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Abstract. The Golgi apparatus is known to underpin many 
important cellular homeostatic functions, including trafficking, 
sorting and modifications of proteins or lipids. These functions 
are dysregulated in neurodegenerative diseases, cancer, infec‑
tious diseases and cardiovascular diseases, and the number of 
disease‑related genes associated with Golgi apparatus is on the 
increase. Recently, many studies have suggested that the muta‑
tions in the genes encoding Golgi resident proteins can trigger 
the occurrence of diseases. By summarizing the pathogenesis of 
these genetic diseases, it was found that most of these diseases 
have defects in membrane trafficking. Such defects typically 
result in mislocalization of proteins, impaired glycosylation of 
proteins, and the accumulation of undegraded proteins. In the 
present review, we aim to understand the patterns of mutations 
in the genes encoding Golgi resident proteins and decipher the 
interplay between Golgi resident proteins and membrane traf‑
ficking pathway in cells. Furthermore, the detection of Golgi 
resident protein in human serum samples has the potential to 
be used as a diagnostic tool for diseases, and its central role in 
membrane trafficking pathways provides possible targets for 
disease therapy. Thus, we also introduced the clinical value of 
Golgi apparatus in the present review.
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1. Introduction

The Golgi apparatus is a processing and sorting hub in the 
transport and targeting of soluble cargo proteins and lipids to 
different destinations in the cell (1). Considering its central 
role in the secretory pathway, alterations in the structure 
and function of the Golgi apparatus are expected to affect 
the homeostasis of cellular proteins and lipids. Increasing 
evidence suggests that structural changes and functional 
disorder of the Golgi apparatus are involved in many human 
diseases such as neurodegenerative diseases (2‑4), ischemic 
stroke (5,6), cardiovascular diseases (7,8), pulmonary arterial 
hypertension (9,10), infectious diseases (11‑13), and cancer (14). 
However, much work is still needed to elucidate how the Golgi 
apparatus affects the progression of these diseases.

In this review, we describe the central roles of the Golgi 
apparatus in cells, and discuss diseases associated with struc‑
tural changes and functional disorder of the Golgi apparatus. 
We highlight some of the studies that explore links between 
mutation in genes encoding Golgi resident proteins and human 
diseases. By analyzing their pathophysiology, we found that 
the majority of genes leading to human diseases are involved 
in membrane trafficking. Considering the mechanistic links 
between Golgi resident proteins, membrane trafficking, and 
the development of genetic diseases, we suggest a term for 
these disorders based on their similar pathophysiology: Golgi 
apparatus membrane trafficking disorders.

2. Golgi apparatus structure and function

In 1898, the Italian anatomist camillio Golgi initially 
described the cell organelle that bears his name, the Golgi 
apparatus (15). The Golgi apparatus is characterized by a 
series of flattened, cisternal membrane structures forming the 
so‑called Golgi stack, which is surrounded by vesicles. Based 
on the distribution of resident proteins, the Golgi stack can be 
divided into three regions: The cis‑, medial‑, and trans‑Golgi 
cisternae (16). The Golgi stacks in vertebrate cells are later‑
ally interconnected by tubular membranes and exhibit a 
twisted ribbon‑like network known as the Golgi ribbon (17). 
The structure of the Golgi ribbon is supported by the Golgi 
matrix (18). The Golgi matrix is believed to comprise highly 
dynamic structural proteins, which is important for structural 
integrity and vesicular trafficking.

The Golgi apparatus has two main functions. The first 
is the post‑translational protein modification. Similar to 
glycosylation, it is a common post‑translational modification 
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occurring in the endoplasmic reticulum (ER) and Golgi and 
the glycan processing occurs throughout the Golgi stacks. The 
second is the sorting, packing, routing and recycling of these 
modified cargos to the appropriate cellular destinations (1). 
The main secretory pathway can be divided into the following 
steps (19): First, newly synthesized proteins or lipids enter the 
exit sites of the ER and are sorted into budding vesicles that 
are dependent on the COPII. Second, vesicles move to the 
ER‑Golgi intermediate compartment (ERGIc) and forward 
to the cis‑Golgi networks (CGN). Third, proteins or lipids 
enter cis‑Golgi cisternae and move towards the trans‑Golgi 
cisternae. Vesicular transport and cisternal maturation are the 
two classical models of intra‑Golgi transport (20). The vesic‑
ular transport model proposes that Golgi cisternae are static, 
and the cargos are transported through them by COPI vesicles. 
The cisternal maturation model suggests that cisternae are 
dynamic structures, while Golgi enzymes are recycled via 
retrograde transport of COPI vesicles. Fourth, vesicles reach 
the trans‑Golgi networks (TGN), which are involved in the 
sorting of products to their final destinations such as lyso‑
somes, endosomes, or the plasma membrane.

3. Structural and functional changes of the Golgi apparatus 
in diseases

The structural integrity of the Golgi apparatus is vital for its 
normal function, and Golgi fragmentation could result in a 
wide range of diseases and disorders. Functional changes of 
the Golgi Apparatus include perturbations in Golgi pH, aber‑
rant Golgi glycosylation, and membrane trafficking. Golgi 
fragmentation has been found to often be an early causative 
event in the process of cell apoptosis (21,22). With pharma‑
cological or oxidative stress, a series of changes occur in the 
Golgi apparatus, such as cargo overloading, ionic imbalance, 
and abnormal luminal acidity. These changes can lead to 
defects in membrane trafficking. We previously presented 
‘Golgi stress’ as a new concept to explain the Golgi‑specific 
stress response (23). The Golgi stress response constitutes 
autoregulation to repair the Golgi apparatus and may initiate 
signaling pathways to alleviate stress. The nucleus signaling 
pathways of the Golgi stress response was identified in a 
previous study: The procaspase‑2/golgin‑160, TFE3, HSP47, 
and the CREB3‑ARF4 pathways (24). If these pathways fail to 
repair overstimulation, the Golgi is completely disassembled, 
inducing cell apoptosis.

Apoptosis triggered by structural changes and functional 
disorder of the Golgi contributes to the pathogenesis of many 
diseases, such as neurodegenerative diseases (25), ischemic 
stroke (5,6), cardiovascular diseases (26), pulmonary arte‑
rial hypertension (9,10), infectious diseases (12,13), and 
cancer (27). A summary of diseases relating to the Golgi 
apparatus, classified on the basis of the main organ affected 
is shown in Fig. 1.

Neurodegenerative disease. Structural and functional changes 
of the Golgi apparatus are associated with several neurode‑
generative diseases, such as Amyotrophic lateral sclerosis (28), 
Alzheimer's disease (29), Parkinson's disease (3), Huntington's 
disease (30), Creutzfeldt‑Jacob disease (31) and multiple 
system atrophy (32). Golgi fragmentation is not a consequence 

of apoptosis, but a very early event in the pathological 
cascade in neurodegenerative disorders and precedes other 
pathological changes in the neuron (33). Golgi fragmentation 
may alter neuronal physiology, and induce failures in trans‑
port to axons, dendrites, and synapses (34). Finally, Golgi 
alteration may trigger a stress response and, as consequence, 
result in neuronal death. Furthermore, Golgi fragmentation 
in neurodegenerative disease alters protein trafficking and 
production, such as amyloid precursor protein in Alzheimer's 
disease (35), and sodium‑dependent vitamin c transporter 2 in 
Huntington's disease (36). The causes of Golgi fragmentation 
in neurodegenerative diseases may be diverse. First, alteration 
of the microtubule and microfilament stabilization may also 
be the cause (37). In Alzheimer's disease and other tauopa‑
thies, tau‑induced microtubule‑bundling may result in Golgi 
fragmentation (38). Furthermore, perturbations in Golgi pH 
are also responsible for Golgi fragmentation. The Purkinje 
cells from the Golgi pH regulator conditional knockout mice 
exhibited Golgi fragmentation, followed by axonal degenera‑
tion and neuronal loss (39).

Infectious disease. Golgi fragmentation has been identified in 
diseases such as infection by Orf virus (12), Chlamydia tracho‑
matis (40,41), Hepatitis C virus (HCV) (42), Human Rhinovirus 
(HRV) (13), and Rickettsia rickettsii (43). Golgi fragmentation 
in these infectious diseases is mainly reflected in two aspects: 
i) Escaping from the immune response. In infected cells, 
Golgi fragmentation reduces MHc class I complex surface 
expression by defective membrane trafficking (43,44), which 
may aid in escaping host cellular immune recognition (12); 
ii) Enhancing viral replication. In human rhinovirus‑1A infec‑
tion, the Golgi in host cells is fragmented and rearranged into 
vesicles that appear to be used as the membrane source for the 
assembly of viruses (45). Similarly, in Oropouche virus repli‑
cation, proteins in the endosomal sorting complex required 
for transport in the host cell are hijacked in Golgi cisternae 
to mediate remodeling of Golgi membranes, resulting in 
enlargement of the Golgi stacks, where the endosomal sorting 
complex required for transport participates in the assembly 
of viral factories (46). Thus, structural changes in the Golgi 
apparatus may enhance viral replication in infectious diseases 
by providing membranes.

Cancer. Aberrant Golgi glycosylation is reported to regulate 
invasion of cancer cells, such as in prostate (47), breast (48), 
and gastric cancer (49). Golgi glycosylation is involved in basic 
molecular and cellular biology processes occurring in cancer, 
such as cell signaling transduction and communication, 
cancer cell dissociation and invasion, cell‑matrix adhesion, 
cancer angiogenesis, immune regulation and metastasis (50). 
Similar to epithelial cadherin, a transmembrane glycoprotein, 
is involved in epithelial cell‑cell adhesion in tumors (51). The 
Golgi glycosylation of N‑linked glycans on epithelial cadherin 
can affect the epithelial‑mesenchymal transition, which 
is related to the formation of metastatic lesions (49). This 
process is suggested to help cancer cells leave their original 
position during wound healing and other normal physiological 
processes, which is an essential mechanism for metastasis and 
diffusion of cancer cells (52,53). The GOLPH3 complex is an 
important molecular component in the process of Golgi‑driven 
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tumor progression. The role of the GOLPH3 complex in cancer 
includes: i) Regulating Golgi glycosylation, which is important 
in driving the cancer phenotype (54); ii) promoting the cellular 
dNA damage response that enhances cellular survival under 
dNA damage (55); iii) interacting with components of the 
retromer complex that enhances growth‑factor‑induced mTOR 
signaling (56); and iv) regulating cell migration by promoting 
reorientation of the Golgi apparatus towards the leading 
edge (57). In addition to GOLPH3, the Golgi protein GM130 
is important in Golgi glycosylation and protein membrane 
trafficking in cancer cells. Downregulation of GM130 induces 
autophagy, inhibits glycosylation, decreases angiogenesis, 
and suppresses tumorigenesis (58). In general, aberrant Golgi 
glycosylation causes carcinogenesis, but may also be a conse‑
quence of cancer progression.

Other diseases. Golgi dysfunction was also observed in 
pulmonary arterial hypertension, and cardiovascular diseases. 
In an in vivo model of pulmonary arterial hypertension, 
Golgi dysfunction and intracellular trafficking with trap‑
ping of diverse vesicle tethers, giantin, p115, and soluble 
N‑ethylmaleimide‑sensitive factor attachment protein recep‑
tors (SNAREs) were observed in the Golgi membranes of 
enlarged pulmonary arterial endothelial cells and smooth 
muscle cells (9,10,59). Golgi‑mediated membrane trafficking 
dysfunctions play important roles in the pathogenesis of 
pulmonary arterial hypertension (60).

Structural changes and functional disorder of the Golgi 
apparatus have been identified in many cardiovascular diseases, 
such as heart failure, dilated cardiomyopathy, arrhythmia, and 
chronic arial fibrillation (61‑64). A previous review clarified 
the relationship between the Golgi apparatus and various 
cardiovascular diseases (26). For example, in dilated cardio‑
myopathy patients, morphological changes in Golgi vesicle are 
consistent with the secretion of natriuretic peptide as the rate 
of protein secretion affects the morphology and size of Golgi 
vesicles (7). In addition, the Golgi vesicle area is inversely 
proportional to the left ventricular end‑diastolic diameter 
and the end‑systolic diameter, and is proportional to the left 
ventricular ejection fraction (65).

4. Mutant Golgi resident proteins involved in disease

In addition to being an intermediate site in pathogenic cascades 
in diseases, the Golgi apparatus can be the primary target for 
diseases caused by genetic mutations in Golgi resident proteins. 
Mutations in proteins localized to the Golgi apparatus can be 
deleterious for the structure and function of this organelle, 
impeding membrane trafficking pathways through it (Fig. 2) 
and resulting in disease. We highlight some of the studies that 
explore links between Golgi resident proteins and disease.

Golgi matrix protein and diseases. Adjacent Golgi stacks 
are linked by tubules forming a membrane network termed 
the Golgi ribbon (66). This structure is a highly ordered 
and continuous structure that is adjacent to the nucleus. 
The Golgi ribbon comprises proteins that mediate cisternal 
stacking and the material supporting the Golgi ribbon is 
the Golgi matrix (67). The concept of the Golgi matrix was 
introduced by Slusarewicz and colleagues, who isolated a 
detergent‑insoluble, salt‑resistant Golgi fraction in 1994 (18). 
The main function of the Golgi matrix is maintaining normal 
structure and mediating protein trafficking through the Golgi 
cisternae. During cisternal progression, the Golgi matrix must 
be dynamic to adapt to Golgi structural changes.

Golgi matrix proteins include golgins and Golgi reas‑
sembly stacking proteins (GRASPs) (67), both of which are 
important for maintaining Golgi structure and regulating 
protein and lipid trafficking through the stacks. Golgins are a 
family of conserved coiled‑coil proteins that were originally 
identified as a group of Golgi‑localized antigens (68,69). The 
golgins not only capture incoming vesicles, but also clearly 
distinguish vesicles from different origins (70). GRASPs 
include GRASP65 (71) and GRASP55 (72). The former local‑
izes to the cis‑Golgi cisternae while the latter localizes to 
the medial/trans‑Golgi cisternae. The functions of GRASPs 
include Golgi structure formation, specific cargo transport, 
apoptosis, and cell migration (73).

Given the important multiple functions of Golgi matrix 
proteins, mutation of Golgi matrix proteins has serious 
consequences on health. Increasing studies support that 

Figure 1. Disorders relating to Golgi dysfunction. Disorders relating to Golgi apparatus dysfunction are grouped according to the main tissues/organs affected.
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the mutation of Golgi matrix proteins including GM130, 
Bicaudal‑D (BICD), GMAP‑210, giantin (74), and SCYL1BP1 
(also known as GORAB) (75), leads to diseases. The present 
review included some proteins as examples to elaborate on the 
pathogenic mechanism of Golgi matrix proteins.

The first example is GM130 (also known as GOLGA2), the 
first identified Golgi matrix protein (76). GM130 is a peripheral 
membrane protein attached to the Golgi membrane that is impor‑
tant in maintaining the adaxial Golgi reticular structure (77). In 
neurodegenerative diseases, GM130 knockout in hippocampal 
neurons is reported to cause damage to dendritic structures (78). 
In mouse neuron experiments, specific knockout of GM130 
resulted in disruption of the Golgi architecture and positioning 
in cerebellar Purkinje cells and to deficient secretory cargo 
trafficking. As a consequence, progressive cerebellar atrophy 
of Purkinje cells resulted in delayed movement and ataxia in 
mice (79). This animal experimental study indicates that GM130 
mutations are causative in neurodegenerative disease.

A second example is BICD, a golgin that interacts with 
Rab6 on the TGN (80). Of two homologous sequences, BICD1 
and BICD2, the latter binds to a subgroup of motility protein 
activator proteins and is a connecting molecule between the 
motility protein and cargo (81). High expression of BICD 
in normal nervous systems is important for maintaining the 
normal lamellar structure of the cerebral cortex, hippocampus, 
and cerebellar cortex (82). The brain cortex, hippocampus 
and cerebellar cortex neurons of BICD2‑knockout mice have 
impaired migration function (82,83) and eventually, damage 
the brain and cerebellar cortex layer structure. Previous 

findings showed that, missense mutations in BICD resulted 
in spinal muscular atrophy (84,85) and hereditary spastic 
paraplegia (86) by changing the normal morphological struc‑
ture of the golgi. The core pathogenetic mechanism may be 
a BICD2 mutation resulting in abnormal cargo trafficking in 
motor neurons. This trafficking results in neuronal growth 
disorders and eventually neuronal dysfunction.

The third example is giantin, encoded by the Golgb1 gene. 
Giantin is a member of the golgin family and is a tethering 
factor for COPI vesicles and functions in the CGN (87). 
Mutations in the Golgb1 gene lead to lack of expression of 
giantin protein and a pleiotropic phenotype including osteo‑
chondrodysplasia in a rat model (88) and a ciliopathy‑like 
phenotype in a zebrafish model (74). Both pathogenetic mecha‑
nisms involve disturbance of extracellular matrix components, 
which are transported by intracellular membrane trafficking 
systems. Giantin knockout leads to changes in expression of 
Golgi‑resident glycosyltransferases, which could affect extra‑
cellular matrix deposition (89).

The fourth example is GORAB (also known as SCYL1BP1). 
GORAB, localized to the trans‑side of the Golgi, is a member 
of the golgin family and interacts with Rab6. Mutation in 
GORAB results in gerodermia osteodysplastica (GO) char‑
acterized by wrinkly skin and osteoporosis (75). GORAB 
functions in COPI trafficking, and acts as a scaffolding factor 
for COPI assembly at the TGN by interacting with Scyl1. 
GORAB mutations perturb cOPI assembly at the TGN, and 
result in reduced recycling of cOPI‑mediated retrieval of 
trans‑Golgi enzymes and improper glycosylation (90).

Figure 2. Golgi resident proteins and membrane trafficking pathway. The main membrane trafficking pathways are included. Newly synthesized proteins 
enter the ER and are sorted into budding vesicles that are dependent on the COPII. Vesicles move to the ERGIC and forward to the CGN and the trans‑Golgi 
cisternae. Finally, vesicles reach the TGN and cargos sort to their final destinations such as lysosomes, endosomes or the plasma membrane. Different mutation 
in Golgi resident proteins affect different membrane trafficking pathway: i) GM130, Giantin, Fukutin, Dymeclin and SCYL1BP1 (involving anterograde traf‑
ficking); ii) COGs (involving retrograde trafficking); iii) TRAPPC2 and GMAP‑210 (involving ER to ERGIC); iv) FGD1, ATP2C1 and ARFGEF2 (involving 
TGN to plasma membrane); and v) COGs, DENND5A and BICD (involving endosome to TGN).
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A final example of the effects of loss of expression of a 
Golgi matrix protein is GMAP‑210 (also known as TRIP11). 
This CGN golgin acts in asymmetric membrane tethering (91). 
In animal experiments, a nonsense mutation in Trip11 led to 
a loss of GMAP‑210, which led to abnormal Golgi‑mediated 
glycosylation and cellular transport of proteins in chondrocytes 
and osteoblasts of mice (92). Similarly, GMAP‑210 mutations 
were found in patients with human chondrodysplasia achon‑
drogenesis 1A (92), and odontochondrodysplasia (93).

Other Golgi resident proteins and diseases. In addition 
to matrix proteins, several proteins that localize to Golgi 
membranes are also important for normal Golgi structure 
and function such as the tethering factors Rab GTPases and 
SNAREs, which regulate the specific targeting and fusion of 
transport carriers with Golgi membranes. The maintenance 
of Golgi luminal ion concentrations depends on the secre‑
tory pathway ca2+/Mn2+ ATPases and vacuolar H+ ATPase 
(V‑ATPase). Therefore, the impaired performance of mutated 
Golgi resident proteins creates serious and highly diverse 
pathologies in the Golgi. Emerging studies on patient genetics 
have identified mutations in Golgi resident protein‑coding 
genes that are related to diseases. We focus on some of these 
proteins, and discuss the activities of mutated Golgi resident 
proteins that result in disease.

Golgi ion pump. The release and uptake of ca2+ by Golgi 
membranes is mainly mediated by secretory pathway 
ca2+/Mn2+ ATPases (SPCA1 and SPCA2), which are encoded 
by the ATP2C1/ATP2C2 genes. The proteins transfer Ca2+ 
from the cytoplasm to the Golgi and maintain the stability 
of intracellular free ca2+ (94). The maintenance of Golgi 
luminal ca2+ and Mn2+ directly affects the optimal activity 
of Golgi glycosyltransferase and the trafficking of cell adhe‑
sion proteins to the cell plasma membrane (95). Knockdown 
of SPCA1 affects the morphology and structure of the Golgi 
and causes mis‑localization of proteins. Clinically, muta‑
tions in the ATP2C1 gene on chromosome 3q21 can lead to 
Hailey‑Hailey disease, an autosomal dominant skin disorder 
in humans (96,97). The possible pathogenetic mechanism may 
be dysfunction in ca2+ signaling at the Golgi membrane and 
dysfunction of processing, modification and trafficking of 
desmosomal proteins (98).

Golgi acidity is an important role for maintaining the 
morphological integrity of the Golgi and transporting various 
kinds of cargo (99,100). Under normal conditions, the Golgi 
cavity is weakly acidic and the pH of the Golgi reticular 
structure decreases gradually from the CGN to the TGN (101). 
The Golgi luminal pH is regulated by V‑ATPase (102), AE2a 
HcO3‑/Cl‑ exchanger, and Golgi pH regulator (103). Luminal 
pH is closely tied to Golgi function. Partial V‑ATPase 
dysfunction is related to multiple disease states (104). 
ATP6V1E1, ATP6V1A, and ATP6V0A2 encode different 
subunits of the V‑ATPase pump. A study showed that Golgi 
subunit‑isoform of the V‑ATPase (ATP6V0A2) mutations 
lead to structural changes in the extracellular matrix that is 
responsible for skin elasticity (105). Clinically, the dysfunction 
of the Golgi‑localized V‑ATPase caused by mutations in the 
ATP6VOA2 gene is directly related to cutis laxa. Mutations 
in ATP6V1E1 or ATP6V1A also cause autosomal‑recessive 

cutis laxa (106). Autosomal recessive cutis laxa type II is a 
heterogeneous condition characterized by sagging, inelastic, 
and wrinkled skin (107,108). The mechanism may involve 
impaired intracellular acidification of the Golgi and damaged 
retrograde trafficking from the Golgi to the ER (100,108).

ATP7A and ATP7B are the key regulators of cellular 
cu2+ metabolism. Under basal conditions (normal copper 
levels), ATP7A is located in the TGN and travels to the plasma 
membrane at high copper levels. Mutations in the ATP7A 
result in mislocalization of ATP7A protein and impaired 
copper‑responsive trafficking between the TGN and plasma 
membrane, which contributes to the development of Menkes 
disease (109). Menkes disease is a lethal multisystemic 
disorder characterized by neurodegeneration and connective 
tissue abnormalities as well as typical sparse and steely hair. 
Similarly, mutations in the ATP7B contributes to the develop‑
ment of Wilson's disease (110). Wilson's disease, also known 
as hepatolenticular degeneration, results in hepatic and/or 
neurological deficits, including dystonia and parkinsonism.

Golgi resident glycosyltransferase. The Golgi apparatus is 
an important organelle for the post‑translational modification 
of cargos. The post‑translational modification of secreted 
and membrane proteins is mediated by the Golgi resident 
enzymes such as glycosyltransferases, glycosidases, and 
kinases. Glycosylation is an enzymatic reaction that chemi‑
cally links monosaccharides or polysaccharides (glycans) to 
other saccharides, proteins, or lipids (111). Golgi glycosylation 
is a modification by Golgi‑resident glycosylation enzymes 
including glycosidases and glycosyltransferases (112). The 
normal function of Golgi glycosylation depends on the 
precise Golgi localization and normal activities of Golgi 
resident enzymes. The proper localization of Golgi resident 
enzymes is controlled by finely regulated vesicular traf‑
ficking in the Golgi. If the balance between anterograde and 
retrograde trafficking is defective, Golgi glycosylation is 
affected, resulting in Golgi glycosylation abnormalities (113). 
Mutations in Golgi resident putative glycosyltransferases are 
directly linked to human congenital muscular dystrophies: 
Like‑acetylglucosaminyl‑transferase (LARGE) in congenital 
muscular dystrophy syndrome (114), fukutin in Fukuyama‑type 
congenital muscular dystrophy (115), and fukutin‑related 
protein in band muscular dystrophy syndrome (116). These 
mutations appear to affect cell migration in the developing 
brain, resulting in combined clinical manifestations in muscle 
and brain development. In an animal model, mutations in 
Golgi resident glycosyltransferases are also associated with 
the neurodegenerative disease, such as ST3GAL5,β1,4‑gala
ctosyltransferase 4 (B4GalT4) (117), and glycosyltransferase 
8 domain containing 1 (GLT8D1). GLT8D1 is a glycosyl‑
transferase enzyme located in the Golgi apparatus. A recent 
study reported that mutated GLT8D1 induces motor deficits 
in zebrafish embryos consistent with amyotrophic lateral scle‑
rosis (118). However, another study suggested that GLT8D1 is 
not likely the causative gene for ALS in mainland China (119).

Rab GTPase. Rab proteins are members of the small Ras‑like 
GTPase family that regulate the four steps of membrane 
transport by recruiting effector molecules. Golgi‑associated 
Rab proteins including Rab1, Rab2, Rab6, Rab18, Rab33B, and 
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Rab43 have a central role in Golgi organization and membrane 
trafficking (120). Rab33B is localized to medial‑Golgi 
cisternae and is important in Golgi‑to‑ER retrograde traf‑
ficking. Rab39B, a neuronal‑specific protein, is a novel Rab 
GTPase that localizes to the Golgi and is related to synapse 
formation. Mutations in the Rab33B coding gene cause 
Smith‑McCort dysplasia (121) and mutations in the Rab39B 
gene cause X‑linked mental retardation (122).

SNAREs. SNAREs are proteins involved in docking and 
fusion of transport to intermediate membranes. Golgi SNAP 
receptor complex member 2 (GOSR2) is a member of the 
SNAREs family that localizes to the CGN and is involved 
in ER‑to‑Golgi trafficking (123). Homozygous mutations in 
GOSR2 lead to progressive myoclonus epilepsy (124). Clinical 
manifestations include early ataxia, myoclonus, and convulsive 
seizures. A possible mechanism involves GOSR2 mutations 
leading to GOSR2 protein that cannot be localized to the CGN 
and blocks SNAREs complex formation. SNAREs complex 
dysfunction could lead to the impaired fusion of vesicles with 
cis‑Golgi cisternae, hindering ER‑to‑Golgi membrane traf‑
ficking. The perturbation of early ER‑to‑Golgi transport may 
result in changes in the regulated release of neurotransmitters 
and proper sorting of neurotransmitter receptors at synapses in 
neurons, potentially leading to epilepsy (125,126).

5. Golgi apparatus membrane trafficking disorders

In the above section, we introduced the pathophysiology of 
some diseases related to Golgi resident proteins. A summary 
of genetic diseases caused by mutations in genes encoding 
Golgi resident proteins is presented in Table I. By analyzing the 
pathophysiology of these diseases, we found that the majority 
of genes leading to human diseases are involved in defects 
in membrane trafficking (Fig. 2). For example, TRAPPC2 
mutation, involving the membrane trafficking pathway 
between ER‑to‑Golgi in bone cells and chondrocytes, results 
in X‑linked spondyloepiphyseal dysplasia tarda (127). The 
conserved oligomeric Golgi (cOG) complex is a conserved, 
hetero‑octameric protein complex localized in the Golgi 
cis/medial cisternae (128). In addition to the cOG3 subunit, 
mutations in seven other cOG subunits result in human 
congenital disorders of glycosylation (cdG) type II, which is 
mainly marked by misregulation of protein glycosylation, and 
defects in retrograde trafficking through the Golgi (129,130). 
The mutation in FGD1 resulting in Aarskog‑Scott syndrome 
may lead to the obstruction of post‑Golgi trafficking, such 
as the Golgi‑to‑plasma membrane trafficking pathway (131). 
Mutation in TRIP11 mainly involves ER to ERGIc and 
anterograde trafficking (132). Therefore, membrane trafficking 
defects play a major role in the pathogenic process of muta‑
tion in genes encoding Golgi resident protein. Intracellular 
membrane trafficking is a fundamental process responsible 
for compartmentalization of the biosynthesis pathway 
and secretion cargos, including hormones, growth factors, 
antibodies, matrix and serum proteins, digestive enzymes, 
and many more. Defective membrane trafficking results in 
protein sorting defects, undegraded proteins due to defective 
Golgi‑to‑lysosome trafficking, downregulation of protein 
secretion, and mislocalization of proteins.

considering the mechanistic links between Golgi resi‑
dent proteins, membrane trafficking, and the development of 
genetic diseases, we suggest a term for these disorders based 
on their similar pathophysiology: Golgi apparatus membrane 
trafficking disorders. It is a group of genetic diseases in which 
the mutation of the gene encoding Golgi resident protein 
results in membrane trafficking defects within the cells. Golgi 
apparatus membrane trafficking defects typically result in 
the accumulation of undegraded proteins, mislocalization of 
proteins, and impaired glycosylation of proteins. However, the 
cascade events following the Golgi apparatus and defective 
membrane trafficking, ultimately leading to human diseases, 
remain to be clarified in further research.

Although the Golgi apparatus‑mediated membrane traf‑
ficking pathway exists in all kinds of tissues and organs in 
human, the trafficking defects on tissues is often selective. The 
most sensitive to membrane trafficking defects is the nervous 
system, skin, bone, cartilage, and skeletal muscle and the 
reasons for mutations occurring in these genes mostly affecting 
these tissues remain to be elucidated. Firstly, neurons are 
extraordinarily polarized cells, the extension of dendrites and 
axons requires a significant expansion of the cell surface area, 
and new plasma membrane proteins must be delivered through 
the membrane trafficking. For the nervous system, intracel‑
lular trafficking functionally impacts neuronal development, 
homeostasis, as well as neurodegeneration (133). Secondly, it is 
generally known that skin, bone, cartilage, and skeletal muscle 
fiber comprise large amounts of the extracellular matrix 
which define the structure and physical properties. Almost 
all extracellular matrix components are transported by intra‑
cellular trafficking systems. Alterations in Golgi apparatus 
membrane trafficking can lead to glycosylation abnormalities. 
The assembly and maintenance of the extracellular matrix are 
susceptible to impairment of matrix protein glycosylation. 
Thus, the skin, bone, cartilage, and skeletal muscle are most 
sensitive to impaired glycosylation of cargo proteins, and 
membrane trafficking defects. Therefore, the loss of some 
Golgi resident proteins, such as ATP6V1A, ATP6V1E1 (106), 
ATP6VOA2 (108), TMEM165 (134), GOLGB1 (88), 
SCYL1BP1 (75), TRAPPC11 (135), TRAPPC2 (136), and 
TRIP11 (92), manifest primarily in these matrix‑rich tissues.

6. Clinical value of Golgi apparatus

The Golgi apparatus participates in the occurrence and devel‑
opment of disease and could be the key to finding new targets 
for disease diagnosis and therapy.

Biomarker discovery. Golgi glycoprotein 73 (GP73, also 
referred to as GOLPH2), a resident Golgi membrane protein, 
is predominantly expressed in biliary epithelial cells in the 
normal human liver (137). GP73 expression is upregulated 
in chronic Hepatitis B virus (HBV) infection (138), chronic 
HCV infection (139), non‑alcoholic fatty liver disease (140), 
and hepatocellular carcinoma (HCC) (141,142). Serum GP73, a 
new marker for Hcc, is reported to appear earlier than serum 
α‑fetoprotein. The combined detection of serum α‑fetoprotein 
and GP73 can improve sensitivity and specificity for HCC 
diagnosis (143,144). However, several studies showed GP73 
levels were not higher in Hcc patients than in patients with 
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other liver diseases such as cirrhosis (145,146). In addition to 
being a marker, the expression of GP73 is critical for chemo‑
therapeutic resistance in HCC cell lines (147).

Transmembrane protein 165 (TMEM165) functions in ion 
homeostasis, membrane trafficking, and glycosylation in the 
Golgi apparatus (148). Findings of a study showed that muta‑
tions in TMEM165 cause CDG type II in humans (134). Other 
research has found that expression of TMEM165 mRNA 
and protein is apparently increased in Hcc patient tissues 
and contributes to the invasive activity of cancer cells (149). 
This result indicates that TMEM165 is a possible biomarker 
for HCC. GS28 is a member of the SNAREs protein family. 
GS28 protein immunoreactivity was observed in both nuclear 
and cytoplasmic compartments of cancer cells. High nuclear 
expression of GS28 is associated with poor prognosis for 
colorectal (150) and cervical cancer patients (151).

Anti‑Golgi antibodies (AGAs) were first found in 1982 in 
the serum of patients with Sjogren's syndrome complicated 
with lymphoma (152). AGAs have also been found in other 
immunological diseases (153‑155). Currently, at least 20 
Golgi autoantigens are known, including golgin‑97, golgin‑67, 
golgin‑245, golgin‑95, golgin‑160, and giantin. AGA positivity 
is commonly found in connective tissue diseases such as 
Sjogren's syndrome, rheumatoid arthritis, and systemic lupus 
erythematosus (154,156); cerebellar malignant disease such as 
idiopathic late‑onset cerebellar ataxia (157); infectious diseases 
such as HBV/HCV infection, Epstein‑Barr virus infection 
and HIV infection (155,158,159); and tumors, such as HCC 
and lung cancer (160). Although AGAs are not specific to any 
disease, their clinical detection may be helpful for classifying 
and following the progress of some connective tissue diseases. 
For example, compared to anti‑BICD2‑negative patients, single 
specificity anti‑BICD2 patients may be more associated with 
inflammatory myopathy and interstitial lung disease (161).

Biomarkers are crucial for early diagnosis, assessing response 
to treatment, and classifying diseases into subtypes. Biomarker 
discovery involves many critical steps such as clinical study 
design, sample collection, data integration, and protein/peptide 
identification and preservation. These steps should be carefully 
controlled before confirmation and verification. Therefore, in 
clinical applications, these biomarkers are potential diagnostic 
markers. Large‑scale investigations are needed and more sensi‑
tive and specific detection methods need to be researched.

Golgi‑based therapeutics. In addition to biomarker discovery, 
the functions of the Golgi apparatus and its associated 
molecules in maintaining cell structural integrity and its 
central role in membrane trafficking pathways provide 
possible targets for disease therapy. These targets may be 
direct, due to genetic disease (Table I), or indirect, as in 
cancer. Compared to non‑transformed and normal cells, 
cancer cells have morphological and functional changes in 
the Golgi apparatus that drive invasion and migration in a 
unique microenvironment. These changes provide therapeutic 
targets for interventions. A research team developed a bovine 
serum albumin pH‑responsive photothermal ablation agent 
that preferentially accumulates in the Golgi of cancer cells 
compared to normal cells due to morphological changes in the 
Golgi apparatus (162). The agent is activated by the weakly 
acidic microenvironment of the Golgi in cancer cells for 

photothermal therapy. In this method, a photothermal ablation 
agent converts light energy into heat and kills cancer cells 
with high specificity and minimal invasiveness by hyper‑
pyrexia (162). Another research team developed a prodrug 
nanoparticle system, which appeared to target the Golgi 
apparatus and realized retinoic acid release under an acidic 
environment. The retinoic acid‑conjugated chondroitin sulfate 
could reduce the expression of metastasis‑associated proteins 
by inducing Golgi fragmentation (163). Those findings suggest 
that the Golgi apparatus is a promising target for the develop‑
ment of novel drugs. A review summarized small molecules 
as drugs targeting the Golgi apparatus for the treatment of 
diseases (164), such as LTX‑401, inhibitors of Golgi‑associated 
lipid transfer proteins, glucosylceramide synthase inhibitors, 
O‑glycosylation inhibitors, PI4KIIIb inhibitors and inhibi‑
tors of ARF activation. Whether these drugs that target the 
Golgi apparatus can be applied in clinical practice needs to be 
determined.

7. Conclusion

The central role of the Golgi apparatus in critical cell processes 
such as the transport, processing, and sorting of proteins and 
lipids has placed it at the forefront of cell science. Several 
previous studies have suggested that the Golgi apparatus 
plays a critical role in diseases, particularly in neurode‑
generative diseases. However, few studies focus on human 
diseases caused by mutations in genes encoding Golgi resident 
proteins and summarize the common features of these genetic 
diseases. In the present review, we summed up the genetic 
diseases caused by mutations in genes encoding Golgi resident 
proteins. By analyzing their pathophysiology, we identified 
that the majority of genes are involved in membrane traf‑
ficking. The nervous system, skin, bone, cartilage, and skeletal 
muscle are the most sensitive tissues to defective membrane 
trafficking. It is reasonable to hope that our basic knowledge of 
Golgi‑mediated membrane trafficking will continue to provide 
insights into the pathogenesis of genetic diseases and that 
studies of these diseases will continue to enhance our under‑
standing of the critical role of the Golgi apparatus in diseases. 
In addition, the finding of Golgi‑related biomarker and 
Golgi‑based therapeutics further emphasize the importance of 
Golgi apparatus in human pathology. Taken together, advances 
in Golgi apparatus biology provide opportunities to translate 
discoveries into clinical medicine. Thus, we highlighted the 
importance of underlying clinical insights and provided a new 
direction for future research.
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