
viruses

Review

The Multifaceted Role of Macrophages in Oncolytic Virotherapy

Laura Hofman 1 , Sean E. Lawler 2 and Martine L. M. Lamfers 1,*

����������
�������

Citation: Hofman, L.; Lawler, S.E.;

Lamfers, M.L.M. The Multifaceted

Role of Macrophages in Oncolytic

Virotherapy. Viruses 2021, 13, 1570.

https://doi.org/10.3390/v13081570

Academic Editors: Elizabeth Ilett and

Fiona Errington-Mais

Received: 22 June 2021

Accepted: 30 July 2021

Published: 9 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80,
3015 CN Rotterdam, The Netherlands; l.hofman@students.uu.nl

2 Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St.,
Boston, MA 02115, USA; slawler@bwh.harvard.edu

* Correspondence: m.lamfers@erasmusmc.nl; Tel.: +31-010-703-5993

Abstract: One of the cancer hallmarks is immune evasion mediated by the tumour microenvironment
(TME). Oncolytic virotherapy is a form of immunotherapy based on the application of oncolytic
viruses (OVs) that selectively replicate in and induce the death of tumour cells. Virotherapy confers
reciprocal interaction with the host’s immune system. The aim of this review is to explore the role of
macrophage-mediated responses in oncolytic virotherapy efficacy. The approach was to study current
scientific literature in this field in order to give a comprehensive overview of the interactions of OVs
and macrophages and their effects on the TME. The innate immune system has a central influence
on the TME; tumour-associated macrophages (TAMs) generally have immunosuppressive, tumour-
supportive properties. In the context of oncolytic virotherapy, macrophages were initially thought to
predominantly contribute to anti-viral responses, impeding viral spread. However, macrophages
have now also been found to mediate transport of OV particles and, after TME infiltration, to
be subjected to a phenotypic shift that renders them pro-inflammatory and tumour-suppressive.
These TAMs can present tumour antigens leading to a systemic, durable, adaptive anti-tumour
immune response. After phagocytosis, they can recirculate carrying tissue-derived proteins, which
potentially enables the monitoring of OV replication in the TME. Their role in therapeutic efficacy is
therefore multifaceted, but based on research applying relevant, immunocompetent tumour models,
macrophages are considered to have a central function in anti-cancer activity. These novel insights
hold important clinical implications. When optimised, oncolytic virotherapy, mediating multifactorial
inhibition of cancer immune evasion, could contribute to improved patient survival.

Keywords: cancer immunotherapy; oncolytic virotherapy; tumour microenvironment; innate im-
mune system; tumour-associated macrophages; M1/M2 phenotypic shift; anti-tumour immunity

1. Introduction

Increasing research into the role of the immune system in tumour formation and
progression has revealed immune cell evasion to be a central cancer hallmark [1]. This has
led to the development of cancer immunotherapies designed to counteract the immuno-
suppressive characteristics of the tumour microenvironment (TME) and to target tumour
antigens. Oncolytic virotherapy is a form of immunotherapy and refers to the adminis-
tration of viruses that conditionally replicate in tumour cells and activate the immune
system [2]. However, the type of immune stimulation induced by oncolytic viruses (OVs)
may affect the therapeutic outcome, either by inhibiting the establishment of viral infection
or by inducing an anti-tumour immune response [3]. The aim of this review is to explore
and elucidate the role of macrophage-mediated responses in the interaction with OVs and
the efficacy of oncolytic virotherapy. Understanding the host response is clinically relevant,
rendering clues for novel strategies to potentially optimise therapeutic outcomes.
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2. Tumour Microenvironment (TME)

Molecular alterations driving cancer growth affect not only the tumour cell but also
cells in its environment. Tumour cells have evolved multiple strategies for immune evasion,
including disruption of interferon (IFN) signalling [4,5] and secretion of immunosuppres-
sive factors [6]. Other cells in the TME subsequently acquire evasive immune programmes.
These heterologous cell types can actively affect the clinical response to treatments, thus
constituting an important determinant in therapeutic outcome [7].

2.1. Innate Immunity in the TME

In the TME, macrophages play a central role in regulating other components of the
immune system and are present at all stages of tumour progression [8]. Most tumour-
infiltrating macrophages are derived from blood monocytes, that continuously renew
non-proliferating local macrophages [9,10]. The presence of chemokine C-C motif ligand 2
(CCL-2), or monocyte chemoattractant protein 1 (MCP-1), in the TME, produced by both
tumour cells and stromal cells, has been shown to attract macrophages and subsequently
maintain chemotaxis by stimulating these macrophages to also secrete CCL-2 [11]. Clin-
ical data suggest that high macrophage density within the TME correlates with a poor
prognosis [12] and poor response to treatment [13–15].

Tumour-associated macrophages (TAMs) are among the most prevalent tumour-
infiltrating immune cells, comprising up to 50% of the tumour mass [12,16]. In order to
exert their multiple functions, macrophages can adopt divergent phenotypes with their
polarisation states, which can be broadly termed M1 and M2. This dichotomy, however,
simplifies a spectrum of intermediate phenotypes that macrophages acquire through con-
tinuous and dynamic microenvironmental signalling [17]. The classically activated M1
phenotype primarily has inflammatory properties and exhibits active signalling involving
signal transducer and activator of transcription 1 (STAT1), interferon regulatory factor 5
(IRF5), and nuclear factor κ-light-chain enhancer of activated B-cells (NF-κB). This results in
the upregulation of major histocompatibility complex class II (MHC-II) and co-stimulatory
molecules [18,19]. M1 macrophages recruit and activate other inflammatory immune cells
such as natural killer (NK) cells and dendritic cells (DCs) [20]. Through phagocytosis, M1
macrophages can mediate the (cross-)presentation of antigens to elicit an adaptive immune
response. M1-like macrophages are considered tumour-suppressive since they can induce
tumour cell death directly through macrophage-mediated cytotoxicity or indirectly by insti-
gating an immune response against tumour-associated antigens (TAAs). The alternatively
activated M2 phenotype exhibits active STAT6-IRF4 signalling [18] and exerts wound heal-
ing and repair functions [21]. This is associated with the secretion of extracellular matrix
remodelling molecules and immunosuppressive cytokines, such as interleukin 10 (IL-10)
and transforming growth factor β (TGF-β) [20]. These macrophages enable efferocytosis of
apoptotic cells, clearing them without inducing an immune response [22]. M2 macrophages
also express proliferation-stimulating [23] and pro-angiogenic [10] signals, features that
support tumour growth and metastasis [24–29].

In vivo, the diversity of TAMs is not yet fully explored [30]. Many tumours have
upregulated expression of CD47, a cell surface molecule that interferes with phagocy-
tosis. This indicates that phagocytic processes, associated with the presence of M1-like
macrophages, could be active in the TME, however, they are counteracted by immune
evasive strategies developed through selection pressure [31]. These findings illustrate the
intrinsic functional plasticity of macrophages and their potential to be converted into other
subtypes in response to changing environmental conditions [32]. The phagocytic activity
of M1 macrophages contributes to their antigen-presenting cell (APC) properties, which
gives them a bridging function linking innate and adaptive immune systems [17].

2.2. TAMs Affect Adaptive Immunity in the TME

TAMs can communicate with the adaptive immune system through the production
of immunosuppressive cytokines, including chemokines that recruit regulatory T-cells
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(TREGs). TAMs and TREGs further contribute to local adaptive immunosuppression by
secreting IL-10, which functionally impairs infiltrating T-cells by interfering with their
production of pro-inflammatory IFN-γ [33,34]. In conjunction with IL-10 signalling, T-cell
expression of negative regulators of T-cell activation such as programmed cell death protein
1 (PD-1) is induced [35]. It has been demonstrated that the depletion of TAMs, but not
of normal tissue macrophages, restores tumour-infiltrating cytotoxic T-lymphocyte (CTL)
responses and suppresses tumour progression [9].

In summary, cancer immune evasion is initiated by molecular aberrations in tumour
signalling pathways, which influences local innate and adaptive immune cells. TAMs play
a central role in immune regulation and can adopt divergent phenotypes depending upon
their polarisation status acquired through microenvironmental signalling. Generally, they
support tumour growth through their immunosuppressive properties.

3. Oncolytic Virotherapy

The suppressive characteristics of the TME have provided a rationale for targeting
the immune system, which has led to immunomodulation as a therapeutic strategy. OV-
based immunotherapies are showing great promise for various cancer types, with the first
OVs making it to registration or receiving fast-track designation by the U.S. Food and
Drug Administration (FDA) [36]. Both naturally tumour-selective or oncotropic as well as
engineered OVs are under investigation. The effects of OV application are a reflection of the
biology of natural viruses and their (co-)evolved interactions with the host and its immune
system [37]. OVs, therefore, represent a class of therapeutic agents that can affect anti-cancer
activity through a dual mechanism of action of cell lysis and immune stimulation.

3.1. Oncolysis and Immunogenic Cell Death (ICD)

Tumour cell lysis was long considered the predominant therapeutic mechanism of
OVs. In this setting, constitutive viral replication would be required until each tumour
cell has been eliminated. It was widely assumed that the host’s immune system limits the
clinical efficacy of oncolytic virotherapy by prematurely eradicating the viruses [38]. Now,
the importance of the immune system in its anti-cancer activity is well-recognised [39]. Anti-
viral responses and anti-tumour responses were both found to be induced by OVs. These
immune responses were shown to improve overall therapeutic outcome [40]; survival
advantages seen in immunocompetent tumour models were lost in immunodeficient
and immunosuppressed models [41–43]. The central aim of OV research has, therefore,
shifted from the induction of oncolysis to the induction and stimulation of anti-tumour
immune responses.

Although the activity exerted by OVs extends beyond the infection of individual
tumour cells, some degree of viral replication and oncolysis is required to establish subse-
quent immune activation. Moreover, anti-cancer activities are connected by the propensity
of many OVs to induce immunogenic cell death (ICD), which is characterised by the expo-
sure of damage- or pathogen-associated molecular patterns (DAMPs and PAMPs), and the
release of cytokines, including type I IFNs and IFN-γ [44–47]. In addition to these danger
signals, infected tumour cells will release OV progeny and TAAs, together acting as potent
activators of the immune system.

3.2. Immune-Mediated Mechanisms

The immune responses that OVs induce are two-sided; therapeutic effects are damp-
ened by the immune system naturally responding to deactivate the virus and promoted by
an anti-tumour response. OV replication within the TME confers a three-way interaction
between tumour cells, OVs, and the immune system establishing a critical balance that
determines the therapeutic outcome.

An immediate, humoral host response against the applied OV is mediated by com-
plement activation and pre-existing antibodies against prevalent human viruses—or their
induction through multiple administrations. This could result in neutralisation, opsonisa-
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tion, and rapid clearance of free OV particles and infected cells [48]. Intrinsic, intracellular
defence is induced through pattern recognition receptors (PRRs), such as Toll-like recep-
tors (TLRs), that are activated upon PAMP recognition [49]. TLRs signal via the myeloid
differentiation primary response protein 88 (MYD88), which leads to activation of the tran-
scription factor NF-κB inducing upregulated expression of MHC-I [50] and transcription
of pro-inflammatory cytokines [51]. Virus infection leads to activation of innate immune
cells such as macrophages, DCs and NK cells [52]. Both inflammation and cellular innate
immune mediators in the TME form an extracellular anti-viral barrier, in addition to the
cancer type-dependent density of the extracellular matrix that physically contributes to
the restriction of viral spread [53]. These activated cells affect the lysis of OV-infected
cancer cells as well as provide a link to adaptive immune cells that are recruited by the
inflammatory TME and that react against virus-specific antigens [54]. These responses
directed against the virus may also directly contribute to the anti-cancer activity. It is now
proposed that innate defence, through secretion of pro-inflammatory cytokines, may have
cytotoxic effects on other uninfected tumour cells [55–57]. Moreover, a correlation between
anti-viral and anti-tumour T-cell responses suggests ‘epitope spreading’, where a strong
response against a viral antigen leads to effects against other antigens nearby, indirectly
eliciting an anti-tumour response [58].

Anti-viral responses generally convert immunologic tolerance to active inflammation
in the TME and hence enable the induction of an anti-tumour response. As viral progeny
and TAAs are released into the TME and circulation, these antigens can be taken up and
processed by APCs, leading to antigen presentation to T- and B-cells. This may elicit an
adaptive response against virus-specific antigens as well as against tumour cells expressing
TAAs. Administration of OVs has resulted in tumour regression and disease control in
injected and distant non-injected tumours [47,59–62]. Such abscopal effects are attributed
to a systemic immune response that has been shown to be T-cell-mediated [41,59,62–66].
Accordingly, OVs are considered in situ vaccines.

Thus, the suppressive TME allows for immunomodulation as a therapeutic strategy.
For oncolytic virotherapy, anti-cancer activity was initially thought to consist predom-
inantly through direct oncolytic cell death, rendering anti-viral immune responses an
impediment. With the application of immunocompetent animal models, it was discovered
that OV-induced ICD elicits inflammation, affecting the suppressive TME, which ultimately
enables innate immune cell cytotoxicity and the induction of adaptive T-cell-mediated
anti-tumour responses.

4. OV-Induced Macrophage-Mediated Responses

The balance between anti-viral and anti-tumour immune responses ultimately deter-
mines the anti-cancer efficacy of oncolytic virotherapy. A role in initial anti-viral responses
is mainly attributed to OV-induced innate immunity. The reciprocal impact of OVs on
macrophages is dynamic, rendering the role of macrophage-mediated responses in the
efficacy of oncolytic virotherapy under investigation.

4.1. Obstructive Macrophage Responses

In early response to oncolytic virotherapy, macrophages can have a barrier function
that limits the delivery and spread of OVs from the site of administration to the tumour and
within the TME. Rapidly responding to PAMPs, systemic monocytes and macrophages with
an inflammatory M1 phenotype may mediate an anti-viral reaction [19]. Receptor-mediated,
accelerated clearance is elicited by complement proteins and antibodies opsonising OV
particles, blocking their ability to interact with cellular receptors and facilitating their
recognition by macrophages [67]. Within the tissue, macrophages exhibit anti-viral activity
through the production of type I IFNs, as was substantiated by the observation that local
depletion reduces type I IFN production [68]. Phagocytosis of OVs results directly in the
clearance of OV particles [69] and of infected tumour cells, or indirectly through viral
antigen presentation and induction of adaptive immunity. In glioblastoma multiforme
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(GBM) mouse models, M1 microglia (brain-resident macrophages) have been found to
clear oncolytic vaccinia virus (VV) particles by immediate uptake after intratumoural
delivery [70]. Together, these results led to the notion that enhanced therapeutic efficacy
may require specific suppression or depletion of these innate immune cells – extending
upon the trend of generally restraining the immune system in effectuating anti-viral
immune responses. The use of innate immunomodulatory agents, or the use of OVs as
vectors encoding proteins that directly interfere with anti-viral defence molecules, has been
shown to increase OV replication, spread, and direct oncolysis [71].

A first immunosuppressive agent investigated in conjunction with OVs for general
suppression of the innate immune system is cyclophosphamide (CPA), which is, notably,
also an approved anti-cancer chemotherapeutic. Co-administration was shown to allow
for OV dose reduction [72] and increased the number of infected cancer cells and viral
replication for several OVs in different tumour models [73,74]. CPA pre-treatment has
been found to increase viral propagation, oncolysis and therapeutic efficacy, suppressing
mRNAs of several anti-viral cytokines such as IFN-α/-β, -γ and TNF-α in peripheral blood
mononuclear cells [75], intratumoural phagocyte infiltration and IFN-γ production [76],
as well as B-cell responses [77,78], while increasing CTL infiltrates and inducing type 1
helper T (TH1-)cell immunity on a systemic level [79]. Further, it has been demonstrated
to specifically mediate ablation of the TAM population [80]. The application of CPA in
combination with complement inhibitor cobra venom factor, suppressing both cellular
and humoral innate responses, effectuated enhanced viral infection and propagation of an
oncolytic herpes simplex virus (HSV-)1 within tumours in vivo and consequently increased
the life span of GBM-bearing rats [81]. TGF-β treatment, known to inhibit NK cells,
inflammatory macrophages, and microglia, resulted in enhanced oncolytic HSV-1 titers
and suppression of tumour growth in syngeneic murine GBM models [82].

A similar increase in OV titers in the TME could be achieved by direct depletion of
macrophages and microglia. This depletion has been investigated as a strategy to enhance
the systemic delivery of oncolytic virions [83]. A commonly used approach consists of
the application of clodronate encapsulated in liposomes that are engulfed by phagocytic
cells resulting in intracellular accumulation and apoptosis [84]. Studies on intratumoural
injection of oncolytic HSV-1 in mouse and rat GBM models demonstrated up to a five-
fold augmented viral replication after clodronate treatment [85]. Blocking the integrin
β1 receptor, expressed on the surface of macrophages, has been combined with oncolytic
HSV treatment in breast cancer and glioma xenograft models. This combination decreased
IFN signalling and pro-inflammatory cytokine induction in tumour cells and inhibited
migration of macrophages, resulting in enhanced viral replication and cytotoxicity [86].

These findings suggested that the anti-cancer activity of OVs may specifically be im-
paired by macrophage-mediated responses. However, it is important to consider additional
and alternative interpretations. First of all, the majority of data have been obtained using
murine models, and murine in vivo studies have limited translational applications with
regard to macrophages, as monocytes in mice differ from those in humans [87,88]. Fur-
thermore, many aforementioned studies made use of athymic animal models to study the
effects of immunosuppressive treatments. As a result, their negative impact on (adaptive)
immune responses in oncolytic virotherapy was not exposed. In the case of immunocom-
petent models and administration of chemotherapeutic CPA, there might be pleiotropic
effects on therapeutic efficacy. CPA has direct anti-cancer activity, and high dosages result
in potent cytotoxicity and (innate) immunosuppression—whereas low dosages achieve
immunostimulatory effects that include the depletion of suppressive TREGs and expansion
of antigen-specific T-cells [79,89]. Moreover, independent of dosage, CPA exerts pro-
immunogenic activities on tumour cells, inducing hallmarks of ICD [90]. This potentially
enhances anti-tumour responses [64].

Thus, anti-viral immunity counteracting oncolytic virotherapy efficacy can be medi-
ated by macrophages, but the notion that they predominantly contribute to obstructive
responses could be nuanced by the choice of tumour models and pharmacological adjuvant.
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4.2. Supportive Macrophage Responses
4.2.1. Tumour Infiltration

Upon OV infection of the tumour, intrinsic anti-viral signalling activates the transcrip-
tion factor NF-κB, ultimately leading to the expression of, amongst others, the chemokine
CCL-2, which mediates constitutive macrophage infiltration in the TME [11]. Macrophage
infiltrates are found early after OV administration [42,91]. Infection with oncolytic VV
GLV-1h68 of human colorectal cancer xenografts in mice, adenovirus Delta24-RGD in a
syngeneic mouse GBM model, multiple HSV-1s in orthotopic GBM xenografts, and recombi-
nant orthopoxvirus in mouse models of colon cancer were all shown to induce an increased
TAM population [43,57,92,93]. Treatment with an IL-12–encoding HSV-1 led to an enhanced
influx of both activated macrophages and T-cells when compared with control OVs and
improved survival in a murine glioma model [94]. The pro-inflammatory environment
mediated by OVs could be potentiated by interactions with infiltrated macrophages [95,96],
supporting OV therapy as substantiated by immune cell depletion studies [97]. In im-
munocompetent mouse models of renal adenocarcinoma and melanoma treated with the
murine oncolytic adenovirus dlE102, tumour volumes were significantly reduced, and a
pro-inflammatory TME was induced. They presented an increased infiltration of TAMs, NK
cells, and lymphocytes, also harbouring fewer tumour-infiltrating lymphocytes expressing
PD-1, a major regulator of T-cell exhaustion [98]. In recurrent GBM patients treated with on-
colytic H-1 poliovirus (PV), markers of microglia and macrophage activation were detected
in infected tumours [99]. In GBM patients treated with oncolytic adenovirus Delta24-RGD,
cerebrospinal fluid samples showed cytokine levels indicative of an inflammatory TME,
leading to further recruitment of immune cells and inflammation [100].

In summary, constitutive macrophage recruitment to the TME is regulated by the
expression of CCL-2, which is induced by pro-inflammatory anti-viral signalling pathways.
This macrophage infiltration has been observed in multiple in vivo tumour models treated
with various OVs.

4.2.2. Phenotypic Shift

Conventional therapies have been observed to further polarise macrophages towards
an M2 phenotype [101]. This plasticity of resident and newly recruited macrophages in
the TME could also be utilised to target and polarise TAMs towards an M1 phenotype,
resulting in an anti-tumour environment [102]. Targeting TAMs through the inhibition
of colony-stimulating factor-1 receptor (CSF-1R), a key macrophage signalling pathway,
has been shown to counteract macrophage-mediated immune suppression by inhibiting
the differentiation, proliferation and survival of M2 macrophages [103,104]. Since the
presence of OVs has been demonstrated to yield an inflammatory TME, the notion was
that virotherapy could be used as an inducer of M1 signalling in macrophages [105]. A
phenotypic shift can be achieved by OVs through concerted action: the presence of OV
particles contributes to M2 marker downregulation and soluble factors secreted from
OV-infected cancer cells induce M1 marker upregulation [100]. M2-associated IRF4 and
M1-associated IRF5 compete for the MYD88 complex that is also an adaptor involved in
all anti-viral TLR signalling [106,107]. Through this pathway, PAMPs binding to TLRs can
induce a shift in phenotype; macrophages are suggested to detect viral genetic elements
by TLR9, OV-infected tumour cells by TLR2, activating IRF5 which, via the MYD88-IRF5
complex, upregulates NF-κB, IRF5, and IRF7. This ultimately inhibits M2-related signalling
and leads to M1-associated gene transcription [100,108].

It has been demonstrated that tumour-resident macrophages increase in number and
gain more M1 characteristics upon treatment with OVs in divergent mouse models, in-
cluding oncolytic adenovirus in orthotopic GBM models [43,109] and anaplastic thyroid
carcinoma xenograft models [110], as well as oncolytic HSV-1 in athymic and syngeneic
models for GBM, breast cancer, and melanoma [57,97,111–113]. Moreover, tumour cell
death mediated by the oncolytic mumps and measles paramyxoviruses was shown to
be affected by monocyte-derived macrophage responses in murine breast cancer models
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irrespective of the polarisation state of the initial TAM population [114]. Immune cell
depletion studies in murine GBM models demonstrated that these macrophages are essen-
tial for achieving therapeutic effects [97]. In clinical trials in GBM patients, Delta24-RGD,
autonomous protoparvovirus H-1, and vocimagene amiretrorepvec (Toca 511) treatments
were shown to induce a phenotypic shift in GBM TAMs, accompanied by pro-inflammatory
cytokine secretion [100,115,116].

Recombinant OVs encoding immunomodulatory molecules provide an approach to
augment this phenotypic shift. Polarisation towards M2 macrophages can be directly
impaired or reversed, with an IFN-encoding [117] or soluble TGF-β receptor-encoding on-
colytic viral vector. In human breast cancer bone metastases in nude mice, M2 macrophage
activity and tumour progression were reduced using this approach [118]. Oncolytic vi-
rotherapy treatment of a mouse GBM model combined with an anti-PD-1 and an anti-
checkpoint blockade of CTL antigen 4 (CTLA-4) immunotherapy was associated with both
macrophage influx and M1-like polarisation and yielded synergistic therapeutic activity for
which macrophages were required [97]; these immunostimulatory M1 phenotypes enable
the induction of other adaptive immune responses.

Thus, the phenotypic spectrum of macrophages is plastic and dependent on signals
from the microenvironment. TAMs have been shown to downregulate M2-associated and
upregulate M1-associated markers upon OV treatment, which can be substantiated by the
molecular pathways involved in anti-viral signalling and their phenotypic plasticity.

4.2.3. Phagocytosis and Antigen Presentation

The OV-induced release of PAMPs, DAMPs, and cytokines into the TME promotes the
maturation of APCs [119] such as M1 macrophages [57]. Maturation yields upregulated
MHC-II, co-stimulatory molecules, and chemokine receptors. TAMs in a Delta24-RGD-
treated GBM patient have been found to contain hexon peptides, one of the viral capsid
proteins [100]. It has been demonstrated that macrophages are resistant to wild-type
adenoviral replication [120], and similarly, TAMs have been shown to be non-permissive
to oncolytic adenoviral replication. Thus, the observed hexon-positivity of these TAMs
was presumably caused by phagocytosis. Co-culturing of in vitro polarised macrophage
phenotypes with Delta24-RGD–infected tumour cells demonstrated that M1 macrophages
have greater phagocytosis capacity [100], suggesting a synergistic influence of OV-induced
phenotypic shift, phagocytosis, and maturation, after which digested peptides can be
loaded onto MHC-II. CD169+ macrophages, rather than DCs, have been identified in
T-cell lymphoma mouse models as being essential APCs for the induction of CD8+ T-cell–
mediated anti-tumour immune responses [121].

The inflammatory TME mediates the recruitment and activation of T-cells [42,47,91], to
which antigens can be presented either in the TME or after lymphoid migration [122–124].
M1 macrophages are related to inducing a TH1-cell response, and subsequently, activated
CD8+ T-cells become CTLs, that have the ability to migrate to sites of tumour growth.
This adaptive immune response has been associated with T-cell clones circulating and
inducing lytic cell death of TAA-expressing cancer cells, both infected and uninfected [125],
facilitated by the upregulation of MHC-I on cells with active NF-κB signaling. It has
also been associated with an immune-mediated bystander effect, meaning that the lo-
cal release of cytotoxic molecules by CTLs might induce the death of adjacent cancer
cells [126]. This T-cell–mediated anti-tumour efficacy has been confirmed by studies apply-
ing cytokine-armed oncolytic HSV-1 on neuroblastoma using syngeneic models compared
to athymic mice [127]. Priming of CD8+ T-cells can be further enhanced by antagonising
tumour-induced suppression of phagocytosis with antibodies against CD47, facilitating
antigen presentation by macrophages [128]. An oncolytic VV engineered to counteract anti-
phagocytic CD47, replicated in tumour cells and redirected both M1 and M2 macrophages
to tumour cells in vitro. Treatment of an immunocompetent osteosarcoma mouse model
with this OV resulted in a significant survival advantage compared to the controls [129].
Oncolytic HSV-1 armed with an MHC-like molecule expression cassette directly stimulates
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macrophage-mediated antigen processing and presentation and accumulation of activated
T-cells [130].

Taken together, macrophages shifted to an M1 phenotype after OV treatment can,
through phagocytosis, mediate the (cross-)presentation of antigens released by ICD to elicit
an adaptive immune response. This results in systemic, durable anti-tumour immunity, as
observed in divergent tumour models.

4.2.4. Viral Transport and Therapy Monitoring Tool

The extent and type of host anti-viral responses to OVs are primarily determined
by the route of administration. Delivery preference is dependent on tumour type and
OV species, but often, OVs are directly delivered through intratumoural injection [131].
Nonetheless, tumours are not always accessible, and systemic delivery may be required.
Systemic administration of OVs is relatively simple, reaching multiple tumour sites, po-
tentially treating or preventing metastases. However, this application leads to rapid
recognition and elimination of the OVs by the immune system, which has been shown with
oncolytic measles virus (MV) [132], Newcastle disease virus (NDV) [133], VV [134], and
adenovirus [135]. Clearance could be due to humoral responses, but hepatic and splenic
sequestration and absence of extravasation might also impair delivery and spread [53].

This barrier could be overcome using technologies such as liposomes and exosomes
to mask the OVs and evade recognition by the immune system [136,137]. Another strategy
is to mediate transport of OVs with carrier cells, which would confer both protection from
neutralisation and opsonisation as well as tumour homing, without losing the biologi-
cal activity of either virus or carrier cell. Various cell types have been studied as poten-
tial virus carriers, including irradiated human teratocarcinoma cells for HSV-1716 [138],
neural stem or precursor cells for oncolytic HSV-1 rRp450 [139], adenovirus CRAd-S-
pK7 [135,140,141] and orthopoxvirus CF33 [142], mesenchymal stem cells for oncolytic
MV [143], adenovirus [144,145] and HSV [146], blood and hepatic mononuclear cells as
well as lymphokine-activated (immature) DCs and NK cells for reovirus [147–149], and
a T-cell line for Delta24-RGD [150]. They are all hypothesised to home to the TME after
infection or loading ex vivo. Virus particles have been found to also naturally associate
with circulating cells after systemic delivery [151]. The potential of carrier cells can vary
upon their permissiveness to OV infection, natural capacity to home to tumour growth
sites, ability to protect OVs from immune detection in the circulation, and transmission
of OV particles to cancer cells [37]. More recently, macrophages have also been found to
mediate OV transport [152]. They can be manipulated using a hypoxia-regulated construct
to control oncolytic adenovirus replication. Specificity is achieved by macrophages homing
to tumour-associated hypoxia upon which OV replication is activated [153]. They are
also infected ex vivo [154] and reinfused. Notably, monocytes and macrophages have
been found to capture circulating reovirus through antibody binding in vivo [155]. As
macrophages naturally migrate to areas of tissue destruction and are actively recruited
to the TME, this process contributes to the tumour targeting of systemically delivered
OVs [10,156,157].

Lastly, a recent study revealed that subsets of monocytes carrying tumour- or tissue-
specific proteins in their phagolysosomes could be detected in the blood of brain tumour
and ischemic stroke patients [158]. These assumed recirculating tissue macrophages de-
rived from areas of tissue damage could, in the case of virotherapy, also carry OV-derived
proteins [100]. This approach may, in the future, offer a tool to monitor the presence
and duration of OV replication in the tumour. Together, these findings on macrophage-
mediated transport of virus particles or proteins to and from areas of tissue damage open
new avenues for the delivery and monitoring of oncolytic virotherapy.

5. Conclusions and Future Directions

Based on current understanding, there is a multifaceted role for macrophage-mediated
responses in the efficacy of oncolytic virotherapy as a cancer treatment (Figure 1).
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Figure 1. Oncolytic viruses (OVs) exert not only oncolysis, but also immune responses in which
macrophages are important mediators involved in a number of key processes. Through intratumoural
injection, systemic administration, or via cellular carriers (1), delivery of OVs to the immunosuppres-
sive tumour microenvironment (TME) can be established. This is restricted by innate phagocytic
activity of macrophages through clearance of virus particles and virally infected cells (2). Cancer
cell infection and replication lead to immunogenic oncolysis, resulting in viral progeny spread,
inflammation and antigen release. Cytokines cause a macrophage shift from a tumour-supportive
M2 towards a pro-inflammatory M1 phenotype (3), sustaining inflammation. More immune cells are
recruited and infiltrate the TME (4), enabling macrophage-mediated antigen presentation to T-cells
(5). This adaptive immune response is multifaceted and can entail both a supportive response against
tumour-associated antigens (TAAs), resulting in cytotoxic cancer cell death (6), and an obstructive
response against viral antigens, facilitating T- and B-cell clearance of infected cells and virus particles
(7). Macrophages may also return to the circulation carrying tumour- and virus-derived proteins and
offer a tool for monitoring oncolytic virotherapy (8).
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The presence of TAMs is generally associated with a poor prognosis of human cancer
patients by having an immunosuppressive influence in the TME. In oncolytic virotherapy
treatment, macrophages have historically been considered to predominantly contribute to
anti-viral responses, which could be nuanced and partly explained by the applied tumour
models and assessed pharmacological adjuvant. At present, the insight is that macrophages
also mediate virotherapy-supporting responses. They may play a crucial role in establishing
adaptive anti-tumour immunity. In a variety of OV-treated tumours, macrophage infiltrates
are polarised towards the pro-inflammatory, tumour-suppressive M1 phenotype. This can
potentiate oncolytic virotherapy treatment through phagocytosis of (infected) cancer cells
and subsequent antigen presentation, enabling a T-cell–mediated anti-tumour immune
response. More recently, systemic macrophages have been found to additionally facilitate
viral transport by the capturing of circulating OVs and the transmission of OV particles
to tumour sites. TAMs also return to the bloodstream carrying tissue-derived proteins
after completing scavenging activities in damaged tissue, which potentially enables the
monitoring of OV replication in the TME. The increasing number of identified macrophage
responses implies that understanding the interaction between macrophages and viruses in
oncolytic virotherapy is not yet complete and is continuously evolving.

The diverse and dynamic aspects of OV infection-related immune responses have
led to discordant findings on the role of macrophage-mediated responses in oncolytic
virotherapy efficacy. Anti-viral and anti-tumour responses often encompass overlapping
immunological pathways. However, modulating the equilibrium between these responses,
aiming to maximally dampen anti-viral responses while retaining anti-tumour responses, is
challenging and poorly understood but might be central to improve oncolytic virotherapy
effectiveness. Specific pharmacological suppressors of the innate immune system could, for
instance, be applied at low doses prior to, or at the time of, OV administration, transiently
exerting their effects in interfering with anti-viral responses [129,159–161]. This approach
is currently being investigated in a clinical phase I trial testing oncolytic HSV-1 rQNestin
with single-dose CPA pre-treatment [162]. Valproic acid, an FDA-approved anti-epileptic
agent with histone deacetylase inhibitory function, is also in development for treating
cancer and prevents the transcriptional activity of IFN-stimulated genes [91]. Furthermore,
while commonly applied clodronate liposomes non-specifically deplete macrophages, also
disabling their indirect anti-cancer activity [111], a novel, more selective agent could,
for instance, interfere with systemic macrophage function or characteristic phagocytosis
pathways in receptor-mediated viral clearance. However, insights suggest an important role
for macrophages as cellular carriers of OVs and indicate that initial restriction of systemic
macrophage functions may also have unpredicted negative effects on therapeutic outcomes.

Over time, sufficient inflammation must be permitted and, when the restriction on
the innate immune system has been removed, an anti-tumour response can be developed.
Viral pharmacokinetics, pharmacodynamics, and kinetics of innate immune suppression
in relation to the number of initial viral replication cycles require further investigation,
ultimately supported by mathematical modelling of interactions and making quantitative
and substantiated predictions [163]. Moreover, it needs to be elucidated whether this
approach would compromise the safety profile. When optimised, this strategy could
provide long-term immune-mediated anti-cancer activity.

As might be perceived, there are challenges in the broad clinical implementation of
oncolytic virotherapy. In prospective preclinical studies and multi-institutional trials, it
is desired – and potentially required, that (clinical) response assessments be standardised
to enable comparison. To investigate the role of the innate and adaptive immune system
in therapeutic efficacy, standardised analysis of immune infiltrates, circulating immune
cells, intratumoural viral replication, and (degree of) ICD might be relevant. Knowing the
key players during OV infection in the context of the TME will be critical for developing
optimally effective oncolytic virotherapies.
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