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Abstract

Background: A functional link has been established between the severe neurodegenerative disorder Familial amyloidotic
polyneuropathy and the enhanced propensity of the plasma protein transthyretin (TTR) to form aggregates in patients with
single point mutations in the TTR gene. Previous work has led to the establishment of an experimental model based on
transgenic expression of normal or mutant forms of human TTR in Drosophila flies. Remarkably, the severity of the
phenotype was greater in flies that expressed a single copy than with two copies of the mutated gene.

Methodology/Principal Findings: In this study, we analyze the distribution of normal and mutant TTR in transgenic flies,
and the ultrastructure of TTR-positive tissues to clarify if aggregates and/or amyloid filaments are formed. We report the
formation of intracellular aggregates of 20 nm spherules and amyloid filaments in thoracic adipose tissue and in brain glia,
two tissues that do not express the transgene. The formation of aggregates of nanospherules increased with age and was
more considerable in flies with two copies of mutated TTR. Treatment of human neuronal cells with protein extracts
prepared from TTR flies of different age showed that the extracts from older flies were less toxic than those from younger
flies.

Conclusions/Significance: These findings suggest that the uptake of TTR from the circulation and its subsequent
segregation into cytoplasmic quasi-crystalline arrays of nanospherules is part of a mechanism that neutralizes the toxic
effect of TTR.

Citation: Pokrzywa M, Dacklin I, Vestling M, Hultmark D, Lundgren E, et al. (2010) Uptake of Aggregating Transthyretin by Fat Body in a Drosophila Model for TTR-
Associated Amyloidosis. PLoS ONE 5(12): e14343. doi:10.1371/journal.pone.0014343

Editor: Jiyan Ma, Ohio State University, United States of America

Received July 16, 2010; Accepted November 11, 2010; Published December 16, 2010

Copyright: � 2010 Pokrzywa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by grants from the Swedish Research Council, the Authority for Animal Welfare, Wallenberg Consortium North, the patients
association FAMY and Stiftelsen Amyl Norrbotten. RC was supported by the SNI program of the Agencia Nacional de Investigacian e Innovacian (Uruguay). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: malgorzata.pokrzywa@liu.se

Introduction

The transthyretin (TTR) amyloidoses represent a group of

human diseases in which misfolded molecules of TTR aggregate

and cause damage to surrounding tissues. Depositions of TTR-

derived amyloid are found widespread in heart, kidney, eye and

other organs [1,2] indicating the systemic and heterogeneous nature

of these disorders. Most symptoms in patients, however, arise from

peripheral and autonomic nerve dysfunction associated with

formation of TTR fibrils along the nerves. Unlike Alzheimer’s

disease, another common amyloidosis, localized TTR-derived

amyloid in the central nervous system is rarely reported [3,4].

TTR is one of the 27 human proteins known to be associated

with local or systemic amyloidosis [5]. TTR is a soluble protein

primarily synthesized in the liver, the choroid plexus and the retina

and secreted to plasma, cerebrospinal fluid and vitreous humour,

respectively. The native molecule, assembled as a 55-kDa

homotetramer, functions as a transport protein of the thyroid

hormone thyroxine and retinol (vitamin A), the latter through

association with retinol-binding protein [6,7]. TTR has, however,

an inherent propensity to assemble into insoluble amyloid fibrils,

which sporadically leads to senile systemic amyloidosis (SSA) with

deposits of wild-type TTR (TTRwt) mainly in the cardiac tissue

late in life [8]. Familial forms of TTR-related amyloidosis are

inherited in an autosomal dominant manner and arise from single

point mutations in the coding sequence of the gene. Today, there

are over 100 variants of TTR described, of which the majority is

amyloidogenic [1]; (for summary see http://www.bumc.bu.edu/

Dept/Content.aspx?DepartmentID = 354&PageID = 8850). De-

pending on the primary site of deposition, the disease has been

termed familial amyloid cardiomyopathy (FAC) or familial

amyloid polyneuropathy (FAP).

Amyloidogenic mutations in the TTR gene are known to

destabilize the quaternary structure of the molecule, which leads to

tetramer dissociation and partial subunit unfolding. This process

results in the accumulation of misfolded TTR monomers that self-

assemble into oligomers and then amyloid fibrils [9,10,11].

Similarly to other amyloids, mature TTR amyloid fibrils are

highly organized, insoluble structures that become resistant to

proteolysis. In the electron microscope they show a well-defined
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ultrastructure of rigid and non-branching fibres, approximately

11–13 nm in diameter and consist of 4 protofilaments [12]. In the

last couple of years, the focus of research into amyloid toxicity has

shifted towards the small oligomeric aggregates formed on or off

the fibrillogenesis pathway, since these structures have been

suggested to be the main mediators of pathogenicity [13]. Toxic

species of TTR made of recombinant protein have been identified

in vitro; as well as in vivo in TTR transgenic mice and in ex vivo

explants from FAP patients [14,15,16,17]. While much is known

about the structure of different amyloids, there is no evidence on

correlation between the final deposits and severity of the disease

[18,19]. Similarly, in vitro studies on TTR aggregation has brought

a huge insight into understanding of amyloid formation, but the

exact process of TTR amyloid fibrils formation in vivo is not known

[5].

In a previous work, we have generated a transgenic model for

TTR-associated amyloidosis in the fly Drosophila melanogaster by

overexpressing either normal TTR (TTRwt), the clinically

relevant mutant TTRL55P, or the highly destabilized engineered

mutant TTR-A (TTRV14N/V16E; [20]), all in secreted form and

thus detectable in hemolymph [21]. The expression of mutated

TTR, but not wild-type TTR, caused a complex phenotype

partially reminiscent of the human pathology, which included

shortened life span, neurodegeneration and early locomotor

dysfunction. An interesting feature was an abnormal posture of

the wings termed ‘‘dragged-wing phenotype’’. Surprisingly, this

phenotype had higher penetrance (40 to 99%) in flies with a single

copy of the transgene than in flies with two copies (less than 40%).

To resolve this apparent paradox we decided to explore the

TTR expression pattern in detail by both an ultrastructural

analysis of the affected tissues and functional analysis of

aggregates. The results firmly establish a correlation between the

expression of the transgene coding for the mutated TTR-A and

the generation of intracellular aggregates of nanospherules and

nanofilaments in brain glia and thoracic adipose tissue, with more

and larger aggregates in old flies carrying two copies of mutated

TTR. Moreover, an in vitro assay with the human neuroblastoma

cell line IMR-32 showed less toxicity when the material originated

from older flies, suggesting that the intracellular formation of

aggregates is part of a mechanism for the neutralization of the

toxic effects of TTR-A. This opens a new avenue for the

experimental elucidation of the relationship between toxicity and

the different forms of soluble or aggregated TTR proteins,

validating the potential of this Drosophila model.

Results

Localization of TTR aggregates and amyloid filaments in
transgenic flies

All the transgenic flies used in this study were constructed with a

GMR-Gal4 driver to ensure strong and specific expression in the

retina throughout postembryonic stages [21]. This gal4 driver is

also expressed to some degree in a few other tissues, but not in the

fat body (Figure S1). Since the TTR protein encoded by the

transgene contains a signal peptide, secretion from the retina will

deliver the protein directly to the circulatory system. Insects have

an open circulatory system, with the brain, muscles, nerves and

other tissues being surrounded by the blood, called hemolymph.

Thus, besides exerting an effect in TTR expressing organs [21],

other tissues could be affected. Several aspects of the phenotype, in

particular the abnormal wing posture and flight defects [21],

persuaded us to investigate the thoracic flight muscles with

corresponding nerves and surrounding tissues. For practical

reasons we focused on the dorsal thorax, preparing samples that

contained some of the major flight muscles with attached motor

neurons, sensory axons, fat body (adipose tissue), tracheae

(respiratory tubes), hemocytes (blood cells) and epidermis.

To follow the expression pattern of TTR protein and its

subsequent localization after secretion, we generated transgenic

flies in which TTR was N-terminally tagged with a synthetic 8-

amino-acid long FLAG epitope (DYKDDDDK; for details see

M&M). We tested that the FLAG-TTR had the expected

molecular size shift in control experiments. (Figure S2). Immuno-

staining with an antibody specific for the FLAG epitope gave no

staining in control larvae (Fig. 1A) and a strong immunostaining in

the optic lobes and eye disk of full-grown FLAGTTR-A larvae

(Fig. 1B), with staining in the photoreceptors as expected (Fig. 1C).

In cryo-sections of 14 days old fly heads, the anti-FLAG staining

(Fig. 1E, F) reproduced previous reports with anti-TTR antibodies

[21], with no staining in control flies (Fig. 1D) and immunoflu-

orescence in the retina and lamina (a visual brain centre

postsynaptic to retinal axons) of adult FLAGTTR-A/+ (Fig. 1E,

K) and FLAGTTR-A/FLAGTTR-A flies (Fig. 1F). We also observed

FLAG-specific fluorescence in a rim around the subesophageal

ganglion (arrows in Fig. 1E and F) where nuclei of perineurial glia

are found [22].

Interestingly we found the FLAG positive signal in the head fat

body surrounding the brain of FLAGTTR-A/+ (Fig. 1H, J) and
FLAGTTR-A/FLAGTTR-A flies (Fig. 1 I) but not in control flies

(Fig. 1G). Moreover, a distinct punctuated pattern of FLAG

fluorescence was present in the thoracic fat body of FLAGTTR-A/+
samples (Fig. 1M) and less frequent but larger in FLAGTTR-

A/FLAGTTR-A samples (Fig. 1N). Confocal microscopy revealed

that the immunopositive puncta ranged in size between 0,3–

0,99 microns in FLAGTTR-A/+ samples and 0,79–9,49 microns in
FLAGTTR-A/FLAGTTR-A samples (A representative TTR-A

aggregate in FLAGTTR-A/FLAGTTR-A is shown in Figure S3).

Such staining was neither detected in control samples (Fig. 1L) nor

in wild-type Oregon flies (data not shown). Analogous findings on

TTR localization were obtained in samples immunostained with

anti-TTR antibodies, with a positive signal in adipose tissue of

head and thorax, but neither muscles, nerves or other tissues

(Figure S4).

Light microscopy of toluidine-blue stained sections of fly heads

was used to compare the histology of retina and brain in young (3

days old) and old (14 days old) flies. Retinal degeneration and

sparse signs of brain vacuolation were detected in TTR-A/+ and

TTR-A/TTR-A flies (Fig. 2B, D and Figure S5) as previously

reported [21], but not in control flies (Fig. 2A, C and Figure S5).

In the thorax, there was no obvious histological pathology in

muscles or other tissues. The exception was the fat body, which

appeared hypotrophied and contained, only in old TTR-A/TTR-

A flies, intracellular, acidophilic inclusions of rounded or ovoid

shape and up to several microns in size.

When these samples were analyzed with transmission electron

microscopy, the absence of obvious degenerative ultrastructural

features was confirmed in muscle and nerves, in all genotypes and

age groups (Figure S6). The fly retina is composed of distinct optic

units called ommatidia, each formed by a central cluster of

photoreceptors surrounded by support cells [23] (Fig. 2E). Empty

spaces, corresponding in shape and size to single ommatidia, were

detected in the retina of TTR-A/TTR-A flies of the young group

(not shown). In the old TTR-A/TTR-A flies, this had advanced

markedly and most ommatidia appeared disrupted or missing

(Fig. 2F). The apical membrane of the insect retinal photorecep-

tors forms an array of tightly and regularly packed microvilli

(asterisks in Fig. 2E, detail in Fig. 2G). At the stage of massive

retinal degeneration the few remaining photoreceptors (compare

TTR Neutralization by Fat Body
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Fig. 2E with F) had none or only few and short microvilli (Fig. 2H).

On the other hand, the size and organization of the retina in flies

expressing TTRwt (Fig. 2C, E) appeared identical to that of

normal control flies independent of age. Arrays of nanofilaments

7–9 nm in thickness and nanospheres of about 20 nm in diameter

(from here on termed ‘‘spherules’’), were abundant in the

cytoplasm of glial cells that cover the surface of the retina

(subretinal glia, [22]) and those that cover the surface of the brain

(perineurial glia, [22]) in TTRwt/TTRwt (Fig. 3A), TTR-A/+
and TTR-A/TTR-A flies (Fig. 3B, C), but not in wild type flies.

Figure 1. TTR localization pattern in transgenic flies. Immunodetection of FLAG-TTR (red in A–N) with nuclear counterstaining (blue in D–N)
on cryo-sections is shown. Third instar larval CNS with eye discs of control (A), and FLAGTTR-A/FLAGTTR-A (B, C) larvae show that the staining was
specific for FLAG-TTR–expressing animals and restricted to the eye disk (ED) and Optic Lobe (OL) as expected for the GMR-Gal4 driver. A detail of
FLAG-TTR expression in the terminals of retinal photoreceptors inside the OL of the brain is shown in C. Horizontal head sections of 14 days old
control (D), FLAGTTR-A/+ (E) and FLAGTTR-A/FLAGTTR-A (F) adult flies showing FLAG-TTR localization in the retina (Re) and lamina (La) as well as in
perineurial glia (arrows). The staining was absent in the head fat body of control flies (G) and present in FLAGTTR-A/+ (H, J), and FLAGTTR-A/FLAGTTR-A
(I) flies. Detail of retina with TTR-A aggregates in FLAGTTR-A/+ flies (K). Thoracic fat body of control (L), and FLAGTTR-A/+ (M), and FLAGTTR-A/FLAGTTR-A
flies (N). Aggregates of TTR-A were found in the retina and in fat body of head and thorax (Red ‘‘spots’’ in H–J and M–N). Scale bars, 100 mm in A–B,
and D–F; 50 mm in C; and 20 mm in G–N. For a complete definition of the genotypes see Material and Methods.
doi:10.1371/journal.pone.0014343.g001
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These two types of glia are easy to recognize by EM because they

are more electron-dense than neurons, they form the outermost

layer of the brain and they are covered by an extracellular collagen

matrix [22]. None of these structures were detected in brain

neurons, although sporadic vacuolation (Fig. 2B), accumulation of

phagosomes and lamellar bodies, all indicative of neurodegener-

ation, were scored in the brain of the old TTR-A/TTR-A flies

(data not shown).

The most striking alteration besides the retinal degeneration was

hypotrophy of the fat body in old TTR-A/TTR-A flies (compare

Fig. 2A with B and Fig. 4A with B), reflected by decreased size,

fewer lipid droplets and empty spaces which by shape and size

suggested missing fat body cells (Fig. 4B, asterisks). In contrast,

young TTR-A/TTR-A flies, as well as TTR-A/+ and TTRwt/

TTRwt flies of any age had normal ultrastructure as seen in the

wild type controls (Fig. 4 C–E). In the thoracic fat body of old

TTR-A/TTR-A flies we found large cytoplasmic aggregates

(arrows in Fig. 4 F and G) that were enclosed by a membrane,

similar to other protein granules usually stored in this tissue. They

reached sizes in a range of a few microns up to 6.2 mm. These

aggregates were exclusively restricted to the fat body cells of old

TTR-A/TTR-A flies and correlated with enlarged rough

endoplasmic reticulum cisternae and frequently with apoptotic

nuclei. Some of the fat body cells with largest accumulations of

aggregates exhibited damaged cell membrane as if they were

disintegrating (Fig. 4G).

Ultrastructure of the aggregates formed in thoracic fat
body of TTR-A/TTR-A flies

At very high magnification (200.0006), the aggregates consisted

of membrane-bound bodies with a light matrix full-packed with

spherules of about 20 nm in diameter (Fig. 4H–J). These spherules

were arranged in an almost perfect hexagonal pattern, each

surrounded by six equidistant spherules (Fig. 4J). At 300.0006
TEM magnification, single spherules appeared to consist of a

cortex of electron-dense ‘‘dots’’ of approximately 2–3 nm in

diameter surrounding a less electron-dense core (data not shown).

Inside some of the biggest aggregates we found unbranched

filaments of 7–9 nm in thickness (arrow in Fig. 4J).

Soluble aggregates of TTR-A are toxic to neuronal cells
We also investigated whether fly extracts enriched in hemo-

lymph and fat body content (see M&M) affected cell viability of the

human neuroblastoma IMR-32 cells (Fig. 5A). In a time-course

experiment, extracts from 2 days old TTR-A/TTR-A flies

significantly reduced cell viability after 24, 48 and 72 hours of

incubation when compared to extracts from TTRwt or control

flies. The toxicity of the extracts from TTR-A/TTR-A and TTR-

A/+ flies increased over time with a maximum after 48h of

incubation, where cell viability was reduced to 13%65.2 viable

cells. In contrast, extracts prepared from 21 days old TTRwt/

TTRwt, TTR-A/+ and TTR-A/TTR-A flies did not show any

significant toxic effect.

Analysis of extracts by Western blot technique revealed distinct

differences in solubility of TTR isolated from flies of different age

(Fig. 5B). TTR from young-fly extracts was more soluble than that

from older flies, which aggregated and migrated poorly into the

gel.

Discussion

Protein misfolding and aggregation, with formation of amyloi-

dogenic aggregates and amyloid filaments have become of

increasing interest due to their involvement in many debilitating

disorders such as Alzheimer’s disease, Parkinson’s disease and

TTR-associated amyloidoses (reviewed by [24,25,26]). To inves-

tigate the link between amyloidogenesis and tissue targeting of

Figure 2. Histology (A–D) and ultrastructure (E–H) of the head
in 14 days old flies. In sagital sections the facets (Fa), retina (Re), brain
(Br) and fat body (FB) with a large space that in the living fly is filled
with hemolymph (He) were clearly seen in wild-type (A) and TTRwt/
TTRwt flies (not shown here, see Figure S5). TTR-A/TTR-A (B) and TTR-A/
+ flies (Figure S5) flies had advanced retinal degeneration and brain
vacuolation (arrowheads). TTR-A/TTR-A flies had also thinner fat body
than flies of all other genotypes. Larger magnifications of the retina in
wild type (C) and TTR-A/TTR-A flies (D) illustrate the massive
degeneration of the retina in TTR-A/TTR-A flies (scale bar = 50 mm in C
and D). With electron microscopy the normal ultrastructure of
ommatidia was found in TTRwt/TTRwt flies (E) compared with wild-
type flies (not shown), with a central core of seven retinal
photoreceptors (asterisks in E) surrounded by support cells. In TTR-A/
TTR-A flies the ommatidia were largely disrupted and many cells were
missing, leaving instead empty spaces (F). Scale bar = 2 mm in E and F.
At higher magnification, the tightly packed microvilli (Mv) characteristic
of wild-type photoreceptors was found in TTRwt/TTRwt flies (G) but
only very few microvilli were found in TTR-A/TTR-A flies (H, arrows). The
scale bar in H shows 500 nm in G and H.
doi:10.1371/journal.pone.0014343.g002
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protein aggregates in vivo, we established a Drosophila model for

TTR-associated amyloidosis [21]. Here we analyze the pattern of

transgenic expression of normal (TTRwt) and mutated (TTR-A)

human TTR and pay particular attention to the ultrastructure of

relevant tissues. In flies homozygous for the mutated gene we

discovered a correlation between the formation of heavy

aggregates of nanospheres inside large, membrane-bound cyto-

plasmic aggregates in adipose tissue and their reduced toxicity.

After combining the data from this study with what was

previously known, we suggest the following scheme for the fate of

transgenically expressed TTR in the fly (Fig. 6). Under the control

of the glass promoter (GMR-Gal4) the TTR protein is expressed in

the retina, from where it is secreted into the hemolymph [21]. Since

the retina is the principal source of TTR in our model, retinal

degeneration might be relevant for the explanation of the temporal

development of the phenotype. In 3 old flies we found no clear signs

of retinal degeneration among those expressing either two copies of

TTRwt or one copy of TTR-A, and only scarce degenerative

features in flies carrying two copies of TTR-A. At 14 days of age,

instead, all TTR flies showed signs of retinal degeneration, varying

from a mild phenotype in TTRwt flies to strong degeneration in

TTR-A flies, especially in those carrying two TTR-A copies.

However, as a note of caution, it has been reported that the

expression of GAL4, which is intrinsic to our model, has a dosage

Figure 3. TEM analysis of brain glia in TTR-expressing flies. Arrays of nanospherules (arrowheads) and nanofilaments (arrows) were detected
in the cytoplasm of glial cells of 14 days old TTRwt/TTRwt (A) and TTR-A/ TTR-A (B, C) flies. Scale bar = 100 nm.
doi:10.1371/journal.pone.0014343.g003

Figure 4. TEM analysis of the fat body in TTR-expressing flies. At the histological level the thoracic fat body of TTRwt/TTRwt flies had normal
appearance compared with that of wild-type flies at both 3 (not shown) and 14 days of age (A) but in 14 days old TTR-A/TTR-A flies (B) it appeared to
contain ‘‘holes’’ with the size and shape of single fat body cells (asterisks). Proper ultrastructure of the fat body was detected in wild-type (C), TTRwt/
TTRwt (D) and TTR-A/+ (E) flies with small and large lipid droplets (LD) and normal cytoplasmic organization. In TTR-A/TTR-A flies (F and G), on the
contrary, this tissue contained fewer lipid droplets and large numbers of dark bodies (arrows). The scale bar shows 2 mm in C–G. Some of the fat body
cells containing more and larger dark bodies appeared to be disrupted (G, ‘‘bursting cell’’). Measurements of the dark bodies at higher magnification
showed that some of them were several microns in diameter (H) and were full-packed with spherules, about 20 nm in diameter and arranged with
hexagonal pattern (I). In J, a white dot was marked digitally at the centre of each of the six spherules equidistant to a central, non-marked spherule to
highlight this pattern. Small arrays of short, unbranched nanofilaments were occasionally found among the spherules (arrow in J). All the images
shown here are from 14 days old flies and the scale bars represent 500 nm in H and 100 nm in I and J.
doi:10.1371/journal.pone.0014343.g004

TTR Neutralization by Fat Body
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Figure 5. Neurotoxic effect of TTR-A to human cells in a time-course experiment. (A) Significant reduction of cell viability was detected in
IMR-32 neuroblastoma cells exposed to TTR-A-containing extracts prepared from young vs. old flies (***P,0.001 for most of the time points; one-way
ANOVA, sequential Bonferroni post-hoc). Cell viability was significantly reduced already 18h after exposure to the TTR-A/+ extracts (# # P = 0.005, TTR-
A/+ vs. control TTR2/2) and decreased over time in cells exposed to TTR-A/+ and TTR-A/TTR-A but not TTRwt/TTRwt extracts (# # # P,0.001, TTR-A/
+ and TTR-A/TTR-A vs. control TTR2/2 for 24–72h). The extracts prepared from TTR-A/+ and TTR-A/TTR-A flies showed significant neurotoxic
properties compared to the extracts from TTRwt/TTRwt flies (*** P,0.001, after 24h, ** P,0.01 after 48h for TTR-A/+ vs. TTRwt/TTRwt extracts; **
P,0.01 after 24–48h for TTR-A/TTR-A vs. TTRwt/TTRwt extracts). Red line indicates normalized viability of control cells exposed to TTR2/2 extracts.
(B) Age-dependent aggregation of TTR detected in fly extracts. TTR detected in extracts from young flies is mostly soluble (left panel), whereas in 21
days old flies aggregates are formed, which hardly migrate in the gel (right panel). TTR immunodetection was performed with TTR specific polyclonal
antibody. Soluble TTR is represented by monomers and tetramers (double band), aggregated TTR consist of assemblies above 100 kDa.
doi:10.1371/journal.pone.0014343.g005

TTR Neutralization by Fat Body

PLoS ONE | www.plosone.org 6 December 2010 | Volume 5 | Issue 12 | e14343



and temperature dependent deleterious effect on the expressing

cells [27,28]. To minimize this effect we raised the flies for our

experiments at 21–22uC and noted that the gmr-gal4 flies did not

develop detectable histological disruption of the retina even at two

weeks of age (Figure S5), when the GMR-Gal4 driver is still active

[29].

TTR synthesized in the retina can reach the circulation by two

main routes: through secretion directly into the surrounding

hemolymph and through disruption of TTR containing cells

during retinal degeneration. Our Western blots indicated that part

of the soluble TTR reaching the hemolymph is subsequently

transformed into aggregates, probably as oligomers (Figure S7).

We believe that misfolding and aggregation in the hemolymph

result in the formation of the TTR-A species that are responsible

for the wing-dragged phenotype and the cytotoxic effect on

neuronal cells in vitro.

Localization of TTR with or without FLAG as well as the

finding of aggregates of nanospherules and nanofilaments in

retinal, glial and fat body cells of old TTRwt/TTRwt, TTR-A/+
and TTR-A/TTR-A flies, but not wild-type flies, occurs in tissues

that do not express the transgene during adult life (Figure S1). The

subretinal glia is in direct contact with the retinal cells [22], and

brain glia are known to actively take up cellular debris from

surrounding tissue by phagocytosis [30]. It is thus possible that the

TTR that is not released directly into the circulation through the

disruption of photoreceptors is instead translocated from photo-

receptors to subretinal glia through phagocytosis of retinal cell

debris.

We also found a punctuated pattern of strong anti-TTR

fluorescence in fat body of the head and thorax. This tissue has not

been reported to phagocytose cell debris but is specialized for the

uptake of proteins from the circulation in both physiological and

pathological situations [31]. Therefore, we think that the fly’s

adipose tissue has the ability to take up TTR from the hemolymph

(Fig. 1, 4 and 6). The ultrastructure of TTR-positive tissues was

different in head and thorax. In the head, we found aggregates of

nanospherules and filaments in brain glia, but not in the fat body.

The aggregates observed in glia were not enclosed by a membrane

and consisted of long filaments and nanospherules. The aggregates

in thoracic fat body, on the other hand, were enclosed by a

membrane and contained few and short filaments, and nano-

spherules tightly packed in a hexagonal array. These structures

were exclusively found in old flies carrying two TTR-A copies.

The difference between fat body of head and thorax is consistent

with the current understanding of the insect fat body as a tissue

with morphological and functional regionalization [32,33].

Figure 6. Proposed scenario for the fate of transgenically expressed TTR in the fly. Soluble TTR is expressed in the retina and secreted to
the hemolymph where it undergoes misfolding and initial aggregation/oligomerization. Fat body cells take up TTR conformers from the circulation
and pack them tightly into aggregates of a few microns size consisting of nanospherules and nanofilaments. This leads to cell death of fat body cells
and hypotrophy of the tissue, releasing TTR aggregates and filaments back to the hemolymph. Aggregates formed in the hemolymph at early stages
represent the neurotoxic fraction of TTR, whereas aggregates and filaments present in hemolymph at late stages do not exhibit cell toxicity. Thus, the
fat body neutralizes toxicity of TTR conformers by uptake from hemolymph and assists their maturation to the detriment of its integrity.
doi:10.1371/journal.pone.0014343.g006

TTR Neutralization by Fat Body
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A hexagonal array represents the most efficient way to pack

spherical bodies and in the 2 weeks old TTR-A/TTR-A flies these

arrays have a quasi-crystalline structure. We consider that

proliferation of these aggregates, and growth beyond the range

of 5 or 6 microns will probably challenge the physical integrity of

the cell. In some ultrathin sections, we found profiles indicative of

disrupted cells. We do not consider them as preparation artifacts,

rather the correlation with the hypotrophy of the adipose tissue,

the finding of apoptotic nuclei, and the abundance of empty spaces

with the size and shape of a single cell, lead us to propose that the

large aggregates cause cell damage and the consequent release of

aggregates into circulation (‘‘Bursting cell’’, Fig. 4G).

An interesting question is whether the TTR species released

through cell death are as toxic as the soluble forms present in the

circulation before uptake by the fat body. Spherules in the same

size range of those reported here have been described to be formed

in vitro by different proteins, including TTR [34], and the amyloid

beta peptide (Ab) in form of the amyloid-derived diffusible ligands

(ADDLs). The latter have been postulated to be the main cause of

pathology in the brain of Alzheimer’s disease patients [19] and are

neurotoxic in vitro [35]. It has been found that nanospherules of Ab
(termed amylospheroids) with a diameter between 10 and

15 nanometers were much more toxic than those smaller than

10 nanometers [15,36]. Thus, the size of oligomers/aggregates

might be important for the toxic properties of these assemblies. In

the case of TTR, small toxic oligomers have been reported to be

formed in vitro, which correspond to size not bigger than hexamers

(,100 kDa) [14]. However, such cytotoxic species have not been

found in vivo, although indirect evidence has been presented [16].

Our TTR flies present a potential tool for studies of in vivo TTR-

derived amyloid formation and its further tissue targeting.

Moreover, this model presents a potential in characterizing the

neurotoxic fraction of TTR present in the hemolymph.

Amyloid fibrils are currently described as unbranched filaments

between 7 and 12 nanometers in diameter. TTR fibrils found in

biopsies from FAP patients [37] and TTR fibrils generated in vitro

are calculated to measure between 8 and 13 nm in diameter

[12,37]. These definitions and dimensions correspond well with

the filaments that we found in fat body and brain glia of TTR flies.

The levels of TTR-A are higher in TTR-A/TTR-A than TTR-

A/+ flies [21]. This correlates with the severity of damage to the

retina and the fat body of TTR-A/TTR-A flies but contrasts with

the penetrance of the wing-dragged phenotype, which was more

frequent in TTRA/+ flies [21]. Further studies on the aggregation

states and their toxicity in different developmental stages and in

different tissues are needed to explain the paradoxical finding of an

early wing phenotype without ultrastructural pathology in the

thoracic tissues. TTR is found very frequently around peripheral

nerves in FAP patients and in leptomeninges in TTR-associated

CNS amyloidosis. Although the initial definition of amyloid was

extracellular deposition of proteinaceous fibrillar material, the use

of the term has changed as more evidence exists on the presence of

intracellular aggregates of i.e. Ab in AD [38,39,40] and islet

amyloid polypeptide-derived amyloid in type II diabetes [41].

Therefore, our Drosophila model may shed light on the role of early

formation of intracellular TTR amyloid in relevant tissues

involved in pathology of ATTR that has been overlooked due to

late clinical diagnosis.

Materials and Methods

Transgenic contructs and Drosophila stocks
The w*;P{w+mC = GAL4-ninaE.GMR}12, abbreviated GMR-Gal4

[42], obtained from the Bloomington Drosophila Stock Center,

Indiana University, was the only gal4 driver used in this study.

Expressing lines were generated using standard mating schemes as

described previously [21]. Wild-type Oregon R and w1118 flies

were used as morphology controls for TEM studies.

TTRwt- and TTR-A-FLAG constructs were generated by

introducing the FLAG-tag sequence (GATTACAAGGATGAC-

GACGATAAG) between the TTR signal peptide and the respective

TTR gene of previously cloned pUAST-TTR vectors [21] with the

following primers: TTR-EBprimer 59-CCGGAATTCCGGATG-

GCTTCTCATCGTCTGCTC-39, TTR-FLAGupstream 59-CCC-

TTATCGTCGTCATCCTTGTAATCAGCCTCAGACACAAA-

TACCAGTCC-39, TTR-FLAGdownstream 59-GCTGATTACA-

AGGATGACGACGATAAGGGCCCTACGGGCACCGGTG-39

and TTR-BEprimer 59-GGAAGATCTTCCTCATTCCTTGG-

GATTGGTGAC-39.

The resulting PCR fragments were cloned into the pCR4-TOPO

vector (Invitrogen), sequenced and then EcoRI-BglII fragments

were subcloned into pUAST vector (sequenced). Transgenic flies

were generated using standard methods [43]. All flies were

cultured on standard mashed-potato / yeast / agar media at 21–

22uC under 12/12-h light–dark cycles.

Flies of following genotypes were used in the study and

abbreviated for practical purposes: w; GMR-Gal4/GMR-Gal4; +/

+ (control flies), w; GMR-Gal4/GMR-Gal4; UAS-TTRwt/UAS-

TTRwt (TTRwt/TTRwt), w; GMR-Gal4/GMR-Gal4; UAS-TTR-

A/+ (TTR-A/+), w; GMR-Gal4/GMR-Gal4; UAS-TTR-A/UAS-

TTR-A (TTR-A/TTR-A), w; GMR-Gal4/GMR-Gal4, UAS-
FLAGTTR-A/+ (FLAGTTR-A/+), w; GMR-Gal4/GMR-Gal4; UAS-
FLAGTTR-A/UAS- FLAGTTR-A (FLAGTTR-A/FLAGTTR-A).

Immunohistochemistry and fluorescent microscopy
Semi-thin cryosections (10mm) of 14 days old fly heads were

fixed with 4% (w/v) formaldehyde in phosphate-buffered saline

(PBS) pH 7.3 and incubated in 10% (v/v) fetal calf serum blocking

buffer. For studies of thoracic fat body (adipose tissue) the flies

were dissected in PBS and the adipose tissue attached to the dorsal

epidermis and cuticle was fixed and blocked as above. Immuno-

stainings were performed overnight at 4uC with mouse monoclo-

nal anti-FLAG M2 antibody (1:500; F1804 Sigma-Aldrich Sweden

AB) and Rhodamine Red-X-AffiniPure Goat Anti-Mouse IgG

secondary antibody (1:250; Jackson ImmunoResearch Laborato-

ries, Inc., West Grove, PA, USA). All specimens were mounted on

slides with VECTASHIELD mounting medium containing DAPI

to counter-stain nuclei (Vector Laboratories, Burlingame, CA).

Fluorescent images were collected by either Nikon Eclipse 90i

microscope with NIS-Elements Advanced Research (v 3.0)

imaging software (NIKON Corporation, Tokyo, Japan) or Zeiss

META 510 Confocal microscope with LSM Software (Carl Zeiss

GmbH Jena, Germany), and further analyzed and assembled in

Adobe Photoshop and Illustrator CS2, respectively.

Transmission electron microscopy
The flies were anesthetized with nitric oxide (Sleeper TAS,

INJECT+MATIC, Switzerland), decapitated with a needle and

thereafter the head and thorax were dissected with forceps and

needles in a droplet of 0.1 M PBS pH 7.3 on a clean microscope

slide. The proboscis and occipital cuticle of the head were gently

removed to improve fixative penetration. The dorsal 1/3 of the

thorax was dissected to study flight muscles, peripheral nerves and

thoracic adipose tissue. The tissues were fixed in a freshly prepared

ice-cold solution containing 2.5% glutaraldehyde and 4%

formaldehyde in 0.1 M PBS pH 7 for three hours. The samples

were then rinsed 4615 min in PBS, post-fixed for 1 hour in an

aqueous 2% solution of osmium tetroxide, rinsed in water,
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dehydrated in a gradual series of ethanol and acetone and

embedded in EPON (EPON 812 embedding kit 3132, Tousimis)

according to the manufacturer’s instructions. The samples were

placed in moulds with pure resin for polymerization at 60uC for

48 hours. Semi-thin sections (around 2 mm) were cut with a glass

knife, mounted on microscope slides, stained with 0.1% boracic

toluidine blue and used to study the histology and for localization

of appropriate sites for ultrastructural analysis. Ultrathin sections

(50 to 60 nm) were cut with a diamond knife, contrasted with lead

citrate and uranyl acetate and observed with a JEOL JEM 1010

operated at 80 kV. Images were taken with a digital camera

(Hamamatsu C4742–95); measurements and image processing

were done with the softwares AMT Advantage CCD and Adobe

Photoshop. Three flies of each genotype and age (3 or 14–17 days

old) were processed: Oregon R and w1118 as normal controls, w;

GMR-Gal4/GMR-Gal4; UAS-TTRwt/UAS-TTRwt, w; GMR-Gal4/

GMR-Gal4; UAS-TTR-A/TM3SerSb, w; GMR-Gal4/GMR-Gal4;

UAS-TTR-A/UAS-TTR-A.

Preparation of fly extracts and immunoblot analysis
2 and 21 days old flies were prewashed in PBS and subsequently

sterilized in 70% (v/v) ethanol, which was then drained by

capillary forces by placing the flies on sterile Kleenex tissue.

Groups of 100 flies of each genotype and age were decapitated

with a 27-gauge needle and the abdomens were opened with

tweezers in 600 ml of sterile MilliQ water supplemented with

200 U/ml penicillin and 200 mg/ml streptomycin (26 PeSt) as

well as 2 mg/ml amphotericin B (GIBCOTM FungizoneH,

Invitrogen, Carlsbad, CA). In that way the water extracts were

enriched in hemolymph and fat body cells content. All samples

were collected in sterile 1.5 ml Eppendorf tubes and stored

overnight at 4uC until they were centrifuged at 25006g for 5 min.

The supernatants were collected and mixed with supplemented

cell culture media in a 1:11 ratio. 10 ml of each type of fly extracts

were mixed with 10 ml 26loading buffer (4% (w/v) SDS, 125 mM

Tris pH 7,5; 30% (v/v) glycerol, 0.2% (w/v) bromophenol blue),

without reducing agent, vortexed and separated on NovexH 10–

20% Tricine pre-cast mini protein gel (Invitrogen) at 120 V in 16
Tricine running buffer. Proteins were transferred electrophoreti-

cally onto Hybond-C Extra Nitrocellulose membrane (0.45 mm

pore size; Amersham Biosciences, Buckinghamshire, UK) using a

semi-dry system (Trans-BlotH SD, Bio-Rad Laboratories, Hercu-

les, CA). Non-specific binding sites were blocked by incubating

membranes overnight at 4uC in 20 mM Tris-HCl (pH 7.5,

137 mM NaCl, and 0.1% Tween-20 (TBS-T) with 5% non-fat

dried milk (Semper). Membranes were incubated for 2 h at room

temperature with polyclonal rabbit anti-TTR (1:5000; DAKO,

Glostrup, Denmark) and then washed 365 min in TBS-T and

incubated for 1 h with horseradish peroxidase-labeled goat anti-

rabbit antibody (1:10000; Pierce, Rockford, IL, USA). The

immunoreaction was detected with SuperSignal West Pico

chemiluminescent substrate (Pierce).

Cell Culture
Human neuroblastoma IMR-32 cells (CCL-127) were obtained

as stock passage number 55 from the American Type Culture

Collection (Manassas, VA) and cultured, unless otherwise stated,

in Eagle’s minimum essential medium (EMEM) with Gluta-

MAXTM I and Earle’s salt, supplemented with 10% fetal bovine

serum (FBS), 100 U/ml penicillin and 100 mg/ml streptomycin,

1 mM sodium pyruvate and 0.1 mM nonessential amino acids

(Gibco cell culture, Invitrogen, Sweden) at 37uC in a humidified

atmosphere of 5% (v/v) CO2/air.

Fly-extracts toxicity assays
IMR-32 cells were seeded at a density of 40000 cells/cm2 in 96-

well plates and grown in a humidified atmosphere of 5% (v/v)

CO2/air for 24 hours prior to addition of fly extracts in

supplemented cell culture media without phenol red or FBS in a

1:11 ratio corresponding to 1.5 fly content per 100ml cell culture

media per well. The media from the cells was removed, and 100 ml

of the fly extracts at appropriate dilution were immediately added

to the cells in triplicate. At least six wells containing cells and three

wells without cells received 100 ml of media without extracts to

serve as cell controls and blanks, respectively. Extracts from flies

without expression of TTR (GMR-Gal4; +) were used as the

negative controls in the toxicity assays, since we observed

increased cell viability in cultures treated with fly extract (probably

associated with the presence of fly hemolymph proteins),

compared to cells growing with medium only. After addition of

fly extracts (or media), the cells were incubated at 37uC in a 5%

CO2 atmosphere for another 18, 24, 48 and 72 hours, when cell

viability tests were performed using a resazurin reduction test.

Resazurin (blue and non-fluorescent) is reduced to resorufin (pink

and highly fluorescent) in living cells [44]. Fluorescence measure-

ments were performed for the viability assay using a Tecan Infinity

plate reader with excitation at 530 nm and emission at 590 nm.

Each toxicity assay was done a minimum of three times.

Statistical analysis
Statistical analysis was performed using SPSS 12.0.01 for

Windows (SPSS Inc., Chicago, IL, USA). Statistical significance

was determined by one-factor analysis of variance (ANOVA)

followed by Bonferroni’s post hoc. The mean difference was

considered to be statistically significant at the 95% confidence

level.

Supporting Information

Figure S1 Expression patterns of GMR-Gal4 driver visualized

with UAS-GFP-CAAX reporter during development. A–C, F.

The expression of membrane-bound GFP was analyzed under a

dissecting microscope with a GFP filter. (A) Strong GFP expression

was found in the eye disks (ed) and Bolwig’s organ (bo) of the larva,

exactly as reported for the expression pattern of gmr (Moses and

Rubin 1991). (A9) merged picture of (A) and contrast light analysis.

In the pupa (B–C), strong GFP was observed in the developing eye

and salivary glands (sgl). A weak autofluorescence was detected in

the fat body cells of late pupa. B–H (and not F) In the adult fly (D–

E and G–H), immunodetection of GFP in dissected tissues using a

mouse monoclonal anti-GFP antibody (1:1000) revealed expres-

sion in the retina (phr, photoreceptors in D), epithelial cells of the

wing (E) and haltere (G) and in the salivary glands (H). GFP

fluorescence was also observed in the crop (F). Abbreviations: bo,

Bolwig’s organ; cr, crop; ec, epithelial cells; eo, esophagus; h,

haltere; phr, photoreceptors (in the retina); sgl, salivary gland.

Found at: doi:10.1371/journal.pone.0014343.s001 (1.98 MB

TIF)

Figure S2 Expression of FLAG-tagged TTRwt and TTR-A in

fly head extracts. TTR immunodetection was performed with

TTR specific polyclonal antibody (DAKO). Extracts of 1,3 heads

were loaded per lane of the following genotypes: Lane 1: wild-type

flies w1118; lanes 2–4 FLAG-TTR-A/FLAG-TTR-A; lanes 5–6:

FLAG-TTRwt/FLAG-TTRwt; lane 7: TTRwt/TTRwt; and lane

8: recombinant TTR (rec.TTR); m, monomer; d, dimer.

Found at: doi:10.1371/journal.pone.0014343.s002 (2.04 MB

TIF)
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Figure S3 Confocal analysis of FLAGTTR-A aggregate formed

in thoracic fat body. The aggregate was immunostained with

FLAG specific monoclonal antibody. Z-depth of confocal sections

(1 mm each) are indicated to the top left of each figure. The TTR-

A aggregate measured 8.09 mm as indicated in the zoomed figure

in the bottom panel to the right.

Found at: doi:10.1371/journal.pone.0014343.s003 (2.99 MB TIF)

Figure S4 Localization of TTR aggregates in transgenic flies.

Immunodetection of TTR (in green) with nuclear counterstaining

(blue) on paraffin sections is shown. Horizontal head sections of w;

GMR-Gal4/+; UAS-TTR-A/+ (A), and w; GMR-Gal4/+; +/+
control flies (B) and fragment of retina with surrounding head fat

body cells of w; GMR-Gal4/+; UAS-TTR-A/+ (C). Thoracic fat

body of w; GMR-Gal4/+; UAS-TTR-A/+ (D), and indirect flight

muscle with surrounding fat body cells (inset in D) of w; GMR-

Gal4/ GMR-Gal4; UAS-TTR-A/UAS-TTR-A (E). Retina (Re),

fat body (FB) indirect flight muscle (IFM). Aggregates of TTR-A

are found in the retina and the thoracic fat body. Arrowheads

indicate TTR-positive aggregates. Scale bars, 100 mm in A–B,

20 mm in C–E.

Found at: doi:10.1371/journal.pone.0014343.s004 (5.19 MB

TIF)

Figure S5 Histology of the head in control (w1118 and GMR-

Gal4/GMR-Gal4) and transgenic (TTRwt, TTR-A/+ and TTR-

A/TTR-A) flies. At least three heads of each genotype were

analyzed in flies of ‘‘young’’ (3 days old) or ‘‘old’’ (14 days old)

samples. Representative sections for young and old flies are shown

along the top and bottom rows for each genotype, respectively.

The retina (Re) showed severe signs of massive degeneration in old

TTR-A/+ and TTR-A/TTR-A flies and milder disruption in

TTRwt/TTRwt flies.

Found at: doi:10.1371/journal.pone.0014343.s005 (1.44 MB TIF)

Figure S6 Electron microscopy of nerves and muscles in TTR-

expressing flies. Neither nanofilaments, nanospherules nor other

abnormal ultrastructural features were observed in any of the

TTR-expressing flies regardless of age. In wild type (A, C), TTRwt

(not shown) and TTR-A/TTR-A flies (B, D), we found the normal

arrangement of axons (Ax), surrounded by concentric layers of

glial cells (Gl) forming the septate junctions that function as blood-

nerve-barrier (arrows). In transverse sections of indirect flight

muscles (dorsal longitudinal muscles are shown here) the

arrangement of myofibrils (Myo), mitochondria (Mi), the dyads

formed by the sarcoplasmic system and T-tubules (arrows) and the

distribution of thick and thin filaments observed at higher

magnification (not shown) appeared normal in TTR-A/TTR-A

flies (D) compared with wild type flies. The scale bar shows

500 nm in A–D.

Found at: doi:10.1371/journal.pone.0014343.s006 (4.83 MB

TIF)

Figure S7 Analysis of oligomeric fraction of TTR. Fly extracts

(hemolymph enriched in thoracic fat body content) were separated

on 12% Criterion gel under non-reducing conditions from 2 days

old (left panel) and 3 weeks old (right panel) flies. TTR

immunodetection was performed with TTR specific polyclonal

antibody (DAKO). TTR-mers are expected to migrate at

following molecular sizes: monomers = 16 kDa, dimers = 28 kDa,

trimers = 35 kDa, tetramers = 56 kDa. The extracts were prepared

from flies of the following genotypes: Lane 0: control flies, lane 1:

TTRwt/TTRwt, lane 2: TTR-A/+, and lane 3: TTR-A/TTR-A.

Only TTRwt migrates as monomers, dimers and tetramers. TTR-

A shows different from TTRwt migration pattern with a distinct

atypical band between 17 and 28 kDa.

Found at: doi:10.1371/journal.pone.0014343.s007 (2.49 MB TIF)
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