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Abstract

Purpose:  For  image  translational  tasks,  the  application  of  deep  learning  methods  showed  that  Generative  Adversarial
Network (GAN)  architectures  outperform  the  traditional  U-Net  networks,  when  using  the  same  training  data  size.  This
study investigates  whether  this  performance  boost  can  also  be  expected  for  segmentation  tasks  with  small  training  dataset
size.
Materials/Methods: Two  models  were  trained  on  varying  training  dataset  sizes  ranging  from  1—100  patients:  a) U-Net
and b)  U-Net  with  patch  discriminator  (conditional  GAN).  The  performance  of  both  models  to  segment  the  male  pelvis  on
CT-data was  evaluated  (Dice  similarity  coefficient,  Hausdorff)  with  respect  to  training  data  size.
Results: No  significant  differences  were  observed  between  the  U-Net  and  cGAN  when  the  models  were  trained  with  the
same training  sizes  up  to  100  patients.  The  training  dataset  size  had  a  significant  impact  on  the  models’  performances,  with
vast improvements  when  increasing  dataset  sizes  from  1  to  20  patients.
Conclusion:  When  introducing  GANs  for  the  segmentation  task  no  significant  performance  boost  was  observed  in  our
experiments, even  in  segmentation  models  developed  on  small  datasets.
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1 Introduction

Segmentation of organs, parts of organs, and tumors on
CT-data is an essential task in radiation oncology that is
time consuming and prone to inaccuracies and inconsistencies
[1]. The necessity of reliable and fast auto-segmentation has

challenging demands of state-of-the-art radiation therapy con-
cepts: One of the most intriguing trends in radiation oncology
in recent years is towards adaptive strategies that aim at pro-
viding a more individualized therapy and improve the clinical
outcome by accounting for anatomical changes between frac-
tions or during treatment [7]. Adaptive radiotherapy is very
resource demanding, with a great potential for automatization,
been widely discussed for years [2]. It has been shown that

machine learning techniques can handle segmentation tasks
of delineating organs-at-risk (OAR) in radiation oncology
very well [3–6]. These provide huge potential in meeting the
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especially in the repetitive task of delineating organs-at-risk
(OAR).

The range of deep learning techniques used for segmenta-
tion in radiation oncology is wide, and some attempts have
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been made to provide some sort of comparability among the
different models [5,8–10]. However, the most common mod-
els, also the more recent ones, such as the very successful
nnU-Net by Isensee et al  [11], are U-Net-based architectures,
introduced by Ronneberger et  al  in 2015 [12], which have been
applied for many segmentation tasks in radiation oncology
[13–18].

Training data for medical images is often limited by the
amount of available high quality labelled clinical data which
has a direct impact on the performance of the learning algo-
rithm [19]. Therefore, using a learning algorithm which can
maintain the accuracy with reduced training data would be an
asset for clinical application.

Particularly, in the domain of translational research, Gener-
ative Adversarial Networks (GANs) [20] are combined with
classical architectures (e.g. U-Net) to improve performance
either by relying on the enhanced metric computation or by
generalizing with small training datasets [15,21,22]. Espe-
cially for segmentation the concept of conditional GANs
(cGAN) is important as a direct correlation between the labels
and the image can increase training performance as it was
demonstrated by Isola et  al  [23]. Thus, it would be expected
that a cGAN achieves the required performance of a U-Net
architecture with a lower size of training data. The concept of
requiring less data for training deep learning models and still
achieving acceptable performance would help to focus on col-
lecting high quality datasets instead of big datasets including
poorly annotated data.

In this study, a U-Net and a cGAN based model were
investigated for male pelvic OAR segmentation to assess the
potential benefit of cGANs for small training set sizes. The
influence of an additional discriminative network was ana-
lyzed and compared to the standard U-Net architecture. The
focus was to evaluate the performance of different training
dataset sizes.

2 Methods

2.1  Data

In total, data from 308 prostate cancer patients were
included in this study. All patients were treated at the Depart-
ment of Radiation Oncology at the Medical University of
Vienna, between 2016 and 2018. Ethical approval was granted
by the institutional ethics committee (1255/2021). A set of 100
patients was randomly selected for training. To investigate the
impact of different training dataset sizes, this training set was
split into seven subsets of different size (see paragraph 2.3).
The validation dataset consisted of 29 patients to validate the
results of the different models. The overall best models were
tested on a cohort of 179 patients.
All patients received a CT scan on a Siemens Somatom
(Siemens Healthineers, Erlangen, Germany) prior treatment
with a resolution of 512 ×  512 pixel, a median pixel spacing
of 0.93 mm (range: 0.70–1.27 mm), a slice thickness of 2 mm
d Phys 32 (2022) 361–368

and a pelvic protocol. The delineation of the target and OARs
(i.e. bladder, rectum, and femoral heads) was performed by
a highly experienced radiation oncologist (G.G.) with more
than 20 years of experience in prostate radiotherapy.

2.2  Neural  network  architecture  and  training

Two network architectures were analyzed (see Figure 1): a)
U-Net [12,23] and b) U-Net combined with a patch discrim-
inator (cGAN) [23,24]. The model was trained slice-by-slice
to segment the following structures: bladder, rectum, left and
right femoral heads, external body contour and exterior (i.e.
air). In both cases the generator model was the same, including
a combination of convolution, normalization (instance nor-
malization) and activation blocks (ReLU or LeakyReLU with
slope 0.2) for nine down-convolution paths. In the bottleneck
the image was compressed to a 1 ×  1 ×  512 vector. A kernel
size of 4 ×  4 was applied with 64 features in the first layer.
The features were doubled when the image dimension was
reduced. The feature map number was kept constant when
512 features were reached. Input consisted of single transver-
sal slices with an image size of 512 ×  512 pixels. The model
output size was 512 ×  512 ×  6 pixels (with each channel cor-
responding to one structure). A Softmax function was applied
to give the final probability for each class. The discriminator
for the cGAN model was a patch discriminator which reduced
the image size to a 60 ×  60 feature map. This feature map of
the discriminator was compared with a tensor of the same
size filled with 1 if the input image was a real image pair and
with zeros if it was the prediction. This was used as input
for classification with the CT image and the masks (predicted
or ground truth) as concatenated input. The final receptive
field was 70 ×  70 pixels, meaning that one pixel of the feature
map sees a 70 ×  70 field. Similar to the generator convolution,
normalization, and activation blocks were used.

Models were trained with a batch size of three images for
100 epochs, where the learning rate was constant for the first
50 epochs and then linearly decreased over the last epochs
(down to zero after 100 epochs). Adam was used for opti-
mization, with a learning rate of 2 ×  10−4, and fixed �  values
of 0.9 and 0.999 [25]. All weights were initialized using the
Kaiming method [26]. Batch size and number of epochs were
fixed after an initial pilot experiment.

To increase the sample size, random horizontal flips were
included. If the image was flipped the right and left femoral
head labels were swapped.

All models were implemented using the PyTorch library
(version 1.0). Training on 26 cases took up to 14 hours on a
NVIDIA Geforce 1080Ti with 11 GB memory.

A comprehensive hyper-parameter search was conducted,
including different loss metrics and weighting between those

loss metrics to find the optimal settings per dataset size. The
data was reviewed to identify the pareto optimal surface.

The Dice-similarity-coefficient (DSC) loss and the cross-
entropy (CE) loss were implemented and used as loss metrics.
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rator) and the GAN (top and bottom: generator + discriminator).

Table 1
Data split for the different experiments showing the number of
patients for each set.

Training Validation (fixed) Testing (fixed)

1) 1 29 179
2) 6
3) 11
4) 16
5) 21
6) 26
Figure 1. Network architectures of the U-Net (top only: Gene

Additionally, different weightings between these loss metrices
were used to identify their influence on the validation perfor-
mance. The regularization rate �  was set to 0, 0.25, 0.5, 0.75,
and 1 where 0 corresponded to pure DSC and 1 to pure CE loss.
Individual structure classes were weighted differently for the
CE loss as a class imbalance was given for labels like femoral
bones and body. Initially, the weightings for all classes were
1, which represents the original cross-entropy loss. Secondly,
a weighting of 2.5 was introduced for the – compared to body
and air – relatively small structures (i.e. femoral heads, blad-
der, and rectum). In a third step, a dynamic weighting was
implemented, which included the information on how well
the auto-segmentation is performing during the training. This
can be represented as:

Lcombined = (1 −  λ) · (1 −  DSC) +  λ  ·  CE  (1)

where DSC and CE losses are given as:

DSC  = 1

6

n=6∑
i

2TP[i]

2TP[i] +  FP[i] +  FN[i]
(2)

and

CE (x, i) = wi

⎛
⎝−xi +  log

⎛
⎝∑

j

exj

⎞
⎠

⎞
⎠ (3)
with wi being the weight defined for each organ, n  the number
of classes (n = 6), TPFP  and FN  the rate of true/false positive
and false negative classifications. The dynamic weighting of
7) 100

CE was implemented as in [27] to weight single class values
higher in the presence of a larger mismatch:

wi = Ntotal

TP[i]
·  100 (4)

where Ntotal is the number of total voxels and TP[i] the true
positives within each class i.

2.3  Training  set  size

The training dataset was divided into training set sizes rang-
ing between 1 to 26 in steps of 5 patients (see Table 1). For
each of these sets the hyperparameter search was repeated to
determine the optimal loss setting. Lastly, a final model was

trained on 100 patients, to analyze the performance of both
networks on a reasonably sized training set.
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2.4  Evaluation  metrics  and  statistical  analysis

The testing was performed with the model state after 100
epochs. The models were selected by the highest DSC, which
is the most widely accepted metric among deep learning-based
auto-segmentation studies [28]. The model performance was
validated for each organ separately using the DSC metric,
recall, precision, MSE, and 95% Hausdorff distance of the
segmentation masks.

The influence of the training data size was investigated
by using the best performing models for all organs and all
dataset sizes to determine the optimal settings for the weight-
ing between DSC and CE. The metric results of the validation
dataset were plotted to analyze the impact of the additional
GAN metric and the data size.

Friedman tests (and post hoc Nemenyi tests) were per-
formed to test for significant differences between the different
settings and models. All statistical tests were done in Python
using the SciPy and scikit-learn libraries.

3 Results

3.1  Loss  metrics

The implementation of the different losses showed a trend
that for larger training datasets CE weighting produced better
results, whereas smaller training dataset sizes benefitted from
dynamic weighting. However, the search was not conclusive
leading to a non-significant difference between the different
settings which was tested with the Friedman test (p > 0.05). In
general, a CE loss with 0.25 weighted DSC metric resulted in
better performance.

3.2  Impact  of  training  dataset  size

In Figure 2 the DSC metrics are visualized showing a sharp
increase of the performance between 1 and 6 training patients
with a small increase after gradually including more patients.
Most pronounced for the rectum, where the performance from
1 to 6 patients increased by a DSC score of 0.6. The differ-
ence between cGAN and U-Net metrics among each OAR was
small (<2%) for all training dataset sizes. The interquartile
range of both models overlapped for all dataset sizes. Step-
wise increasing the training dataset size yielded significant
differences (Nemenyi post hoc test) for some, but not all incre-
ments. However, the effect between training size increases was
always larger than changing the network (see below).

3.3  U-Net  vs.  cGAN

No significant differences (Friedman p »  0.05) were

observed between the cGAN and the U-Net within one dataset
size (see Table 2).

Figure 3 shows the correlation between ground truth and
predicted volume of the model trained with 100 patients. The
d Phys 32 (2022) 361–368

volumes of bladder and rectum tend to be underrepresented.
The largest differences between cGAN and U-Net were found
in the rectum where R2 is 0.79 for U-Net and 0.83 for
cGAN. These differences almost vanished for the other struc-
tures, which yielded almost identical R2 values between the
models.

4 Discussion

Reliable and accurate segmentation of OARs is impor-
tant for radiation therapy treatment planning and automated
segmentation methods become key when aiming for online
adaptive treatment strategies [2]. Over recent years, the intro-
duction of deep learning methods for segmentation tasks in
radiation therapy showed very promising results, matching or
even outperforming state-of-the-art deformable model based
or atlas based techniques [3,13,28].

Results of our model were comparable to recent studies
[13,14,17,18], but showed no benefit when including an addi-
tional discriminative model into the training process. The
hypothesis that a cGAN architecture provides better results
for small dataset sizes in comparison to a more general
and simpler U-Net architectures could not be confirmed. No
significant differences between both architectures for struc-
ture metrics (e.g. DSC, sensitivity, Hausdorff distance) were
found.

Dong et  al  claimed that the training results stabilized after
20 patients for a very similar cGAN architecture as used in
this study [15]. But they did not compare to any other network.
Our study confirms a stabilization around 20 patients for both
cGAN and U-Net; however, continuous improvement can be
observed if significantly larger datasets are included in the
training. In a very recent review by Vandewinckele et  al  [29]
they found that most state-of-the-art CNN-based contouring
models were trained on 100 or more patients, but, they state
that some studies achieved reasonably good results with as
little as 50 patients. The performance analysis over the differ-
ent dataset sizes demonstrates the importance of large training
datasets and the importance of the loss metric dependent on
the training data size. However, the highest metric improve-
ments can be observed in the range of 1–21 patients in this
study.

Some of the most recent studies have implemented GAN
structures, consisting of a U-Net-like generator and a discrimi-
nator (e.g. fully convolutional networks) for the segmentation
of male pelvis [30]. Particularly Sultana et  al  [17] showed
results well in line with our model. They used a similar U-Net
and GAN structure for multiclass segmentation and trained
on the same number of patients as our final model. While
our study cannot confirm the performance boost with respect
to DSC, we observed a similar tendency in the Hausdorff

distance. Similar cGAN architectures have been applied for
multi-organ segmentation in other regions, e.g. in the thorax
[15]. Several studies showed that the U-Net was very versa-
tile, with an overall accurate segmentation performance for a
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Figure 2. Comparison of the performance of the two networks cGAN (left, green) and U-Net (right, red) with respect to the different training
data sizes. The DSC results are depicted for the bladder, rectum, left femoral head (FHL) and right femoral head (FHR).

Table 2
Comparison of the performance of the U-Net and cGAN for different metrics. The values are from the model trained on the largest training
dataset used in this study (100 patients). Statistical analyses showed no significant differences between U-Net and cGAN.

Organ Metric DSC Precision Sensitivity Hausdorff distance

Rectum U-Net 0.84 ± 0.08 0.85 ± 0.11 0.84 ± 0.09 7.77 ± 6.62
GAN 0.84 ± 0.08 0.85 ± 0.11 0.85 ± 0.09 6.79 ± 5.08

Bladder U-Net 0.88 ± 0.09 0.90 ± 0.10 0.88 ± 0.11 6.90 ± 13.18
GAN 0.89 ± 0.08 0.90 ± 0.09 0.88 ± 0.11 6.02 ± 6.95

Femoral head left U-Net 0.93 ± 0.06 0.93 ± 0.08 0.93 ± 0.05 4.06 ± 8.41
GAN 0.93 ± 0.06 0.93 ± 0.08 0.93 ± 0.05 3.53 ± 4.35
Femoral head right U-Net 0.93 ± 0.06 

GAN 0.93 ± 0.06 

wide range of anatomical regions [16,31]. While our study is
limited to the male pelvic, we expect the results to be equally
extrapolatable.

GANs have provided impressive results in the field of com-
puter vision [23,32]. Particularly improvements in the data
efficient training played a major role recently, introducing
augmentation methods which can be applied directly on the
discriminator without leaking these transforms towards the
generator [33,34]. Especially for medicine, these techniques

could be interesting as many color and spatial transformations
cannot be used because the image context could be disrupted.
Whether the advantages of GANs exist in the same order
0.93 ± 0.08 0.93 ± 0.05 3.66 ± 4.48
0.93 ± 0.08 0.93 ± 0.05 3.59 ± 4.44

of magnitude for medical images – and radiation therapy in
particular – is still to be investigated [21,35]. However, the
availability of training data for medical images is orders of
magnitude lower than for other computer vision tasks, provid-
ing opportunities for these data-efficient training techniques.
Recent studies have highlighted different strategies to over-
come this limited data problem, e.g. by more sophisticated
data augmentation [36] or the generation of artificial training
data [37–39].
In general, high cross-entropy weighting produced more
favorable results with respect to the investigated evaluation
metrics. The overestimation, false positive classification of
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r, re
Figure 3. Predicted vs. delineated structure volume for bladde

pixels, is a consequence of the DSC in the regularization term
of the loss.

In this study, no multi-reader approach was used, but all
delineation was performed by the same oncologist. While this
is sub-optimal when aiming for a model with peak perfor-
mance, it was beneficial in this study, as the ground truth is of
very consistent quality and thus the comparison between both
approaches can be focused on the network architecture.

The systematic underestimation of rectum and bladder vol-
umes might be caused by difficulties of the network in dealing
with the inconsistent delineation start and end points in cra-

nial and caudal direction of the input data. For the bladder
this is amplified by the low cranio-caudal resolution and the
slice based 2D training of the networks. Additionally, different
ctum, left femoral head (FHL) and right femoral head (FHR).

sample-mining (e.g. ratio-based weighting [40]) approaches
might help overcome the under-representation problem of rel-
atively small volumes.

The results of this study did not show noticeable improve-
ments of GAN training with respect to the metric results of
segmentation maps independent of the training sample size in
comparison to a standard U-Net architecture and might not
justify the implementation of a discriminative network. The
memory used for the discriminator should be more efficiently
allocated to increase the model size and push the model to
more accurate results. Instead, more sophisticated methods to

overcome the limited data problem are necessary [33] (e.g.
improved augmentation methods, application of pretrained
models), which in turn are very costly in terms of training.
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5 Conclusion

This study investigated if automated segmentation tasks in
the male pelvic benefit from cGAN architectures in compari-
son to a U-Net architecture, focusing on the size of the training
dataset. The results do not yield arguments to apply a cGAN
for these tasks or to claim that U-Net based results might
improve when changing the architecture to cGAN.

Appendix A Supplementary data

Supplementary data associated with this arti-
cle can be found, in the online version, at
https://doi.org/10.1016/j.zemedi.2021.11.006.
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