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Extensive tree mortality from insect epidemics has raised concern over possible effects
on soil biogeochemical processes. Yet despite the importance of microbes in nutrient
cycling, how soil bacterial communities respond to insect-induced tree mortality is
largely unknown. We examined soil bacterial community structure (via 16S rRNA gene
pyrosequencing) and community assembly processes (via null deviation analysis) along a
5-year chronosequence (substituting space for time) of bark beetle-induced tree mortality
in the southern Rocky Mountains, USA. We also measured microbial biomass and soil
chemistry, and used in situ experiments to assess inorganic nitrogen mineralization
rates. We found that bacterial community structure and assembly—which was strongly
influenced by stochastic processes—were largely unaffected by tree mortality despite
increased soil ammonium (NH+

4 ) pools and reductions in soil nitrate (NO−
3 ) pools and net

nitrogen mineralization rates after tree mortality. Linear models suggested that microbial
biomass and bacterial phylogenetic diversity are significantly correlated with nitrogen
mineralization rates of this forested ecosystem. However, given the overall resistance
of the bacterial community to disturbance from tree mortality, soil nitrogen processes
likely remained relatively stable following tree mortality when considered at larger spatial
and longer temporal scales—a supposition supported by the majority of available studies
regarding biogeochemical effects of bark beetle infestations in this region. Our results
suggest that soil bacterial community resistance to disturbance helps to explain the
relatively weak effects of insect-induced tree mortality on soil N and C pools reported
across the Rocky Mountains, USA.
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INTRODUCTION
Bark beetles (Curculionidae: Scolytinae) have killed billions of
coniferous trees across North America and Europe in recent epi-
demics (Meddens et al., 2012; Kärvemo et al., 2014; Latifi et al.,
2014). Extensive tree mortality following various types of forest
disturbance has been linked to long-lasting changes in terrestrial
biogeochemical cycles (Turner, 2010). Bark beetle-induced tree
mortality can affect soil properties in a number of ways, with sev-
eral of the more commonly reported pathways including: (1) the
addition of large quantities of nitrogen (N) to the forest floor in
dropping needles (Morehouse et al., 2008; Griffin et al., 2011); (2)
rapid cessation of root exudates leading to decreased concentra-
tion of carbon (C) substrates in soils under dead and dying trees
(Xiong et al., 2011); and (3) increased soil moisture and inorganic
N concentration as trees cease transpiration and N uptake, respec-
tively (Morehouse et al., 2008; Griffin et al., 2011; Xiong et al.,
2011). These biogeochemical changes can enhance mineraliza-
tion rates, increasing the potential for losses of soil C and N from
the system (Turner, 2010; Hicke et al., 2012; Moore et al., 2013;
Campbell et al., 2014). Thus, concern over possible impacts of

bark beetle-induced tree mortality on terrestrial C and N pools has
motivated a number of recent biogeochemical models and studies
(e.g., Kurz et al., 2008; Morehouse et al., 2008; Xiong et al., 2011;
Edburg et al., 2012; Griffin and Turner, 2012; Moore et al., 2013;
Rhoades et al., 2013). Yet, despite the primary roles of microbes in
biogeochemical processes, how soil microbial community struc-
ture is affected by extensive insect-induced tree mortality remains
poorly understood (Štursová et al., 2014).

Microbial community structure can have important influences
on ecosystem processes (Monson et al., 2006; Reed and Mar-
tiny, 2007; Van der Heijden et al., 2008; Strickland et al., 2009),
with shifts in community structure potentially altering ecosystem
functioning (Schimel and Gulledge, 1998; Fraterrigo et al., 2006;
Schimel and Schaeffer, 2012; Philippot et al., 2013). Meta-analyses
of disturbance effects on microbial communities have found they
are sensitive to a range of disturbance types, although generaliza-
tions may be difficult to make because of publication bias against
negative results (Allison and Martiny, 2008; Griffiths and Philip-
pot, 2012; Shade et al., 2012). Also, a shift in both the structure and
function of soil fungal communities due to tree mortality from the
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European spruce bark beetle, Ips typographus, has been reported
(Štursová et al., 2014). Taken collectively, these results suggest that
changes in the structure of soil bacterial communities are a likely
outcome of extensive tree mortality during bark beetle epidemics
across the USA.

Given reported changes in soil chemistry following bark bee-
tle infestations (Morehouse et al., 2008; Clow et al., 2011; Xiong
et al., 2011; Griffin and Turner, 2012; Keville et al., 2013), bark
beetle-induced tree mortality might alter the structure of soil
bacterial communities via environmental filtering. Alternatively,
stronger relative influences of stochastic processes in the assem-
bly of soil bacterial communities have been noted following
disturbance (Ferrenberg et al., 2013). An increased influence
of stochastic processes could decouple microbial community
responses from documented changes in soil chemistry while still
leading to shifts in community structure via dispersal, ecologi-
cal drift or historical contingencies (Nemergut et al., 2013). To
understand how tree mortality during bark beetle epidemics
affects soil bacterial communities in relation to soil proper-
ties and N cycling, we examined bacterial community structure
and community assembly processes along a 5-year chronose-
quence of infestation by the mountain pine beetle (Dendroctonus
ponderosae). The chronosequence included living control trees
(year zero) and trees killed by mountain pine beetles one to
4 years prior to our study (years one–four of the chronose-
quence). In addition to characterizing bacterial communities,
we also measured soil chemical properties of all samples, and
completed experimental assessments of N mineralization via in
situ incubations with soils from a subset of samples in each
year of the chronosequence. We tested three primary hypothe-
ses: (1) tree mortality caused a shift in bacterial community
structure; (2) the relative influence of stochastic vs. determinis-
tic processes on bacterial community assembly changed over time
following tree mortality; and (3) tree mortality led to increased
soil N concentrations and N mineralization rates. Finally, we
used statistical models to examine the relationships between
edaphic factors, soil bacterial community structure and soil pro-
cesses across the temporal disturbance gradient presented by the
chronosequence.

MATERIALS AND METHODS
STUDY SITE AND SOILS COLLECTION
Our study was performed on soils from a mature pine forest at
the University of Colorado’s Mountain Research Station, 2900 m
above sea level and approximately 11 km east of the Continental
Divide in CO, USA (40◦N; 105◦W). The climate and soils of the
area were described by Xiong et al. (2011), Mitton and Ferrenberg
(2012), and Duhl et al. (2013), and factors underlying bark beetle-
induced tree mortality in the site were described by Ferrenberg and
Mitton (2014) and Ferrenberg et al. (2014). Work by Monson et al.
(2006) and Weintraub et al. (2007) found soil microbial activity in
nearby field sites to be greatest under snowpack during spring
months. Thus we completed soil sampling in March of 2011, prior
to snow melt. Previous work in nearby conifer forests does not
indicate the presence of strong, small-scale spatial structuring of
soil bacterial communities suggesting minor influences of com-
munity autocorrelation within this system (e.g., Ferrenberg et al.,

2013). Nevertheless, we selected trees that were scattered across a
2.5 hectare site with an attempt to maximize the distance among
trees. All sampled trees were separated by a minimum of 3.5 m
and a maximum of 150 m.

All trees used in our study had uniquely numbered tags linking
them to a forest demography study (see Ferrenberg et al., 2014)
that established dates of bark beetle attack and subsequent tree
mortality. Tree mortality from bark beetles occurs within a few
weeks of mass attack and can be determined from notable changes
in needle color (green fades to yellow and red), but does not cause
substantial needle drop until the following year (Figure 1). We
used trees from five temporal categories of bark beetle-induced
mortality, which were considered as years 0, 1, 2, 3, and 4 of
our 5 year chronosequence. Year 0 corresponded to samples col-
lected from under living trees that were never attacked by bark
beetles (we considered these samples as controls), while years 1
through 4 represented samples collected from under trees killed
by bark beetles 1–4 years prior to sampling. Over a two day
period, we collected a total of 50 soil samples (N = 50) which
were equally partitioned (10 samples in each) across the 5 years of
the chronosequence. Each soil sample was a composite of three,
130.5 cm3 cores from the top 5 cm of mineral soil (with all lit-
ter and visible organic materials removed) collected roughly 1 m
from the base of mature limber pines (Pinus flexilis, see Ferren-
berg and Mitton (2014) for range and life history descriptions).
Following field extraction, all samples were transported on ice,
sieved through 2 mm mesh, and a 10 g portion was stored at
−80◦C for DNA extraction and the remainder at 4◦C for biogeo-
chemical analyses. Soils were resampled in June–July 2011 under
25 of the original 50 trees, with five samples from each year of
the mortality chronosequence (N = 25) used for in situ exper-
iments of N mineralization rates and nitrate pools as described
below.

DNA EXTRACTION, PYROSEQUENCING, AND SEQUENCE ANALYSIS
Deoxyribonucleic acid was isolated using the MO BIO Power
Soil DNA Extraction kit (MO BIO Laboratories, Carlsbad, CA,
USA), and a fragment of the 16S rRNA gene encoding the V1–V2
region was amplified using the primers and PCR steps and pro-
gram described in Nemergut et al. (2010), Knelman et al. (2012),
and Ferrenberg et al. (2013). Three replicate PCR products were
quantified, pooled and cleaned using MO BIO UltraClean-htp
PCR Clean-up kits and 16S rRNA gene amplicons were sent to
the Environmental Genomics Core Facility (Engencore) at Uni-
versity of South Carolina for 454 Life Sciences GS FLX Titanium
pyrosequencing.

Pyrosequencing data were screened with the QIIME (Quan-
titative Insights Into Microbial Ecology) toolkit (Caporaso et al.,
2010) with quality score >25, sequence length >200, and <400,
maximum homopolymer of 6, 0 maximum ambiguous bases, and
0 mismatched bases in the primer. OTUs (Operational Taxonomic
Units) were denoised using Denoiser (Reeder and Knight, 2010)
and were picked at the 97% identity level using UPARSE (OTU
clustering pipeline; Edgar, 2013). The taxonomic identity of OTUs
was assigned using RDP Classifier 2.2 (Wang et al., 2007) with the
Greengenes core reference set (DeSantis et al., 2006) in QIIME.
Samples were rarefied by randomly subsampling OTUs in QIIME
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FIGURE 1 | A recent epidemic of the mountain pine beetle

(Dendroctonus ponderosae) has led to the deaths of billions of pine

trees across western North America. Rapid warming has allowed the
beetle to expand its elevational and latitudinal ranges. This photo shows
trees that were attacked 100s of meters above the beetles’ historical
elevational range limits in CO, USA. The trees with red needles were
attacked during the previous growing season; recently attacked trees have
not yet begun to fade (photo by Jeffry B. Mitton).

so that each library contained 1100 sequences (the fewest found
in a single sample). Quality sequence data were not obtained
from one sample in year four of the mortality chronosequence
which was excluded from all community analyses. QIIME was
also used to generate a UniFrac distance matrix (Lozupone and
Knight, 2005) and measures of phylogenetic diversity (PD; Faith,
1992). Sequences and mapping data are available from figshare
(Knelman, 2014a,b).

SOIL ANALYSES
Soil moisture, pH, total %C, and %N, C:N ratio, NH+

4 , dissolved
organic carbon (DOC), and microbial biomass were quantified for
all 50 samples. Soil moisture was determined with the gravimetric
method after drying soils at 60◦C for 48 h. Soil pH was measured
from a 1:5 ratio of soil to distilled and de-ionized H2O, and total
C and N determined using combustion as described by Knelman
et al. (2012). Measures of NH+

4 , DOC, and microbial biomass were
determined via extractions from 10 g of soil with 0.5 M K2SO4 as
described in Ferrenberg et al. (2013). NH+

4 concentrations were
determined using the sodium salicylate method and absorbance
at 650 nm on a microplate reader (Mulvaney, 1996). DOC was
determined using a TIC/TOC analyzer, with DOC = EC/kEC
where EC = extractable C from soil and kEC = extractable
C from microbial biomass which was estimated at 0.45 as in
Beck et al. (1997). Microbial biomass C was calculated using
the chloroform fumigation method (Brookes et al., 1985; Beck
et al., 1997) with the procedures described in Ferrenberg et al.
(2013). Soil chemistry data are available from figshare (Knelman,
2014b).

To evaluate the influence of tree death on N cycling, net N
mineralization rates and concentrations of NO−

3 in ion-exchange
resin bags were measured in soils in June–July 2011. Nitrogen

mineralization rates were assessed via in situ buried-bag incuba-
tion experiments. Soil cores (3.5 cm diameter × 10 cm depth) were
vertically split and sealed in plastic bags with one half returned
to the mineral soil layer and covered with loose soil for 35 days,
and the other half used for laboratory analysis to determine start-
ing inorganic N concentrations using the procedures described in
Bowman et al. (2006). Inorganic N leaching below the understory
plant root zone of each sampled plot (N = 25) was measured
using two ion-exchange resin bags (Binkley and Vitousek, 1989)
inserted at a depth of 15 cm under undisturbed soils and left
in place for 41 days prior to removal as described in Bowman
et al. (2006). Bags were made of fine mesh nylon surrounded by
a plastic cylinder to maintain their structure (4.9 cm2 × 2.5 cm
tall) and contained mixed-bed ion exchange resins (J. T. Baker,
IONAC NM-60 H+/OH−; Phillipsburg, NJ, USA). NH+

4 -N and
NO−

3 -N from the buried incubation and resin bags was extracted
using 2 mol/L KCl and analyzed using a Lachat QuikChem 8000
Spectophotometric Flow Injection Analyzer and a Dionex DX 500
System IonPac AS11 Ion Chromatograph (Sunnyvale, CA, USA),
respectively.

DATA ANALYSES
We compared community structure across years of the tree mortal-
ity chronosequence using multi-response permutation procedures
(MRPP, a non-parametric method of comparing groups sim-
ilar to PERMANOVA) and used non-metric multidimensional
scaling (NMDS) to visualize the comparisons of community
structure. Both MRPP and NMDS were completed on Bray–
Curtis distance matrices in PC-ORD (McCune and Mefford,
2011). After verifying that our data met test assumptions of
normality via Shapiro–Wilk tests, we compared measures of
α-diversity (OTU richness, Pielou’s evenness, and PD) using one-
way ANOVA followed by Tukey’s HSD means comparisons. To
avoid violating assumptions of sample independence, we com-
pared pairwise community β-diversity (Bray–Curtis dissimilarity)
and pairwise UniFrac values using PERMANOVA followed by
the permutation method of ‘betadisper’ in the vegan package
for the R platform (R Development Core Team, 2011; Oksanen
et al., 2013). Comparisons of soil chemistry from bacterial soil
samples and from nitrogen resin bags and mineralization exper-
iments were also performed via one-way ANOVA followed by
Tukey’s HSD means comparisons (Kruskal–Wallis test followed
by Steel-Dwass means comparisons when test assumptions were
not met).

We examined possible links between soil bacterial community
structure and net N mineralization from incubation experiments
(which were completed in situ using soils under five of the 10
trees in each year of our chronosequence, N = 25) via mul-
tiple regression. We considered N mineralization values from
all 25 samples as the dependent variable, and used stepwise
fitting procedures to determine a best fit model using micro-
bial biomass, bacterial OTU Shannon diversity (H′), bacterial
PD, and soil environmental measures (soil moisture, soil tem-
perature, pH, %C, %N, C:N ratio, DOC, NH+

4 ) as possible
independent variables. The best fit model was selected via com-
parisons of Bayesian information criterion (BIC) values, with
the lowest BIC score used to find the model that explained the
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most variation in N mineralization with the smallest number
of retained factors (environmental and/or microbial). Indepen-
dent variables retained in the best fit model were examined for
collinearity via linear regressions, which revealed no significant
relationships.

To assess possible correlations between individual environmen-
tal factors (%C, %N, C:N, NH+

4 , DOC, pH, and soil moisture)
and the soil bacterial community, we used Mantel tests to
measure associations of the OTUs (determined at 97% simi-
larity) to each of the seven soil environmental variables (i.e.,
OTUs of each chronosequence year compared to each vari-
able in an individual Mantel test). Mantel tests were completed
using 5000 runs with Bray–Curtis distance matrices for bacterial
communities and a Euclidean distance matrix for each envi-
ronmental factor, with a Bonferonni sequential correction used
to control for false discovery rate. Additionally, we used the
null deviation approach of Chase and Myers (2011) to exam-
ine the assembly processes structuring bacterial communities.
The null deviation method randomly assembles communities
from the regional species pool (all OTUs found among sam-
ples) to assess how greatly the observed β-diversity patterns,
based on presence-absence data of observed taxa, deviate from
stochastic assembly. This approach disentangles the dissimilar-
ity in community composition across samples from variation
linked to changes in α- (local) and γ- (regional) diversity (Chase
and Myers, 2011). Controlling for changes in local diversity
allows us to assess whether changes in β-diversity result from
the relative influences of stochastic or deterministic processes.
As in Ferrenberg et al. (2013), we calculated null deviation as
the relative difference of the observed β diversity from the
null-model β-diversity, (βobs-βnull)/ βnull, with β-diversity mea-
sured as Sørenson-Czekanowski binary dissimilarity. Under the
null model, expected β-diversity for each sample was calculated
from 10000 stochastically assembled communities, and gamma
diversity was calculated from the OTU (species) pools within
all years of the tree mortality chronosequence. Because the
community matrix used in the null devation model is in the
form of presence-absence data, taxa with very low abundances

(<0.5% of sequences per community) were removed before anal-
yses to avoid the over-weighting of rare taxa (Ofiţeru et al.,
2010).

RESULTS
BACTERIAL COMMUNITY STRUCTURE AND DIVERSITY
Following rarefaction to an equal sequencing depth of 1100, we
found 3126 unique OTUs across all samples of our chronose-
quence (Table 1). There were an average of 1825 OTUs in bacterial
communities of each year of the chronosequence, and 736 OTUs
shared among all years. We found 124, 139, 160, 178, and 158
unique OTUs across years zero to four of the chronosequence,
respectively.

We observed no significant difference in overall community
structure among any years of the chronosequence (accessed via
MRPP, Figure 2) or among proportional abundances of major
phyla/subphyla (accessed via χ2 tests, Figure 3). Tree mortality
caused a marginally significant increase in bacterial PD [Kruskal–
Wallis χ2(4) = 8.22, P = 0.084], but did not alter any additional
measures of alpha (α) diversity [sample level OTU richness and
Shannon diversity (Table 1)]. Tree mortality did not signifi-
cantly influence measures of β-diversity (pairwise dissimilarity
of samples) such as pairwise Bray–Curtis and UniFrac measures
(Table 1).

COMMUNITY STRUCTURE AND CORRELATIONS WITH ENVIRONMENT
We found relatively few associations (3 out of 35 possible combi-
nations) between bacterial community structure and soil chem-
istry/environmental variables across the tree mortality chronose-
quence when examined via Mantel tests. Specifically, we found
the bacterial communities from the first year after tree mortal-
ity were significantly associated with soil moisture (r = 0.58,
P = 0.024) and pH (r = 0.45, P = 0.011); while communities
from the second year after tree mortality were significantly associ-
ated with extractable ammonium (NH+

4 ) concentrations (r = 0.54,
P = 0.006).

Using the null deviation approach to assess community assem-
bly processes (Chase and Myers, 2011), we assembled communities

Table 1 | Soil microbial biomass and measures of bacterial gamma (γ), alpha (α), and beta (β) diversity from a 5-year chronosequence of bark

beetle-induced tree mortality.

Years since tree

mortality

Biomass

(mg/g soil)

γ-diversity PD (α) Shannon H’ (α) Bray–Curtis

dis. (β)

UniFrac (β)

0 0.23 (±0.02) 1763 46.3 (±1.07) 8.7 (±0.10) 0.67 (±0.01) 0.23 (±0.010)

1 0.24 (±0.04) 1808 47.3 (±1.40) 8.7 (±0.12) 0.68 (±0.01) 0.24 (±0.005)

2 0.30 (±0.04) 1857 47.7 (±1.43) 8.7 (±0.15) 0.69 (±0.01) 0.24 (±0.014)

3 0.23 (±0.02) 1923 48.1 (±0.95) 8.9 (±0.10) 0.68 (±0.01) 0.22 (±0.012)

4 0.25 (±0.02) 1773 50.7 (±0.56) 8.9 (±0.10) 0.69 (±0.01) 0.24 (±0.017)

P -value >0.10 – 0.084 >0.10 >0.10 >0.10

Year 0 = unaffected control trees. Microbial biomass was measured as microbial C from fumigation experiments, γ-diversity indicates the total number of bacterial
OTUs found among all soil samples form a given chronosequence year. Alpha and beta diversity measures are calculated as the mean values from all samples in a
given chronosequence year: PD indicates the bacterial phylogenetic diversity, H′ shows the Shannon-Weiner diversity index, Bray–Curtis dissimilarity is the pairwise
Bray–Curtis dissimilarity index, UniFrac values are weighted by species abundances. Values shown in the table are untransformed means ( ±1 SE).
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FIGURE 2 | Non-metric multidimensional scaling ordination based on

Bray–Curtis distances comparing the composition of bacterial

communities from soils located along a 5-year chronosequence of tree

mortality from bark beetle infestations. Chronosequence year zero is
composed of soils located near the trunks of non-attacked, living trees.
Years one through four of the chronosequence are composed of trees
attacked and killed by bark beetles 1 to 4 years prior to soil sampling.

FIGURE 3 | Proportional abundances of bacterial phyla along a 5-year

chronosequence of tree mortality from bark beetle infestations.

Candidate phyla (recently identified phylogentic groups awaiting further
description) were grouped together as ‘Other.’

in silico from the regional species pool to determine if the observed
β-diversity patterns deviated from purely stochastic assembly.
Null deviation values can range from zero to one, with values
closer to zero indicating less deviation from random, suggesting
a greater relative influence of stochastic processes. Alternatively,
values closer to one (±1) are suggestive of greater deterministic
structure, possibly due to niche-associations. We found that null

FIGURE 4 | Null deviation values from soil bacterial communities

sampled along a 5-year chronosequence of tree mortality from bark

beetle infestations. Null deviation values close to zero occur when the
species (OTU) composition of communities being compared deviates less
from random assortments suggesting stochastic processes are important
influences structuring the community, larger values (negative or positive)
indicate increasing deviation from random and suggest an influence of
deterministic processes, possibly due to niche associations.

deviation values were very near zero across all 5 years of the bark
beetle mortality chronosequence (Figure 4), ranging from 0.014
in bacterial communities from soils under live trees (chronose-
quence year 0) and increasing in absolute value to −0.023, −0.030,
−0.018, and −0.030 in years one through four after tree mortality,
respectively (Figure 4). These increases in null deviation values
indicate an increase in deterministic assembly after tree death, but
the relatively low values suggest continued influences of stochastic
processes on bacterial assemblages over time after tree mortality
(Figure 4).

SOIL CHEMISTRY AND N MINERALIZATION/RESIN BAG EXPERIMENTS
Tree mortality led to a significant, twofold increase in extractable
NH+

4 between living control trees (year 0 of the chronosequence)
and year two after bark beetle attack [F(4,45) = 3.35, P = 0.018;
Figure 5]. By year three of the chronosequence, NH+

4 had returned
to levels similar to those in soils under living control trees (year
0). Total soil N decreased in the first year after tree mortality,
but similar to NH+

4 , reached its highest levels with a (marginally
significant) 40% increase by the second year after tree mortality
[F(4,45) = 2.37, P = 0.066; Figure 5]. By the fourth year after
tree mortality, total N had returned to a level equivalent to that
found in soils under living control trees (Figure 5). Total soil C
and DOC also increased to peak levels by the second year after
tree mortality, but this increase was not significant (Table 2) due
to high intra-annual variation. Percent soil moisture increased
steadily, but not significantly, over time following tree mortality
from 4.4% in unaffected soils to 6.4% by the fourth year after
trees died (Table 2). Similarly, soil pH (mean pH = 6.4 across the
chronosequence) was not significantly affected (Table 2) by tree
mortality.
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FIGURE 5 | Measures of total soil N (upper-left), ammonium

(NH+
4

, lower-left), plant available nitrogen (NO–
3

measured from

ion-exchange resin bags, upper-right), and net nitrogen

mineralization from in situ incubation experiments (lower-right)

across a 5-year chronosequence of bark beetle-induced tree

mortality. Year zero (0, green bars) represents samples collected
under live trees that were not attacked by bark beetles during the
study. All other samples were collected from under trees attacked
and killed by bark beetles one to four (1–4, gray bars) years prior
to field sampling.

We found a 272% decrease in plant available N (resin bag NO−
3 )

from control soils under living trees (year 0) to the last year (year
4) of our chronosequence following tree mortality, which, due
to high variability was a marginally significant change [Kruskal–
Wallis χ2(4) = 8.83, P = 0.065] (Figure 5). Net N mineralization
rates declined by 115% in the first year after tree mortality [also
marginally significant due to variation within years; Kruskal–
Wallis χ2(4) = 8.61, P = 0.071; Figure 5], but returned to levels
similar to those found in control soils by the second year after tree
mortality.

N-MINERALIZATION AND BACTERIAL/ENVIRONMENTAL FACTORS
Using stepwise regression we identified best fit models linking
bacterial PD, microbial biomass, and soil environmental measures
as independent variables and net N mineralization as the depen-
dent variable. The model with the overall best fit (accessed via
BIC score) did not retain any environmental measures (Table 3),
but did retain PD (P = 0.47), microbial biomass (P = 0.044)
and the interaction of PD × microbial biomass (P = 0.025) as

significantly associated with net N mineralization rates (R2 = 0.31,
Table 3).

DISCUSSION
We investigated the effects of insect-induced tree mortality on soil
bacterial community structure and assembly, and on soil N bio-
geochemical processes using a 5-year chronosequence of mountain
pine beetle (Dendroctonus ponderosae) infestations in the south-
ern Rocky Mountains, CO, USA—a region that has experienced
an unprecedented level of tree mortality during recent bark beetle
epidemics (Meddens et al., 2012). Counter to our hypothesized
shifts in bacterial community structure, we found only moderate
increases in bacterial phylogenetic diversity (PD, Table 1) over
time following tree mortality, and no significant changes in micro-
bial biomass, OTU Shannon diversity (H′), pairwise community
dissimilarity (i.e., Bray–Curtis dissimilarity and pairwise UniFrac
distance), and overall community structure (Figures 2 and 3).
While we found few associations among soil environmental prop-
erties and bacterial community structure, Mantel tests revealed
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Table 2 | Edaphic factors (not including nitrogen) measured at the

time of bacterial sampling along a chronosequence of bark beetle-

induced tree mortality.

Years

since tree

mortality†

Moisture (%) DOC (mg/g soil) Total C (%) pH

0 4.4 (±0.5) 0.06 (±0.01) 2.42 (±0.25) 6.3 (±0.1)

1 4.7 (±1.1) 0.08 (±0.02) 2.21 (±0.30) 6.5 (±0.1)

2 5.2 (±0.9) 0.11 (±0.03) 3.24 (±0.56) 6.3 (±0.1)

3 6.4 (±1.1) 0.06 (±0.01) 2.04 (±0.20) 6.6 (±0.1)

4 6.4 (±1.4) 0.07 (±0.01) 2.48 (±0.29) 6.4 (±0.1)

P-value >0.10 0.082 >0.10 >0.10

†Year 0 = unattacked control trees. P-values are from one-way ANOVA on log
transformed data; all values are presented as untransformed means ± 1 SE. Soil
moisture was determined from gravimetric dry-down methods, DOC, dissolved
organic carbon.

significant relationships among community structure and soil
moisture and pH in the first year after tree mortality, and commu-
nity structure and ammonium (NH+

4 ) in the second year after tree
mortality. Null deviation values also indicated that tree mortality
led to a minor increase in deterministic influences on community
structure, but overall, stochastic processes seemingly remained
important for bacterial communities across the chronosequence
(Figure 4).

Soil properties such as pH, moisture, and C and N con-
centrations are known to influence soil microbial diversity and
activity at both local and global scales (Fierer and Jackson,
2006; Gundersen et al., 2006; Curiel Yuste et al., 2007; Reed and
Martiny, 2007; Strickland et al., 2009; Philippot et al., 2013; Lan-
desman et al., 2014). Tree mortality can alter these soil properties
as litter inputs and root deposition from mature trees often
influence local to regional edaphic factors (Finzi et al., 1998;
Chapman et al., 2006; Ushio et al., 2008, 2010; Thoms et al.,
2010; Weber and Bardgett, 2011), and both spatial and temporal
patterns of microbial diversity have been linked to gradients in tree
physiology, litter chemistry, dominant species cover, and canopy

Table 3 | Best fit model linking soil microbial biomass and bacterial

phylogenetic diversity to net nitrogen mineralization across a

chronosequence of tree mortality.

Predictor variables† F P

PD × microbial biomass 5.94 0.025

Microbial biomass (mg/g soil) 3.70 0.044

Phylogenetic diversity (PD) 3.62 0.047

Model R2 = 0.31, BIC = −39.6

†Predictor variables were selected via stepwise multiple-regression with smallest
BIC (Bayesian information criterion) determing the best model. In addition to
microbial variables, starting possible factors included %N, %C, DOC, C:N, pH,
soil moisture, and soil temperature.

tree mortality (Ushio et al., 2008; Thoms et al., 2010; Weber and
Bardgett, 2011; Landesman et al., 2014; Štursová et al., 2014). The
greater deterministic influences on community assembly in the
first year after tree mortality (Figure 4), along with the associ-
ation of bacterial community structure with soil moisture, pH,
and NH+

4 in the first and second years after tree mortality coin-
cided with the largest changes in soil chemical properties along
the mortality chronosequence (Table 2; Figure 5). Specifically,
tree mortality was followed by a significant increase (P < 0.05)
in ammonium (NH+

4 ) and a moderate increase (P < 0.10)
in both total N concentration (%N) and DOC, and a non-
significant but notable increase in total C concentration (%C)
with all of these measures peaking in the second year after tree
mortality.

While tree mortality in other coniferous forest ecosystems has
been linked to large changes in soil microbial biomass and com-
munity structure (Högberg et al., 2007; Štursová et al., 2014), we
found relatively muted effects of tree death on microbial commu-
nity measures by comparison. A possible explanation is that tree
mortality in our study system had little impact on key soil chemical
and physical properties known to influence microbial communi-
ties in forested ecosystems (Högberg and Högberg, 2002; Monson
et al., 2006; Högberg et al., 2007; Weintraub et al., 2007). However,
other studies of tree mortality (from girdling experiments) com-
pleted < 1 km from our field sites also found moderate effects
of tree death on microbial biomass and enzyme activity despite
significant changes in soil N concentrations and DOC (Weintraub
et al., 2007) and weaker than expected effects on soil processes
governed by microbes (Moore et al., 2013). So while it is likely
that tree mortality has smaller impacts on soil microbial com-
munities and ecosystem processes in this study system compared
to others, the stability of community structure in the face of
variable N pools found here and by others suggests a general resis-
tance of soil microbial communities to disturbance of the forest
canopy.

Disturbances have long been known to influence species diver-
sity and abundance patterns in macro-biological communities and
the majority of microbial communities studied to date have been
sensitive to a range of disturbance types, severities, and dura-
tions (Allison and Martiny, 2008; Shade et al., 2012). Nevertheless,
the structure of bacterial communities in our study resisted bark
beetle-induced tree mortality despite concurrent changes in soil
N pools and cycling processes (Table 1; Figure 5). The stability
of communities in response to perturbation relies on the ability
of individual bacteria to tolerate, endure, or adapt to environ-
mental change. A range of life history strategies facilitate bacterial
resistance to disturbance such as: periods of reduced metabolic
activity or dormancy, rapid dispersal and colonization, stochas-
tic gene expression, or high efficiency in resource use which is
common to oligotrophic bacteria (Lennon and Jones, 2011; Shade
et al., 2012; de Vries and Shade, 2013). Communities in our study
system are marked by a comparatively high proportions of phyla
that contain an abundance of gram-positive taxa (roughly 26%
across samples, Figure 3) which are often relatively slow growing
(a traitcommon to oligotrophs) and also can use dormancy in
order to survive disturbance events (Drenovsky et al., 2010; de
Vries and Shade, 2013). Thus, the resistance of soil bacterial

www.frontiersin.org December 2014 | Volume 5 | Article 681 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Ferrenberg et al. Bacterial community responses to tree mortality

community structure to environmental changes linked to tree
mortality from bark beetle infestations might be explained by the
relatively large proportion of oligotrophic taxa found in our study
system.

While environmental factors can have important influences on
the assembly and structure of microbial communities, a grow-
ing body of evidence indicates that bacterial communites can
also be strongly influenced by stochastic processes (Burke et al.,
2011; Ferrenberg et al., 2013; Nemergut et al., 2013). Null devi-
ation values across our sampling chronosequence suggest that
stochastic processes have relatively strong influences on the bac-
terial communities of our study site, regardless of time since tree
death. Even in chronosequence years with the higher null devia-
tions, which would indicate stronger influences of deterministic
processes, the values still remained lower than in bacterial com-
munities of soils in a nearby conifer forest (11 km east, 640 m
lower in elevation) sampled 2 months prior to our study (see
Ferrenberg et al., 2013). While environmental factors would still
influence metabolic processes and tolerances in these stochasti-
cally assembled bacterial communities (Nemergut et al., 2013),
stochastic influences likely lead to heterogeneous distributions of
microbial life history traits which may reduce the effects of envi-
ronmental change on community structure. At the same time,
soil processes may remain more stable in the face of environmen-
tal changes in cases where microbes and their functional traits
are stochastically dispersed and assembled across larger spatial
and temporal scales (e.g., Burke et al., 2011). While this scenario
has not been thoroughly investigated for soil microbial com-
munities, a strong influence of heterogeneous distributions of
vegetation species on the maintenance of ecosystem functioning
following disturbances in coniferous forests has been observed
(Chapin et al., 2002; Turner, 2010). In particular, vegetation het-
erogeneity before and after disturbances such as wildfires has been
found to not only mediate temporal disturbance effects, but to
also help maintain soil nutrients and processes such as N cycling
(Turner et al., 2007).

Similar to other insect epidemics, bark beetle-induced tree
mortality has been shown to increase concentrations of ammo-
nium (NH+

4 ), nitrate (NO−
3 ), and in some cases, net mineral-

ization rates in soil organic and mineral horizons (Clow et al.,
2011; Xiong et al., 2011; Griffin and Turner, 2012; Keville et al.,
2013). We found partial support for our third hypothesis that bark
beetle-infestation in our study system would lead to increases in
soil N pools and N mineralization rates. Specifically, we found
increased concentrations of NH+

4 , and decreased plant avail-
able N (NO−

3 ) and net mineralization rates in mineral soils
(Figure 5). While our results are lower in magnitude relative
to some measures from other studies—possibly associated with
low pools of C and N in our soils—there is overall agreement
across studies that bark beetle-induced tree mortality moderately
affects soil N. Previous studies have also found differences in
N dynamics between organic and mineral soil horizons (Keville
et al., 2013) and substantial site variation in net N mineralization
rates (Griffin and Turner, 2012) suggesting a need to con-
sider experimental context during interpretations. In particular,
Schimel and Schaeffer (2012) hypothesized that microbial pro-
cesses may be more controlled by physical features and structure in

mineral soils than in organic layers (Schimel and Schaeffer, 2012),
thereby shifting the relationship between structure and function
among soil horizons.

Despite concern that extensive tree mortality from bark bee-
tle epidemics would lead to substantial losses of C and N from
impacted forests across western North America, reported effects
have fallen short of predictions (Clow et al., 2011; Griffin et al.,
2011; Griffin and Turner, 2012; Keville et al., 2013; Moore et al.,
2013). This contradiction invokes a key role of soil microbial
communities in ecosystem responses to tree mortality. Indeed,
in the same ecosystem we studied, Moore et al. (2013) found
that both photosynthesis and ecosystem respiration declined con-
currently after tree death. While our measures of soil bacterial
community structure were collected roughly 3 months prior to
our N mineralization experiments and therefore must be conser-
vatively interpreted, we found that bacterial PD and total microbial
biomass were significantly correlated with N mineralization rates
across the tree mortality chronosequence (Table 3). This indi-
cation that bacterial community structure is important for N
mineralization processes in our forested study site agrees with
work in other systems (Fraterrigo et al., 2006; Philippot et al.,
2013). Nevertheless, the resistance to disturbance from tree mor-
tality of the bacterial community of this subalpine conifer-forest
likely reduces the effects of tree mortality on ecosystem pro-
cesses and could help to explain the relatively weak effects of
bark beetle-induced tree mortality on soil N pools. The influence
of bacterial phylogenetic diversity on soil N processes also sug-
gests an interesting hypothesis that spatial heterogeneity resulting
from stochastic assembly in bacterial communities may play an
important role in the stability of spatial and temporal processes
rates.

CONCLUSION
Recent climatic changes have spurred a worldwide increase in
insect-induced tree mortality, raising concern over possible effects
on biogeochemical cycles (Wardle et al., 2004; Adams et al., 2010;
Hicke et al., 2012). Despite being the primary drivers of terrestrial
biogeochemical processes, the detailed responses of soil microbial
communities to extensive tree mortality during insect epidemics
have received limited study (Štursová et al., 2014). We found that
soil bacterial communities resisted disturbance from bark beetle-
induced tree mortality along a 5-year chronosequence, and that
bacterial community assembly was largely influenced by stochas-
tic processes. Results from our characterizations of soil chemistry
and nitrogen mineralization agree with reports from similar forest
ecosystems (Clow et al., 2011; Griffin et al., 2011; Griffin and
Turner, 2012; Keville et al., 2013), as we found only short-lived,
moderate effects of bark beetle-induced tree mortality on soil
N pools and mineralization rates. The stochastic assembly of
bacterial communities in this system likely promotes landscape
heterogeneity of microbial functional traits, which coupled with
stability of bacterial communities following tree death could help
to explain the muted effects of tree mortality on soil N pro-
cesses across larger spatial scales. Yet given the paucity of reports
detailing resistance to disturbance in microbial communities,
determining the community characteristics which confer greater
resistance to disturbance (Shade et al., 2012) and the bacterial
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community compositional-traits that influence biogeochemical
processes (Schimel and Schaeffer, 2012) will require additional
study.
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