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Abstract
Harmony is a fundamental attribute of music. Close connections exist between music and

mathematics since both pursue harmony and unity. In music, the consonance of notes

played simultaneously partly determines our perception of harmony; associates with aes-

thetic responses; and influences the emotion expression. The consonance could be consid-

ered as a window to understand and analyze harmony. Here for the first time we used a 1/f

fluctuation analysis to investigate whether the consonance fluctuation structure in music

with a wide range of composers and genres followed the scale free pattern that has been

found for pitch, melody, rhythm, human body movements, brain activity, natural images and

geographical features. We then used a network graph approach to investigate which com-

posers were the most influential both within and across genres. Our results showed that pat-

terns of consonance in music did follow scale-free characteristics, suggesting that this

feature is a universally evolved one in both music and the living world. Furthermore, our net-

work analysis revealed that Bach’s harmony patterns were having the most influence on

those used by other composers, followed closely by Mozart.

Introduction
Throughout history, music has played an important role in people’s daily lives [1]. Many stud-
ies have attempted to discover why music can so powerfully influence our mood [2–5]. Mathe-
matics and physics have often been used to characterize, analyze, model and understand
music. For example, the musical chords and voice leadings were modelled by geometric space
[6,7]. The topology analysis [8] and compositional data analysis [9] were both used to investi-
gate musical structures. Johannes Kepler’s “The Harmony of the World” was inspired by music
[10]. Musical elements and structures have been found to follow a 1/f distribution, termed
“fractal” by Mandelbrot [11]. The power spectra of musical signals decays in a power law with
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frequency f as [1/f]β (where β is the spectral exponent). The DFA (detrended fluctuation analy-
sis) exponent (also called Hurst exponent) is denoted as α, and it is related to β via α = (β+1)/2.
Hence, a DFA exponent αmay be translated to an asymptotic scaling exponent β = 2�α-1, and
the power spectral density can be represented as p(f)~[1/f]2

�α-1. In this work, the DFA expo-
nent α is referred to as the scaling exponent. A signal is considered long-range correlated if its
power spectral density (PSD) asymptotically decays in a power law, p(f)*[1/f]β for small fre-
quencies f and 0<β<2 [12]. The limit β = 0 indicates white noise, the structure of which is
entirely unpredictable [13]; β = 2 is Brownian motion. Hence, long-range correlations are
found in a signal when 0.5<α<1.5. When α = β = 1, the signal is the 1/f noise.

The aesthetics of music has been shown to be related to its scale-free exponent [14] when
applied to pitch structures. Much of the enjoyment of music relates to the balance of predict-
ability and surprise [13]. The 1/f distribution probably indicates such balance. Indeed, many
specific musical elements such as pitch, melody and rhythm follow the scale-free law [13,15–
17]. The 1/f distribution of note pitch in music is supported by different hierarchies: the power
spectral analysis of audio waves [14], the frequency of occurrence of all the notes [15], and the
fluctuation of pitch [18]. For melody, the structure of self-similarity is expressed more directly
[17]. The rhythm, which is considered highly regular and predictable, is also proved to obey
the 1/f power law [13]. Musical performances also display 1/f properties in expressive tempo
fluctuations, and listeners predict tempo changes when synchronizing [19]. And such prefer-
ence in rhythm is observed in human perception and musical performance [12,20]. The fractal
structure of songs can be influenced by performer's preference [21], while the synchronization
and accuracy of human movements can also be effected by the consonance and dissonance of
music [22]. In addition, 1/f noise in the timing of musical performance can be used to assess
motoric dysfunctions [23]. These findings suggest that the scale-free characteristic of music is
an important intrinsic property which may reflect not only a musician’s individual unique con-
tribution but also the learned or acquired influence of previous composers and genres.

The harmony, consonance of notes played simultaneously, is an important feature in West-
ern music. Traditional music theory describes the rules for the use of these harmony intervals
or chords in composition [24]. In Western music, dissonance is the quality of sounds that are
perceived as “unstable” and have an aural “need” to “resolve” to a “stable” consonance. There
are many relative constant patterns of chord progressions. When one chord occurs, the next
chord will be expected or predicted quite easily according to the patterns. Actually, the expecta-
tions of harmony can influence the emotion [25]. To describe the harmony rules, a geometric
model is used, in which a chord can be represented as a point in a geometrical space and line
segments represent mappings from the notes of one chord to those of another [7]. However,
the fluctuations of the consonance in real musical pieces may change even in one beat if there
is more than one note played consecutively in this beat, so the harmony variation may not be
regular according to the theory.

The harmony, as a mark of a composer, can be used to identify the composers or genres
[26,27]. Several studies used networks to describe the relationships among the composers. The
network of notes in a score, and that of different musicians, has been evaluated based on the
association between notes or their subjective similarity judged by musical editors [28]. Two
composers are considered having close relationship when their works appeared in one record
[29], on the same webpage [30], or in one playlist [31]. Most networks of composers are estab-
lished by subjective judgment. In this study, we show that a network based on consonance fluc-
tuations of the composers and genres can reveal some intrinsic properties of music.

Here we are interested in the intrinsic mutual relationships among typical musical pieces
within and across different eras according to their mathematical characteristics. We try to find
the characteristics of consonance fluctuations for different composers and genres, and
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networks of composers and genres are established according to similarity of musical harmony.
Because music in the western tradition builds on the styles and structures of previously written
music, compositions from different eras are not entirely independent from one another. Here
we seek to quantify the latent structure underlying musical pieces through their harmony fluc-
tuations spanning composers and genres. In general, harmonic fluctuation may be character-
ized by chord,since stability and predictability are the soul of chord progression in a work, we
pay special attention to the stability of chord which are related to the interval consonance,
so we use the fluctuation of pairwise consonance to approximate this property (S1 Table),
such an approach is based on the basic physical properties of notes thus more direct and
understandable.

Materials and Methods

Processing of the musical scores
We selected 1191 musical movements from 568 compositions written by 20 composers from
across 9 different genres spanning from the late 16th to the early 20th century. As in prior work,
each movement was treated as an independent piece [13]. MIDI files were obtained for analysis
from the Humdrum Kern database [32], allowing the pitch, duration and onset time of all the
notes to be automatically extracted. All the files can be found in the Supporting Information S1
File. At least 9 compositions with an average of 60 movements were analyzed for each com-
poser, as summarized in Table 1. Nine different genres were selected and at least 13 movements
were evaluated for each genre, as summarized in Table 2.

A musical score represents the pitch and duration of each note in a musical piece, as is
shown with an example in Fig 1A. Here we first changed the score into a graph, with x axis as
time and y axis as the pitch. In MIDI notation, each pitch corresponds to a number. For exam-
ple, the middle C, C4 in scientific pitch notation (SPN), 261.63 Hz, is 60. Each note now can be
represented by a line segment in the graph. The starting point represents the time when a note
is on, and the end point represents the note off, as in Fig 1B. Then the consonance was com-
puted, and a curve of consonance was obtained. The consonance of the musical intervals
corresponds to the ratio of the frequency of the notes. The ratio 2:1 produces an octave; 3:2
produces a fifth and so on. There are many types of note combinations; some are consonant
(e.g., the perfect fifth with a frequency ratio of 3:2), and some are dissonant (e.g., the minor sec-
ond with a frequency ratio of 16:15). The corresponding consonant rank for all the intervals in
an octave is shown in Table 3. To measure the consonance of intervals, roughness, an auditory
attribute, was proposed by Helmholtz as a sensory basis for musical consonance within the
tonal system [33]. Here we adopted the consonant rank (CR) as the measure, which was a visu-
ally direct, convenient but coarse-grained value of the roughness.

A musical harmony/chord progression is defined by a change from a “stable” condition to
an “unstable” condition and then back to a “stable” condition. Here, a stable pitch combination
often consists of consonant intervals, whereas the dissonant intervals often induce unstable
feelings. However, as consonance and dissonance are relative in music, we do not discriminate
them explicitly for each time point; we just calculated the note pitch intervals between every
two notes first in Fig 1C. Intervals that exceeded one octave (12 semitones) were converted into
one octave with the mode of 12. And based on the corresponding consonant rank (CR)
(Table 3), the CR values of the intervals were found out. Then the maximum CR was taken to
represent the relatively dissonant interval of this moment (Fig 1C). At last, we obtained a curve
of the CR values for each music piece.

In this way, we pay more attention to the relative dissonant intervals. In fact, dissonance
is not noise or redundancy in music; on the contrary, it plays a prominent role in many
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traditional musical cultures, even being considered to be the main motivation for musical pro-
gression. In short, a consonant interval is the main body and elemental requirement of a piece
of almost acknowledged musical works, and it is the specific use of the relative dissonance that
may lead to the differences in music genres and styles of musicians.

Detrended fluctuation analysis
Detrended fluctuation analysis (DFA) is a useful tool for analyzing the nonlinear dynamic
properties of a system [34]; it is also utilized to estimate the scaling exponent in a power law
distribution [13]. Here the DFA is used to obtain the scaling exponent of the musical CR value

Table 1. Statistics for the compositions of different composers.

Composer (period) Number of movements α (original) α (shuffled) P value

Bach (1685–1750) 145 0.86 ± 0.09 0.51 ± 0.03 P<0.001

Beethoven (1770–1827) 161 0.86 ± 0.07 0.51 ± 0.03 P<0.001

Brahms (1833–1897) 9 0.86 ± 0.05 0.49 ± 0.04 P<0.001

Buxtehude (1639–1707) 20 0.92 ± 0.16 0.50 ± 0.04 P<0.001

Chopin (1810–1849) 84 0.87 ± 0.09 0.51 ± 0.04 P<0.001

Clementi (1756–1832) 17 0.79 ± 0.09 0.51 ± 0.04 P<0.001

Corelli (1653–1713) 130 0.94 ± 0.12 0.51 ± 0.04 P<0.001

Frescobaldi (1583–1643) 40 0.90 ± 0.06 0.50 ± 0.03 P<0.001

Grieg (1843–1907) 16 0.84 ± 0.09 0.52 ± 0.03 P<0.001

Haydn (1732–1809) 158 0.87 ± 0.08 0.50 ± 0.03 P<0.001

Hummel (1778–1837) 24 1.09 ± 0.13 0.54 ± 0.05 P<0.001

Joplin (1868–1917) 45 0.80 ± 0.08 0.52 ± 0.03 P<0.001

MacDowell (1860–1908) 9 0.91 ± 0.11 0.49 ± 0.03 P<0.001

Monteverdi (1567–1643) 12 0.92 ± 0.05 0.51 ± 0.03 P<0.001

Mozart (1756–1791) 160 0.82 ± 0.08 0.50 ± 0.03 P<0.001

Scarlatti (1685–1757) 59 0.79 ± 0.07 0.51 ± 0.03 P<0.001

Schubert (1797–1828) 21 0.80 ± 0.12 0.52 ± 0.03 P<0.001

Scriabin (1872–1915) 13 0.85 ± 0.12 0.52 ± 0.04 P<0.001

Sousa (1854–1932) 10 0.85 ± 0.10 0.51 ± 0.03 P<0.001

Vivaldi (1678–1741) 58 0.91 ± 0.11 0.51 ± 0.04 P<0.001

For a ± b, a is the mean value, and b is the standard deviation.

doi:10.1371/journal.pone.0142431.t001

Table 2. Statistics for the compositions of different genres.

Genres Number of movements α (original) α (shuffled) P value

Etude 19 0.85 ± 0.11 0.51 ± 0.04 P<0.001

Fugue 62 0.88 ± 0.06 0.50 ± 0.03 P<0.001

Mazurka 52 0.88 ± 0.08 0.51 ± 0.03 P<0.001

Prelude 87 0.94 ± 0.13 0.51 ± 0.05 P<0.001

Quartet 305 0.87 ± 0.08 0.51 ± 0.03 P<0.001

Ragtime 21 0.78 ± 0.09 0.51 ± 0.03 P<0.001

Sonata 378 0.86 ± 0.12 0.51 ± 0.04 P<0.001

Sonatina 26 0.81 ± 0.09 0.50 ± 0.03 P<0.001

Waltz 13 0.85 ± 0.07 0.51 ± 0.03 P<0.001

For a ± b, a is the mean value, and b is the standard deviation.

doi:10.1371/journal.pone.0142431.t002
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curves. In detrended fluctuation analysis, the time series with number of N samples is inte-
grated as.

yðmÞ ¼
Xm
t¼1

½xðtÞ � �x� ð1Þ

where x(t) is the sequence at time t, and �x is the average of the entire time series. Then y(m),
integrated time series, is divided into subsequences of equal length L. In each window, the y-
coordinate of a least-square line which fits to the data is denoted by yL(m). Finally, the average
fluctuation as a function of window size L is given by.

FðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
t¼1

½yðmÞ � yLðmÞ�2
s

ð2Þ

If there is a straight line on a log-log graph, it signifies a statistical self-affinity expressed as
F(L)/ L−α. The scaling exponent α is calculated as the slope of a straight line fit to the log-log
graph of L against F(L) using a least-squares regression. If the exponent is less than 0.5, the sig-
nal is anti-correlated; if the exponent is 0.5, the signal is uncorrelated (white noise). If the expo-
nent is greater than 0.5, the signal may be correlated. An α value of 1 indicates 1/f noise, which
is called scale free.

Fig 1. The extraction of the consonance rank series from amusical score. (A) An example musical
score from Bach’s work BWV 953. (B) The MIDI information corresponding to the piece of music in A; the
arrows represent the time point for the consonance rank (CR) series computation. (C) The steps for the CR
series calculation. The pitches are initially obtained from the MIDI information (at the given arrow point, the
pitches are B4 (71), G4 (67), F3 (53)); then, the intervals of every two notes are calculated, and the intervals
that exceeded one octave (12 semitones) are adjusted to one octave. Subsequently, the intervals are
translated to the CR according to the mapping rule in Table 3; finally, the maximumCR value is acquired as
the value for the CR series at the given time point.

doi:10.1371/journal.pone.0142431.g001
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The scaling exponent α was calculated from the CR time series and we calculated the scaling
exponent for the CR series for each musical movement. The length of each musical movement
was different, the average CR time series length was 3777 and the shortest was 600 (sampling
rate was 20 Hz). Fig 2A showed the CR time series of the BWV 953. And Fig 2B was the scaling
exponent of this music piece. For statistical comparison, a shuffled random signal was gener-
ated (an example was shown in Fig 2C) and the scaling exponent was computed (Fig 2D). For
every musical movement, the CR series would be randomly shuffled so that each piece of music
would have a contrastive signal. Thus the consonance of the musical movement was kept in a
random sequence. The Wilcoxon signed rank test was used to test the difference between the

Table 3. The mapping rule for pitch interval to the consonance rank.

Intervals (semitone) Interval name Consonance rank

0 or 12 unison/octave 1

1 minor second 11

2 major second 8

3 minor third 6

4 major third 4

5 perfect fourth 3

6 augmented fourth/diminished fifth 12

7 perfect fifth 2

8 minor sixth 7

9 major sixth 5

10 minor seventh 9

11 major seventh 10

doi:10.1371/journal.pone.0142431.t003

Fig 2. The consonance rank series and scaling exponent of BWV 953 and shuffled signal. (A) The consonance rank series of BWV 953. (B) The scaling
exponent of the signal in A. (C) The shuffled series related to the signal in A. (D) The scaling exponent of the shuffled series.

doi:10.1371/journal.pone.0142431.g002
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CR series and the shuffled counterparts and statistical tests were performed in Matlab. A two-
tailed t test was used to analyze the differences across the composers and genres.

Networks of composers and genres
The established composer network was based on the differences among the composers. The
genre network was based on the differences among the genres. The composers/genres were the
nodes in the graph. When two musicians or two genres had no significant differences (t test,
P>0.05), a connection was considered to exist between both. We focused on the degree, the
out-in degree, and the modularity of the network.

In graph theory, the degree of a vertex (node) is the number of edges linked to the vertex
(node). When it is a directed network, there are two kinds of edges for a node, the edges origi-
nating from the node (out) and those directed into it (in). The out-in-degree is the difference
between the number of out-going lines and the number of incoming lines. In our composers’
network, the directions of the edges were defined according to the time they were born, thus
the edge was from the composer who was born early to the one born late.

The “community structure” is useful for analyzing the relationship among the musicians. It
divides them naturally into communities or modules with dense connections within communi-
ties but sparser connections between them. The modularity is a statistic that quantifies the
degree to which the network may be subdivided into such clearly delineated groups [35]. In
this study, we used a method to find the optimal community structure [36], which was a subdi-
vision of the network into non-overlapping groups of nodes in a way that maximized the num-
ber of within-group edges but minimized the number of between-group edges. The result of
community structure in this study was the average for 100 runs.

Results
The scaling exponent (α) was calculated after the interval consonant rank (CR) series were
extracted from a musical movement. The α of the exampled music (Bach's BWV953) is 0.82
(Fig 2B). This means that in the log-domain, the fluctuation increased exponentially with the
window size of the sequence as 1/f. Fig 2D illustrates the scaling exponent of the shuffled signal
of the example musical movement. The α is 0.5, which means that the shuffled signal is just
white noise. This finding indicates that the 1/f fluctuation reflects the global structure across
the entire piece, and this structure is a consequence of the specific ordering of the harmony
sequence, not their mere presence in the piece at random locations.

The results of all the 1191 movements are shown in Fig 3. The average scaling exponent is
0.87, while the average exponent for the shuffled signals is 0.51 (Fig 3A). This finding demon-
strates that across the analyzed compositions, the fluctuation of harmony is characterized by
the 1/f power law. We found the average exponent for all the 20 composers was approximately
0.9 (Fig 3B, Table 1), indicating that the consonant intervals do indeed exhibit 1/f structure.
The shuffled series showed an α value of approximately 0.5, i.e. akin white noise, which was sig-
nificantly different from the origin (P<0.01, Table 1). This provides strong evidence for the 1/f
characteristic of the consonance information. The composer Hummel (1778–1837) had the
largest α value (1.1±0.1) (mean±s.d.). Beethoven (α = 0.86±0.07) (1770–1827), who lived at
approximately the same period, had a significantly different distribution of exponents from
Hummel (P<0.05). However, “the three Bs” in classical music history, i.e., Bach (α = 0.86±
0.09) (1685–1750), Brahms (α = 0.86±0.05) (1833–1897) and Beethoven, had equivalent expo-
nents, despite living in different eras. These results indicate that composers may have different
characteristics despite living in the same era, and the similarity of the CR properties may not be
correlated with the era of the composers. Fig 3C shows the results for 9 different genres and
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Fig 3. The scaling exponents for all the music movements across different composers and genres. (A)
The scaling exponent of all the 1191 musical movements and the corresponding shuffled counterparts. (B)
The scaling exponents for 20 composers. (C) The scaling exponents for 9 different genres.

doi:10.1371/journal.pone.0142431.g003
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confirms that they all follow the scale-free law. The α values range from 0.78 to 0.94 and are
significantly different from their respective shuffled counterparts (P<0.01, Table 2). The pre-
ludes had the largest α values, indicating the most consonant interval variety. The ragtime
genre had the smallest α value among these genres, indicating that ragtime has a unique conso-
nance fluctuation.

To evaluate the inherited relationships among different musicians, a network diagram of
composers was constructed based on their exponent values of CR series (Fig 4). This network
analysis reveals that the composers who lived in later eras usually had greater exponent values
than those who lived in earlier ones. The composer Hummel was completely isolated in this
analysis, indicating that he was unique in his use of musical consonance. Indeed, some critics
have suggested that Hummel’s music took a different direction from that of Beethoven by chal-
lenging the classical harmonic structures and stretch the sonata form [37]. The second-smallest
degree belonged to Scarlatti; his use of the Phrygian mode and other tonal inflections was rela-
tively alien to European music at the time. Many of Scarlatti’s dissonances and figurations were
suggestive of the guitar [38]. Brahms had a large degree in the network, and it was known that
he venerated Beethoven; some passages in his works were reminiscent of Beethoven’s style
[39]. Brahms was also influenced by Mozart, Haydn and Bach [39]. These wide relationships
demonstrate the broad links between Brahms and other composers. The composers Scriabin
and Sousa lived in the 20th century, and thus had learned from many predecessors and had
greater degrees. The only small degree in the Romantic era was that belonging to Joplin, who
was famous for his unique musical style, ragtime. This result indicates that Joplin’s ragtime was
novel in terms of dissonance fluctuation.

There were two groups in the composer network according to the network modularity anal-
ysis. This supports the notion of Bach as “the father of harmony” since composers before Bach

Fig 4. The network of the composers. The nodes corresponded to the composers, and the connections
among the nodes are established according to the difference between the exponents of any two composers
over all of their movements. When the difference is not significant (P>0.05) in t test, a line linking the two
composers is assumed. The composers in the network were put into two groups (red and blue) according to
the network modularity. The size of the circle indicates the degree (the number of lines).

doi:10.1371/journal.pone.0142431.g004
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were in one group whereas most after him were in his group (10 in Bach’s group, 4 in the other
group). Even the composers after Bach who were not in his group were shown to be connected
to him by the network analysis.

We further analyzed the relations of these composers with their eras. As shown in Fig 5A,
we found that in the Baroque era, composers had connections other than with Bach and Scar-
latti. In the classical era, only Mozart and Clementi had connections. The composers in the
transition era had no connections whereas those in the Romantic era had strong connections
among them. This indicates that the musicians in the Baroque and Romantic eras influenced
each other. We also found that composers before and within the Baroque era affected almost

Fig 5. The network of composers in different eras. (A) The composers are arranged according to the eras they belonged to and different colors are used
to identify the eras. The arrow around all the nodes represents the time. The size of the circle indicates the influence of the composer (out-in degree). Red
lines are used for composers within era. (B) The influence (out-in degree) of the nodes in the composers’ network.

doi:10.1371/journal.pone.0142431.g005
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all subsequent ones, expecially the Romantic era. The composers in the Classical and transition
periods showed fewer connections with Baroque, but more connetions with Romantic ones.
Thus Classical and transition era composers had styles very different from previous ones. Over-
all, Bach had the greatest influence, which lends credence to Bach’s title of the “original father
of harmony” [40]. Mozart, Beethoven, Chopin and Brahms were among his most prominent
admirers; they began writing in a more contrapuntal style after being exposed to Bach’s music.
The second-most influential composer was Mozart (according to this analysis), who was clearly
established as an important figure in music history and about whom Joseph Haydn wrote that
“posterity will not see such a talent again in 100 years” [41]. Bach, Mozart and Beethoven had
almost no connections with composers before them. On the other hand they had many connec-
tions with composers after them. We also defined a cultural heritage direction of the network
edges according to their relative birth order, and then the out-in degree was obtained as an
indicator of influence. A high positive value of the out-in degree may indicate that the com-
poser had an important influence on the evolution of music, similar to the source of musical
lineages, whereas a low or negative out-in degree means that the composer mainly inherited
their style from older generations (Fig 5B). Together these findings indicate that Bach and
Mozart were both the most influential in their own eras, as well as on the works of the compos-
ers in subsequent eras, thereby further confirming their reputation as key figures in the history
of music. The analysis shows that after Bach and Mozart, Monteverdi, Frescobaldi and Buxte-
hude were the most influential and their works were also occasionally imitated by others.

Similarly, we constructed a network of genres (Fig 6) which revealed that the waltz and
the etude had the largest degrees and that the smallest ones corresponded to ragtime and
prelude genres. The waltz is defined by its strong rhythmic pattern and has remained popular
for hundreds of years [42], so it is not surprising that its harmony influences many other gen-
res. Etudes are usually short and difficult to play; designed to provide practice material for

Fig 6. The network of genres.When the difference of any two genres is not significant (P>0.05) in a t test, a
line between the two genres is assumed. The size of the nodes represents the degrees.

doi:10.1371/journal.pone.0142431.g006
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perfecting specific technical skills [42] and include many varieties of consonance. Ragtime and
prelude are somewhat specialised genres, and thus their degrees are unsurprisingly small. The
broad relationships among all the studied genres occurred because they were widely adopted
by various composers of different eras suggesting that some specific consonant interval might
be at the heart of all of the various genres causing them to be widely linked. Indeed, current
practice in musical analysis emphasises an important role for the consonant interval series in
various genre studies and the role of harmony for genre classification [27].

Discussion
In summary, we have demonstrated an interesting characteristic of the music harmony. Previ-
ous studies have demonstrated the scale-free properties of the pitch [15,18,43], rhythm [13],
intensity [44], melody [15–17] and structure [45] of a large number of musical compositions.
The current findings show for the first time that consonance fluctuation in music obeys the
same law.

In fact, as comparisons, we also calculated the pitch and chord fluctuation for the above
music movements (Table 1) in this work. The pitch series were extracted from the highest
pitch at each time point. For example, in Fig 1C and 1B (71) would be chosen as the representa-
tive pitch. For the chord fluctuation analysis, the key of the movement was found first [46];
then the chord name and its stability rank. At last, the chord stability rank series were obtained
(S1 Table).

The average DFA exponent of pitch was 0.9, which was larger than that of the consonance
interval. For composers, Grieg, Bach, Frescobaldi and Corelli, the values were very close to 1.0.
For genres, the scaling exponents of pitch were all larger than that of consonance interval, and
prelude and fugue were the largest and second largest values, the trend was the same as the con-
sonance fluctuation (S1 Fig). These results support that pitch fluctuation does obey the 1/f
structure [18].

The average DFA exponent of chord fluctuation was 0.87, and the composer Hummel had
the largest α value (1.0±0.1). Beethoven (α = 0.85±0.07) had a significantly different distribu-
tion of exponents from Hummel (P<0.05). “The three Bs” in classical music history, i.e., Bach
(α = 0.87±0.09), Brahms (α = 0.88±0.05) and Beethoven, had approximate equivalent expo-
nents, despite living in different eras. For different genres, preludes had the largest α values,
while ragtime had the smallest α value among these genres (S2 Fig). Interestingly, these relative
relations are similar to those of consonance intervals.

According to the consonance fluctuation, composers Bach, Mozart et al. displayed their spe-
cial characters in musical history. However, according to pitch fluctuation, the influence was
based on the eras (S3 Fig). Composers in early eras had high out-in degree, while composers in
late eras had low out-in degree. This tendency existed in chord fluctuation, too, except with
Monteverdi and Mozart (S4 Fig). However, Monteverdi showed lower influence than compos-
ers of Baroque era, indicating that composers in Baroque had high influence than in Renais-
sance for chord utilizing. Mozart had quite high influence suggested that his feature of chord
using affected other composers. The influence of Bach was not a highlight in pitch and chord.
The reason may be that Bach’s famous counterpoint works was not expressed in pitch and
chord fluctuation, but showed in consonance. Therefore, as “the father of harmony”, Bach
actually played the most important role in the counterpoint works and established a new way
for musical harmony using through interval consonance.

The scale-free distribution of musical properties is thought to be related to their aesthetic
quality [14,15]. An optimal balance of predictability and surprise may cause the pleasing feel-
ings in music appreciation [47]. When music is played, listeners expect the next note, not only
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for its pitch, duration, but also for the harmony. Compared to these basic music elements such
as pitch, duration, harmony is more complicated and considered to be a distinction central to
Western music [48]. The harmony reflects cultural customs [49], for there are specific styles
without using harmony, like Chinese folk music. However, there are different opinions con-
cerning whether the perception of specific harmony patterns is innate or not. Whatever the
preference for consonant intervals is underlain by familiarity [50], or is a production of neu-
rons' firing action potentials [51] and the brainstem temporal coding [52], our findings in this
study provides some evidences that music consonance fluctuations obey the 1/f law across cen-
turies, especially with the most famous composers in history. That may be a new way to investi-
gate the relation between human and music harmony.

Actually, human perception is known to focus on scale-free signals in the environment
[53,54], and physiological signals follow the same law, as evidenced by patterns of brain electri-
cal activity [54–56]. The consonance plays an important role in music perception. Since the
human nerves are sensitive to 1/f noise, the harmony pattern of that structure exists when the
composers wrote their works. The products of human creativity such as music, painting are
also frequently inspired by our experience of the natural world. Although individual differences
may enrich the variety of creative expression and shape its evolution, the relatively stable influ-
ence of the scale-free framework provides a platform ensuring fundamental relationship
between the artistic works of different individuals. This also effectively creates a defining fea-
ture that characterises, encompasses and sets the boundaries for all forms of human art. It also
resonates strongly with the Chinese traditional idea of the “oneness of man and nature”.

The consonance in music can cause pleasant feeling while dissonance may cause unpleasant
one [48], and they elicit different EEG gamma activity [57]. The brain networks are different
when the musicians perform music in a mechanical manner or a more emotionally rich man-
ner [58]. And the harmony progressions may enhance the emotion expression [24]. So the har-
mony features are used for emotion recognition [59]. Therefore, the 1/f distribution may be a
bridge between music harmony fluctuation and the emotion. The method developed in our
study is likely to be useful in musical analysis, emotion recognition etc. Although the conso-
nance fluctuation is not the whole story of harmony, it does provide some meaningful informa-
tion about harmony. Additional features of harmony will be worthwhile to analyze in the
future.

We have demonstrated an intrinsic heritage relationship based on patterns of scale-free
harmony across a representative range of musicians from different eras spanning four centu-
ries. Is this mathematically established relationship reasonable? In a recent artificial music
experiment, consonance was also confirmed to be an important factor in determining musical
evolution [60]. In Trehub’s model for the evolution of music, humans are hypothesized to have
adopted music to help soothe infants or focus their attention [61] by using a variety of conso-
nant intervals to induce calm or tense feelings [62]. Tension created by music is associated with
the power of the chord progression and this is influential in music development. Our results
suggest that relationships among the studied composers based on consonant interval may pro-
vide a novel and quantitative way of understanding music throughout history and may present
a useful method for studying its structure and roots.

Supporting Information
S1 Fig. The scaling exponents of the all music movements across different composers and
genres based on pitch series. (A) The scaling exponents for 20 composers. (B) The scaling
exponents for 9 different genres.
(TIF)
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S2 Fig. The scaling exponents of the all music movements across different composers and
genres based on chord series. (A) The scaling exponents for 20 composers. (B) The scaling
exponents for 9 different genres.
(TIF)

S3 Fig. The influence (out-in degree) of the nodes in the composers’ network based on
pitch series.
(TIF)

S4 Fig. The influence (out-in degree) of the nodes in the composers’ network based on
chord series.
(TIF)

S1 File. The MIDI files of all the composers and genres.
(ZIP)

S1 Table. The chord name and stability rank of major C and minor a. The number in the
table means the scale degree of a chord. Ⅰis tonic, Ⅴis dominant andⅣ is subdominant chord.
They are the primary harmonies in music. In the key of C major, chordⅠis named C, which con-
sists of note C, E, G. When we use integer 0–11 to represent the notes in an octave, (C, E, G)
are (0, 4, 7). The stability rank of chord is according to the number, and it is related to the con-
sonance rank (Table 1). For example, the interval between root note of Ⅴ and Ⅰis perfect fifth,
so the stability rank of Ⅴ is 2, the same as the consonance rank of interval “perfect fifth”. The
stability rank of a chord consisted of more than three notes is 8.
(DOCX)
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