rats in the darkness
into a 80× 80 cm square box. Four odors (orange, vanilla, almond, and lemon) were placed into the
quadrants of the arena. Chocolate crumbs were scattered across the arena to encourage exploratory
behavior. The researchers observed the formation of stable place fields in the hippocampal neurons,
even though visual cues were unavailable to the rats. The place fields rotated when the odor
placements were rotated, and remapped when the odors were shuffled. The authors concluded
that “despite the less precise nature of olfactory stimuli compared with visual stimuli, these can
substitute for visual inputs to enable the acquisition of metric information about space.”

This is a significant finding because it provides insights on the role of olfaction in the formation
of hippocampal representation of space, or “cognitive maps” using the terminology of O’Keefe
and Nadel (1978). O’Keefe’s experiments utilized a neuro-ethological approach, where neuronal
responses were examined during natural animal behaviors, such as spatial exploration and foraging
by unrestrained rodents (O’Keefe and Nadel, 1978). O’Keefe’s key discovery was the finding of
place cells in the rat hippocampus that discharged when a rat entered a particular spatial location
(O’Keefe and Dostrovsky, 1971). O’Keefe and his colleagues reported that place cells responded
to environmental visual cues (O’keefe and Conway, 1978). Moser et al. (2008) commented on
this development, “Early on, it became apparent that place fields are strongly influenced by distal
sensory cues.” Following this discovery, many studies focused on the role of vision in place
field formation, and the integration of visual inputs with vestibular and proprioceptive inputs
during path integration (Markus et al., 1994; Wiener et al., 1995; Arleo and Gerstner, 2000; Moser
et al., 2008). The relationship of olfaction and place fields was less studied. Several recent studies
employed virtual reality tasks to eliminate the contribution of olfaction entirely and to show that
vision alone can generate place fields (Harvey et al., 2009; Dombeck et al., 2010; Chen et al., 2013;
Domnisoru et al., 2013; Ravassard et al., 2013; Aronov and Tank, 2014; Aghajan et al., 2015). Given
the predominance of studies based on visual environments, the Zhang and Manahan-Vaughan
study of olfaction is a contribution to a less explored field.

While most of the Zhang and Manahan-Vaughan findings are convincing, the paper does not
contain a thorough analysis of rat navigation traces. This is unfortunate because rodents generate
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highly structured navigation patterns (Golani et al., 1993; Drai
and Golani, 2001; Benjamini et al., 2010; Yaski et al., 2011)
characterized by the establishment of a home base, tendency
to stay near the walls and corners, and locomotion periods
intermingled with stops and turns. It seems reasonable to
hypothesize that in the experiments of Zhang and Manahan-
Vaughan, rats behaved differently in the odor locations compared
to the other parts of the arena. For example, they could have
exhibited specific sniffing patterns; additionally, they could have
explored some odors longer than the others. Furthermore, since
navigation goal was to obtain chocolate crumbs, rats could
have developed a specific foraging strategy, such as of avoiding
locations that have been already visited and seeking food at new
locations. Analysis of navigation statistics is important because
navigation patterns could have influenced the measurements of
the neuronal place fields. For example, if the rats frequently
visited some places in the arena but rarely visited the others,
measurements of neuronal rates are more reliable for the former
locations than for the latter. It is not entirely clear why Zhang
and Manahan-Vaughan displayed neuronal place fields using a
circular area although the arena had a square shape. Finally,
the duration of each analyzed session was 5min, the time that
may have been insufficient for a rat to cover all places in
the arena. These issues are present not only in the study of
Zhang and Manahan-Vaughan; most of the studies on place
cells and grid cells contain little detail on navigation traces and
different behaviors exhibited by rodents during navigation, even
though non-random navigation patterns are often visible in the
published figures that display animal traces.

Notably, the study of Zhang and Manahan-Vaughan contains
no data on the behavioral responses to different odors. Were the
sniffing patterns (Welker, 1964; Clarke et al., 1970; Youngentob
et al., 1987; Fonio et al., 2015) altered? Were the spatially-
dependent neuronal responses phase locked to the sniffing?
Obtaining answers to these questions is important because
different sniffing (and postural, and locomotion) patterns in
specific parts of the arena could have produced distinct neuronal
responses, leading to an erroneous conclusion of the presence
of a purely spatial map in the hippocampus, irrespective of
the behaviors exhibited by the animals. In reality, the neuronal
patterns may have represented neuronal responses to specific
behaviors, not a spatial map per se.

Lastly, Zhang and Manahan-Vaughan do not mention scent
marking behavior, which is prevalent in rodents, particularly in
the male animals (Johnson, 1973; Tomlinson and Johnston, 1991;
Wallace et al., 2002; Stopka and MacDonald, 2003; Hurst and
Beynon, 2004; Kulvicius et al., 2008). Based on the findings of
Zhang and Manahan-Vaughan, it is reasonable to suggest that
odors resulting from scent marking could have contributed to the
formation of hippocampal spatial maps. Such a suggestion would
be consistent with O’Keefe’s neuro-ethological approach because
male rodents (predominantly used in studies on place fields)
utilize scent marks to advertise their ownership of a territory
and attract females (Roberts et al., 2010, 2012; Thonhauser
et al., 2013). Additionally, rodents respond to odor cues during
navigation (Lavenex and Schenk, 1998; Wallace et al., 2002;
Porter et al., 2005; Khan et al., 2012), although vision dominates
over olfaction in certain tasks (Small, 1901; Olton and Collison,

1979; Lavenex and Schenk, 1996; Maaswinkel and Whishaw,
1999).

Overall, Zhang and Manahan-Vaughan agreed with the
conventional notion that “visuospatial contexts comprise a key
element in the formation of place fields” and attributed only
a secondary role to olfaction. Yet, they cited several studies
showing that the contribution of olfaction could be quite
significant. For example, blind rats exhibit place fields (Save
et al., 1998). Additionally, stability of place fields improves when
the recording box is not cleaned in between the experiments
(Save et al., 2000). Zhang and Manahan-Vaughan themselves
reported that hippocampal neurons exhibited place fields even
when no odors were experimentally placed in the recording box.
Moreover, these place fields persisted after the rats were taken
out of the box and then put back while the light was off. Since
this manipulation should have disoriented the rats, the fact that
the place fields remained indicates that some sensory cues were
left in the box, possibly scent marks spared by the cleaning
procedure. Most of the labs involved in this research clean the
behavioral arena in between the experimental sessions. However,
their cleaning procedures may be insufficient for eliminating
the scent marks entirely. For example, the following cleaning
procedure is reported in the pioneering study of the entorhinal
grid cells (Fyhn et al., 2004): “Each trial lasted 10min. Before and
after each trial, the rat rested on a pedestal for 5–10min, and the
floor was cleaned with a damp cloth.” This may qualify only as
a partial cleaning that does not remove odors completely (Gray
and Hurst, 1995). Additionally, even if the cleaning worked well,
scent marks may have gradually accumulated in the arena during
the 10-min experimental session.

Historically, Ramon Cajal initially proposed that the
hippocampus was a structure with an essential role in olfaction
(DeFelipe and Jones, 1988; Vanderwolf, 2001). Cajal’s theory was,
however, abandoned after Brodal questioned the existence of
olfactory inputs to the hippocampus and pointed to the studies
showing that hippocampal lesions did not affect behaviors
conditioned by odors (Brodal, 1947). Olfactory projections
to the hippocampal formation were later shown (Krettek
and Price, 1977; Luskin and Price, 1983; Room et al., 1984;
Schwerdtfeger et al., 1990); as well as electrophysiological
responses to odors (Wilson and Steward, 1978; Vanderwolf,
1992; Biella and De Curtis, 2000; Insausti et al., 2002). Yet,
only Vanderwolf continued to believe that the hippocampal
formation processed odors instead of constructing a spatial
map (Vanderwolf, 1992, 2001), whereas the mainstream theory
described the hippocampal formation a hierarchically high
region that constructs a cognitive map of space based on
multiple sensory inputs (Moser and Moser, 2013). Curiously,
this theory does not explain why cetaceans orient in space
well (Thomas and Kastelein, 2013) despite having a small
hippocampus (Patzke et al., 2015). Conspicuously, their small
size of the hippocampus correlates with the absence of olfaction
in these animals (Breathnach, 1960). Additionally, Jacobs (2012)
proposed that rodents rely on olfaction when they navigate in
space, and that olfactory regions act as a scaffold for the visual
representation of space. In agreement with this view, olfactory
bulbectomy severely impairs navigation in rats (van Rijzingen
et al., 1995).
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Based on the study of Zhang and Manahan-Vaughan and the
other studies on the processing of olfactory information in the
hippocampus (Shapiro et al., 1997; Save et al., 2000; Deshmukh
and Bhalla, 2003; MacDonald et al., 2013), one could question
the purely visual origin of the hippocampal place cells reported
in some of the previous publications, particularly the ones with
inadequate controls for scent marks and different navigation-
related behaviors, such as sniffing (Welker, 1964; Clarke et al.,
1970; Kepecs et al., 2005), whisking (Berg and Kleinfeld, 2003;
Leiser andMoxon, 2007; Mitchinson et al., 2007) and locomotion
(Parker and Clarke, 1990; Vásquez et al., 2002; Eilam et al., 2003),
as well lacking control for technical issues, such as visual cues,
forces, and even sounds produced by the electrical cable attached
to the head implant and suspended over the animal. These
issues could be addressed by adding appropriate controls. Thus,
scent marks could be made visible in ultraviolet illumination
(Desjardins et al., 1973). Additionally, traces of urinary proteins
could be detected using a polyclonal antibody (Beynon and
Hurst, 2004). The located scent marks could be then compared
with the recordings of animal trajectories and behavioral data.
Figure 1 illustrates a possible procedure that could clarify this
issue.

A point of view should be acknowledged, stating that the

contribution of olfaction is no longer a concern for the studies

of rodent navigation in virtual environments, where odors left

on the physical treadmill do not match virtual visual stimuli

(Harvey et al., 2009; Dombeck et al., 2010; Chen et al., 2013;
Domnisoru et al., 2013; Ravassard et al., 2013; Aronov and Tank,
2014; Aghajan et al., 2015). Yet, a closer look at these studies

reveals several issues. For example, Figure 4A in the study of

Aronov and Tank (2014) shows a clearly non-uniform occupancy

map for the virtual arena (e.g., zoom in their panel marked
“Cell 2”). The map indicates that the rats visited different places

with different probability and possibly behaved (whisked, sniffed,
walked) differently depending on their location in the virtual
environment. Similar non-uniform occupancy maps can be
found in Figures 2A–C of Domnisoru et al. (2013). Furthermore,
Movie S1 of Aronov and Tank shows that their rat sniffed
the physical treadmill from time to time, i.e., exhibited an
olfactory-related behavior. It seems reasonable to assume that
the visual virtual stimuli may have triggered sniffing, which in
turn may have modulated the activity of hippocampal neurons.
The absence of any consistent smell in the virtual places may
have facilitated the sniffing-induced neural responses rather than
attenuating them. The modulation of hippocampal activity by
sniffing has been known since O’Keefe’s study of “misplace units”
that responded to exploratory sniffing of places where a familiar
object was missing, or a new object was found (O’Keefe, 1976).
Additionally, sniffing activates the olfactory system even when no
odors are present (Adrian, 1942; MacRides and Chorover, 1972).
After all, rodent olfactory-related behaviors may not be easy to
rule out, even in the virtual environments that uncouple visually-
defined places from the odors present in the real environment.

In addition to visual virtual environments, tactile (Sofroniew
et al., 2015; Thurley and Ayaz, 2017) and olfactory-based
(Radvansky and Dombeck, 2018) environments have been
developed. While these studies help to elucidate the specific

FIGURE 1 | Possible approach to the analysis of different behaviors

associated with rodent navigation, including scent marking. (A) While a rodent

navigates in an arena, its position and different behaviors are video recorded.

(B) Behaviors, such as locomotion, sniffing, whisking and verticalization, are

analyzed based on video recordings. Maps of animal position and velocity are

analyzed, as well. (C) Scent marks are visualized under UV light and compared

with the navigation traces.

roles of different modalities in the formation of place fields, our
comments still apply regarding the need for a more thorough
analysis of different behaviors associated with rodent navigation.

In conclusion, the work of Zhang and Manahan-Vaughan
not only contributes important findings on the formation of
place fields based on olfactory inputs, but also instigates critical
thinking regarding the methodological approaches in this field
and the theories of hippocampal function.
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