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Abstract: Surface modification plays a key role in the fabrication of highly active and stable enzymatic
nanoreactors. In this study, we report for the first time the effect of various functional groups (epoxy,
amine, trimethyl, and hexadecyl) on the catalytic performance of lipase B from Candida antarctica
(CALB) incorporated within a monolithic supramolecular hydrogel with multiscale pore architecture.
The supramolecular hydrogel formed by host-guest interactions between α-cyclodextrin (α-CD) and
Pluronic F127 was first silicified to provide a hierarchically porous material whose surface was further
modified with different organosilanes permitting both covalent anchoring and interfacial activation
of CALB. The catalytic activity of nanoreactors was evaluated in the liquid phase cascade oxidation of
2,5-diformylfuran (DFF) to 2,5-furandicarboxylic acid (FDCA) under mild conditions. Results showed
that high FDCA yields and high efficiency conversion of DFF could be correlated with the ability of
epoxy and amine moieties to keep CALB attached to the carrier, while the trimethyl and hexadecyl
groups could provide a suitable hydrophobic-hydrophilic interface for the interfacial activation of
lipase. Cationic cross-linked β-CD was also evaluated as an enzyme-stabilizing agent and was found
to provide beneficial effects in the operational stability of the biocatalyst. These supramolecular
silicified hydrogel monoliths with hierarchical porosity may be used as promising nanoreactors to
provide easier enzyme recovery in other biocatalytic continuous flow processes.

Keywords: CALB; supramolecular hydrogel; silica; surface functionalization; α-cyclodextrin; Pluronic
F127; 2,5-furandicarboxylic acid

1. Introduction

In the current context where plastic pollution is becoming a source of increasing
concern and a pressing environmental issue, the development of new ecofriendly catalytic
processes for the conversion of renewable biomass into high value biodegradable materials
represents a major challenge for sustainable development [1–5]. In particular, bioplastics
are currently experiencing a strong development with a global production of 2.11 million
tons in 2020, which is set to increase to approximately 2.87 million tons in 2025 [6].

2,5-Furandicarboxylic acid (FDCA), obtained from 5-hydroxymethylfurfural (HMF)
oxidation, is a key building block for the production of bio-based polymers, such as
polyamides and polyesters, and has recently been identified as a potential substitute
of petroleum-based terephthalic acid (TPA), the main building block of polyethylene
terephthalate (PET) used in food packaging and plastic bottles [7]. Polyethylene furanoate
(PEF) produced by polycondensation of ethylene glycol and FDCA, has demonstrated
superior barrier and thermal properties with respect to PET, and is expected to enter the
market very soon, in the early 2023 [6].

To date, various metal-based catalysts such as gold, platinum, and palladium nanopar-
ticles, as well as mixed oxides, have been used as heterogeneous catalysts for the production
of FDCA [8]. However, those catalysts require high temperatures and pressures, as well as
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strongly alkaline conditions that tend to produce large amounts of salts, thus limiting the
development of the process on a large scale [9].

To help meet growing demands for green and sustainable chemicals, biocatalysis
has emerged as a promising technology over the past twenty years [10–12]. Enzymes are
particularly suitable biocatalysts for biomass conversion as they operate under eco-friendly
conditions (moderate temperature, atmospheric pressure, and physiological pH) and
exhibit excellent selectivity (regio-, chemo-, and enantio-), thus reducing the formation of
by-products [13–16]. Nevertheless, despite the recent progress in biomolecular engineering,
the industrial applications of enzymes have been hampered by a poor long-term stability
and difficulties in recycling the biocatalyst. To overcome those limitations, immobilization
of enzymes on a solid carrier is a promising technology to increase their operational stability
for reuse in several cycles, thus reducing the biocatalyst cost [10].

Hydrogels are three-dimensional macromolecular networks composed of hydrophilic
polymers interconnected trough physical or chemical nodes [17]. The macromolecular
network can incorporate large amounts of water, generally more than 80% of the total mass,
conferring to the hydrogel biocompatibility properties [18]. Unlike synthetic hydrogels,
supramolecular hydrogels are reversible in nature because the crosslinking nodes are
formed by non-covalent bonds [19]. The first cyclodextrin (CD)-based supramolecular
hydrogels reported in the literature are those formed between poly (ethylene glycol) (PEG)
and α-CD [20]. Threading of several α-CDs along the chain of a high molecular weight PEG
(>10,000 Da) was shown to cause the formation of insoluble polypseudorotaxanes that tended
to self-assemble into three-dimensional organized supramolecular nanostructures [21].

In the case of nonionic Pluronic PEO-PPO-PEO triblock copolymers, where thinner
PEO blocks flank the middle PPO block, it has been shown that β-CD slides along the
hydrophilic PEO blocks to selectively thread the middle hydrophobic PPO blocks, while
α-CD selectively threads the flanking PPO blocks forming polypseudorotaxanes in high
yields [22]. As demonstrated by Travelet et al. [23,24], the growth of columnar nanocrystal-
lites resulting from the self-organization of several polypseudorotaxanes is believed to play
a key role in maintaining the hydrogel in a stable water-swollen state.

The ability of hydrogels to incorporate high levels of proteins, cells, antibodies,
peptides, and genes has been widely described in the literature, especially for biomedi-
cal applications [25–27]. Importantly, the interconnected three-dimensional structure of
supramolecular PEG/α-CDs hydrogels [28] can provide a favorable microenvironment
for the incorporation of biomolecules, in particular enzymes [29]. However, under acidic
conditions [30], or in the presence of molecules comprising acidic functions, such as the
FDCA, these hydrogels suffer from lack of stability due to the unthreading of α-CD from
the polymer chain, thus resulting in partial dissolution of the interconnected 3D structure
and further release of the biocatalyst. To overcome those limitations, solidification of the
supramolecular hydrogel network through silicification is a versatile strategy for enhancing
the biocatalyst stability and improving its catalytic performance. Indeed, surface silanols
can be further functionalized with various chemically reactive and hydrophobic groups,
permitting effective covalent anchoring and interfacial activation of lipases. Nevertheless,
in the specific case of α-CD-based hydrogels, the intercalation of silica layers with the
polypseudorotaxanes, as well as the presence of a thick hydration shell on the hydrogel
surface, may hinder the accessibility of surface silanols to the silylating agent, thus making
surface functionalization challenging.

To date, the functionalization of silicified hydrogels has not been thoroughly investi-
gated and little work has been done on their use as host matrices for the immobilization of
enzymes for catalytic applications [29,31]. However, these hybrid systems could provide an
interesting alternative to mesoporous silicas, such as MCM-41 [32] or SBA-15 [33], owing
to their tunable surface properties, hierarchical pore structure, and promising mechanical
properties [34,35].
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Herein, we present a new approach that combines the concepts of supramolecular
chemistry and sol-gel process, together with surface functionalization, to develop hierar-
chically porous monoliths able to incorporate high amounts of Candida antarctica lipase B
(CALB). CALB has previously been identified as one of the most important lipases in in-
dustrial applications owing to its high selectivity toward secondary amines and secondary
alcohols [36,37], as well as its high resistance toward H2O2 [38,39]. Prior to CALB immobi-
lization, we have investigated the effect of a wide variety of organosilanes on the surface
properties of the silicified hydrogel. To highlight the advantages and limitations of different
functional groups, the catalytic performance of nanoreactors was evaluated in the liquid
phase oxidation of 2,5-diformylfuran (DFF) to FDCA. In addition to the effect of reactive
and hydrophobic groups, the impact of cationic cross-linked β-CD as an enzyme-stabilizing
agent was also examined.

2. Results
2.1. Silicification of the Pluronic F127/α-CD Hydrogel

A hierarchically porous hybrid material was prepared using the Pluronic F127/α-CD
hydrogel as template and tetramethoxysilane (TMOS) as silica source (Figure 1A) [31].
First, host-guest interactions between poly (ethylene oxide) (PEO) blocks of F127 and
α-CD in aqueous phase led to total dissociation of the micelles. Then, the self-assembly
of polypseudorotaxanes resulted in a physically cross-linked hydrogel and its further sili-
cification through hydrolysis and condensation of TMOS yielded a three-dimensional
silica-reinforced network containing a thin layer of hydrogel. Pristine hydrogel displayed a
thixotropic behavior forming a stable gel structure at rest (Figure 1B), but becoming fluid
when agitated. Moreover, the thixotropic degree became more pronounced with increas-
ing the polymer loading (Figure S1, ESI). Optical microscopy images in polarized light
showed weak birefringence textures developed by nanocrystallites within pristine hydrogel
(Figure 1C), while addition of TMOS greatly accelerated their growth (Figure 1D). After
annealing at 60 ◦C for 48 h, followed by excess template removal, the mixture solidified
into a porous monolith (Figure 1E). SEM images indicated formation of structures with
flower-like patterns (Figure 1F) made-up of petals with 40–50 nm thickness (Figure 1G),
while TEM micrographs revealed that the pore wall was comprised of particles with fibber-
like morphology, consistent with the elongated cylindrical structure of polypseudorotaxanes
(Figure 1H). The surface area and pore volume determined by N2-adsorption analysis
(Figure 1I) were 267 m2/g and 0.542 cm3/g respectively, while mesopores had average
3.6 nm and 8.1 nm diameters originating from individual polypseudorotaxanes and channel-
like nanocrystallites respectively (Figure 1I, inset).
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Figure 1. Schematic illustration of the procedure used for the preparation of silica-reinforced Pluronic
F127/αCD hydrogel (A). Visual aspect of the supramolecular hydrogel (B). Polarized optical mi-
croscopy images of the hydrogel before (C) and after silicification (D) showing birefringent textures.
Visual aspect of the porous monolith after annealing at 60 ◦C and removal of the excess of template
(E). SEM (F,G) and TEM (H) micrographs of the silicified hydrogel and corresponding N2 adsorption
results (I).

2.2. Effect of Functionnal Groups
2.2.1. Method for Surface Functionalization and Immobilization of CALB

Prior to enzyme immobilization, the surface of silica-reinforced hydrogel was modified
with different functional groups from four organosilanes (Figure 2). (3-glycidoxypropyltri-
methoxysilane (GPTMS) and 3-aminopropyl trimethoxysilane (APTMS) were used as chem-
ically reactive groups for the covalent binding of CALB, while chlorotrimethylsilane (CTMS)
and hexadecyltrimethoxysilane (HDTMS) were employed as hydrophobic functions for its
interfacial activation.

Surface modification with GPTMS (Figure 2(a1)) produces a terminal epoxy group
which further reacts with the nucleophilic primary amines of lysine residues on CALB
surface through a ring opening reaction, yielding a secondary amine [40]. Owing to its
high reactivity, the epoxy group can also react with other nucleophiles, such as the hydroxy
groups available on the hydrogel surface and the thiol moieties present on the cysteine
residues of the enzyme. As the ring opening reaction with primary amines is usually
reported to be more favorable under neutral or moderate alkaline conditions [41], grafting
of CALB was carried out in phosphate buffer at pH 7.5.

Conversely, the rate at which the imine bond forms has been reported to be greatest
near a pH of 5.0 [42]. Therefore, after surface functionalization with aminopropyl groups
from APTMS, the reaction with the bifunctional spacer, i.e., the glutaraldehyde (GAH)
or the glutaric anhydride (GAC) was carried out in acetate buffer (pH 4.6) (Figure 2(a2)).
GAH provides an aldehyde group that reacts with the primary amine of lysine providing
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an imine bond (Schiff base) (Figure 2(a2i)), while GAC gives access to the carboxyl group,
which subsequently reacts with amino groups of lysine to form an amide (Figure 2(a2ii)).

Figure 2. Schematic illustration of the procedure used for the preparation of bifunctional nanoreactors.
(a) Enzyme immobilization on the silicified hydrogel functionalized with chemically reactive groups
necessary for the covalent binding of the lipase. (a1) The epoxy function alkylates the primary amine
of the enzyme yielding a secondary amine. (a2) The amine group in the silica wall reacts with the
primary amine of lipase through a bifunctional spacer providing two imine (GAH) or two amide
(GAC) bonds. (b) Functionalization of pore wall with trimethylsilyl (b1) and hexadecyl (b2) groups
necessary for the interfacial activation of the lipase.

In the process of hydrophobization of silicified hydrogel (Figure 2b), CTMS first reacts
with surface silanols yielding trimethylsilyl groups (Si(CH3)3) (Figure 2(b1)) and releasing
hydrochloric acid (HCl). On the other hand, in the case of HDTMS, because of the high
degree of hydrophobicity of the hexadecyl group (C16), the silane was first hydrolyzed in
an oxalic acid solution (0.1 M), then grafted through condensation with surface silanols
(Figure 2(b2)).

To examine the impact of the different functional groups on the catalytic activity of
CALB, three series of bifunctional materials were prepared by simultaneous functional-
ization with (i) CTMS and GPTMS, (ii) HDTMS and APTMS activated with GAH, and
(iii) CTMS and APTMS using GAH or GAC as bifunctional spacers. The resulting materials
were characterized using TG analysis together with ATR-FTIR spectroscopy.

2.2.2. Characterization of Biocatalysts

(a) Sihgel@CTMS@GPTMS@CALB

The FT-IR spectra of CTMS- and GPTMS-functionalized Sihgel, before and after
CALB immobilization, are shown in Figure 3A. The as-synthesized silicified hydrogel
(Figure 3(Aa)) displays a strong absorption band at 1036 cm−1 ascribed to the asymmetric
stretching vibrations of the Si–O–Si bond [43] that overlaps with the ring vibrational modes
of glycosyl units in α-CD [44]. Two additional bands appear at 798 cm−1 and 953 cm−1

arising respectively from the symmetric stretching vibrations of Si–O–Si bond and Si–OH
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groups [43]. Furthermore, the bands in the 2960–2890 cm−1 region are typical of C–H
vibration from both α-CD and Pluronic F127.

Figure 3. ATR FTIR spectra (A) and TG curves (B) for (a) as-synthesized Sihgel, (b) Sihgel@CTMS,
(c) Sihgel@GPTMS, (d) Sihgel@CTMS@GPTMS, and (e) Sihgel@CTMS@GPTMS@CALB. The low
intensity of the band at 906 cm−1 suggests that part of epoxy groups may have been opened into
diols during reaction with surface silanols.
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Grafting of trimethylsilyl groups on the Sihgel@CTMS material (Figure 3(Ab)) was
confirmed by the increase in intensity of the symmetric and asymmetric C–H stretching
vibrations from aliphatic –CH3 groups at 2880 cm−1 and 2955 cm−1 respectively, as well as
the Si–C stretching vibration at 850 cm−1 from –O–SiCH3 end groups [43,45]. Upon surface
modification with GPTMS (Figure 3(Ac)), a new band appeared at 906 cm−1 originating
from the epoxide ring vibration [46]. However, its low intensity suggests that part of
epoxides may have been opened into diols during reaction with surface silanols. On the
other hand, in the case of Sihgel@CTMS@GPTMS (Figure 3(Ad)), the bands at 850 cm−1 and
906 cm−1 confirm surface functionalization with both hydrophobic and reactive groups.
Moreover, upon enzyme immobilization (Figure 3(Ae)), the high intensity vibration at
1553 cm−1 originating from the N–H bending of free amines in protein is consistent with
successful anchoring of the lipase.

The loading amount of organic moieties was determined by TG analysis in the temper-
ature range between 180 ◦C and 800 ◦C (Figure 3B). The weight loss below 180 ◦C was not
taken into consideration as it belongs to loss of solvent physically adsorbed into the pores.
From the difference between the weight loss of the silicified hydrogel and the weight loss
of bare sol-gel silica, the amount of incorporated hydrogel was found to be 13.8%. In the
typical curves of CTMS- (Figure 3(Bb)) and GPTMS-functionalized Sihgel (Figure 3(Bc)), the
sharp mass drops above 180 ◦C arise from the decomposition of organic trimethyl (4.5%)
and glycidiloxypropyl (17.4%) moieties respectively (Table 1). Importantly, simultaneous
functionalization with CTMS and GPTMS resulted in a total weight loss of 20.7%, which
was close to that recorded on Sihgel@CTMS and Sihgel@GPTMS taken together (21.9%)
(Table 1).

Table 1. Parameters deduced from N2-adsorption and TG analysis for the silica materials before and
after modification with different functional groups and lipase immobilization.

Sample Total Weight
Loss a (%)

Effective Weight
Loss b (%)

Dg
c

(mg·g−1)
Dg

max, d

(mg·g−1)
Scov

e

(chain·nm−2)

Sihgel@CTMS0.33 22.3 4.5 45 57 0.24
Sihgel@GPTMS0.68 35.2 17.4 174 105 0.41

Sihgel@CTMS0.33@GPTMS0.68 38.5 20.7 207 - -
Sihgel@CTMS0.33@GPTMS0.68@CALB 41.0 2.5 25 - -

Sihgel@HDTMS0.33 24.5 6.7 67 85 0.07
Sihgel@APTMS0.16 27.1 9.3 93 68 0.28

Sihgel@HDTMS@APTMS-GAH 31.1 13.3 133 - -
Sihgel@HDTMS@APTMS-GAH@CALB 32.5 1.4 14 - -

Sihgel@CTMS@APTMS-GAC 39.2 21.4 214 - -
Sihgel@CTMS@APTMS-GAC@CALB 45.7 6.5 65 - -

Sihgel@CTMS@APTMS-GAH 35.9 18.1 181 - -
Sihgel@CTMS@APTMS-GAH@CALB 41.3 5.4 54 - -

a Weight loss between 180 and 700 ◦C, b weight loss corrected by the decomposition profile of sol-gel silica before
surface functionalization, c grafting density of functional groups between 180 and 700 ◦C, d maximum grafting
density determined from Equation (2) (see Experimental part), e surface coverage determined from Equation (1)
(see Experimental part).

The grafting densities (Dg) on Sihgel@CTMS and Sihgel@GPTMS were found equal to
be 45 mg/g and 174 mg/g respectively. Moreover, using Equation (1) (see Experimental
part), the corresponding surface coverages (Scov) were determined to be 0.24 chain/nm2

and 0.41 chain/nm2 respectively. The maximum grafting densities (Dg
max) of trimethyl and

glycidoxypropyl groups that could theoretically be grafted on the surface of the host matrix
were also calculated assuming that GPTMS was fully hydrolyzed and that trimethyl groups
from CTMS formed a monolayer on the hydrogel surface. Therefore, considering that
trimethyl moieties occupy a surface area of 0.43 nm2 [47] and that the surface occupied by
glycidoxypropyl groups is 0.2 nm2 [48], the maximum grafting densities were determined
to be 57 mg/g and 105 mg/g respectively (Table 1). By comparing the experimental data
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with the theoretical predictions, it appears that CTMS most likely forms a thin monolayer
on the hydrogel surface, whereas GPTMS gives rise to a thicker layer, probably due to
the higher reactivity and sol-gel reticulation of GPTMS network [49]. Furthermore, the
approximate amount of grafted protein, determined by the difference in the mass loss
between Sihgel@CAG@CALB (B,e) and Sihgel@CAG (B,d), was determined to be 2.5%
(Table 1).

(b) Sihgel@HDTMS@APTMS@CALB

Figure 4A displays the FTIR spectra of HDTMS- and APTMS-functionalized material
before and after enzyme immobilization. Relative to pristine Sihgel (Figure 4 (Aa)), the
spectrum of HDTMS-functionalized Sihgel (Figure 4 (Ab)) displays a new vibration band
at 1460 cm−1 characteristic of the –CH2 and –CH3 bendings in the hexadecyl chains [43].
Moreover, the bands at 2925 and 2854 cm−1 assigned respectively to the asymmetric and
the symmetric stretching vibrations of CH2 groups [50] further confirm grafting of the
hydrophobic silane. On the other hand, the spectrum of APTMS-functionalized Sihgel
(Figure 4 (Ac)) presents two vibrations at 1553 cm−1 and 1454 cm−1 consistent with the
N–H bending of the primary amine and the symmetric CH2 bending of Si–CH2 groups
respectively. Further, the bifunctional material (Sihgel@HDTMS@APTMS-GAH) displayed
the typical vibration bands of both silanes indicating successful surface modification
(Figure 4 (Ad)). Notably, upon enzyme immobilization, the increase in intensity of the
vibration at 1553 cm−1 corresponding to N–H bending of free amines in protein, together
with the band at 1644 cm−1 assigned to the imine bond (C=N), confirmed that lipase was
successfully anchored on the functionalized support (Figure 4 (Ae)).

From TG analysis (Figure 4 (Ba,b)), the thermal decomposition of hexadecyl groups
from HDTMS gave a grafting density of 67 mg/g, higher than that of trimethyl groups from
CTMS (45 mg/g) (Table 1). However, the corresponding surface coverage (Scov) obtained
with HDTMS was extremely low (0.07 chain/nm2), indicating incomplete silylation of
surface silanols (Table 1). Note that Sihgel@APTMS yielded a grafting density of 93 mg/g
and a surface coverage of 0.28 chain/nm2, which are both lower than the values recorded
on Sihgel@GPTMS (174 mg/g and 0.41 chain/nm2 respectively). Furthermore, the weight
loss resulting from the thermal decomposition of the protein was found equal to 3.6%.
Comparison of experimental and theoretical data (67 mg·g−1 vs. 85 mg·g−1) reveals that
the hexadecyl groups provide only partial coverage of the hydrogel surface probably due
to incomplete hydrolysis of the silane and insufficient interaction with silanols available on
the support surface.

(c) Sihgel@CTMS@APTMS@CALB: Effect of the linker (glutaric anhydride vs.
glutaraldehyde)

Activation of the primary amino groups with GAC resulted in the appearance of a new
band at 1723 cm−1 assigned to the C=O stretch modes of aldehyde groups (Figure 5(Aa)).
Moreover, reaction of both GAH and GAC with surface amino groups was confirmed by the
CH2 bends at 1408 cm−1, as well as the C=N stretching modes at 1644 cm−1 (Figure 5(Aa,c)).
Other bands at 2948 cm−1 and 2857 cm−1 on Sihgel@CTMS@APTMS@GAC can be ascribed
to aldehyde C–H and alkyl C–H stretching vibrations, respectively. In all functionalized
solids, the band at 850 cm−1 corroborates with the Si–C stretching vibration of –O–SiCH3
end groups from CTMS. Moreover, lipase immobilization on both supports was confirmed
by the vibration at 1554 cm−1 assigned to the N–H bending of free amines (Figure 5(Ab,d)).

From the thermogravimetric curves (Figure 5B), the effective weight loss on Sihgel@
CTMS@APTMS-GAC was determined to be 21.4%, which was almost 3.2%, higher than
that recorded on Sihgel@CTMS@APTMS-GAH (18.1%). Such a difference is probably due
to the higher crosslinking ability of GAC with respect to GAH, which may also explain its
higher enzyme-loadings capacity (6.5% vs. 5.4%) (Figure 5(Bb,d) and Table 1).
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Figure 4. ATR FTIR spectra (A) and TG curves (B) for (a) as-synthesized Sihgel, (b) Sihgel@HDTMS,
(c) Sihgel@APTMS, (d) Sihgel@HDTMS@APTMS-GAH, and (e) Sihgel@HDTMS@APTMS-
GAH@CALB.
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Figure 5. ATR-FTIR spectra (A) and TG curves (B) for (a) as-synthesized Sihgel, (b) Sihgel@
CTMS@APTMS-GAC, (c) Sihgel@CTMS@APTMS-GAC@CALB, (d) Sihgel@CTMS@APTMS-GAH,
and (e) Sihgel@CTMS@APTMS-GAH@CALB.
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3. Catalytic Activity

The oxidation of DFF to FDCA proceeds via a chemoenzymatic cascade reaction
involving two consecutive steps. First, the lipase CALB catalyzes the perhydrolysis of ethyl
acetate with hydrogen peroxide yielding peracetic acid. Then, the peracid oxidizes in situ
the aldehyde group of DFF to carboxylic acid yielding the 5-formylfuran-2-carboxylic acid
(FFCA), which is ultimately converted to FDCA (Table 2). In all our experiments, reaction
was assessed by adding 2.0 equivalents H2O2 (30% v/v) in a mixture of ethyl acetate
(EtOAc) and tert-butanol (tBuOH) (1:1 v/v) containing 10 mM DFF. Reaction products were
analyzed using 1H NMR and HPLC. tBuOH was used as a solvent to avoid deactivation of
CALB because of the high acidity of the acyl donor (EtOAc). Indeed, in the oxidation of
furfural, Krystof et al. [51] have shown that reactions conducted in neat EtOAc, acting both
as acyl donor and solvent, can lead to lower yields in furoic acid with respect to reaction
performed in a tBuOH/EtOAc mixture.

Under those conditions, free CALB was not active (entry 1). However, when 2 mg
lipase was immobilized by ionic bonding on Sihgel@CTMS (acetate buffer pH 4.6), 88% DFF
conversion and 19% FDCA yield could be achieved (entry 2). Notably, DFF conversion was
complete when the lipase loading was increased to 4 mg, giving 72% yield in FDCA (entry
3). When CALB was covalently attached to Sihgel@CTMS@GPTMS prepared with different
GPTMS/SiO2 and CTMS/SiO2 molar ratios (entries 4 to 10), the immobilization rates were
in the range of 89 to 97%, confirming the effectiveness of the epoxy ring as a reactive group
for covalent anchoring of the protein. Notably, the DFF conversions achieved with 2 mg
CALB were complete with all catalysts, while the FDCA yields were found to be dependent
on GPTMS loading, decreasing from 42 to 34% when the GPTMS/SiO2 molar ratio was
increased from 0.68 to 1.50 (entries 4–6). In particular, with 4 mg CALB, the FDCA yields
could reach 70% and 51% using GPTMS/SiO2 molar ratios of 0.68 (entry 7) and 0.34 (entry
8) respectively. Similarly, increasing the CTMS/SiO2 ratio from 0.33 to 0.66 resulted in a
drop of the FDCA yield from 70% (entry 7) to 41% (entry 9). However, a FDCA yield of 72%
could be achieved by increasing the lipase loading to 8 mg, (entry 10). Taking into account
the best performance/cost ratio, Sihgel@CTMS0.33@GPTMS0.68@CALB2 was found to be
the most efficient bioreactor, giving a specific activity of 20.8 µmol g−1 min−1, a TTN of
288.8 mol−1 and a TOF of 41.3 min−1 (entry 4). Taken together, these results demonstrated
that simultaneous functionalization of the silicified hydrogel with GPTMS and CTMS is an
effective way for covalent anchoring and interfacial activation of the lipase.

The effect of hydrophobic groups on enzyme activity was established by comparing
trimethyl- and hexadecyl- functionalized materials at the same silane/SiO2 molar ratio
of 0.33. Regardless the immobilization approach (physisorption or covalent bond), the
enzyme loadings on Sihgel@HDTMS ranged from 96% to 99% (entries 11 to 13, 15). Notably,
the FDCA yield increased from 17% (entry 11) to 50% (entry 12) when CALB loading
was increased from 2 mg to 4 mg. It is worth noting that although HDTMS acts as an
effective hydrophobic agent, with 4 mg CALB, its effect on the interfacial activation of lipase
seems to be less pronounced than that of CTMS (50% vs. 72% FDCA yields) (entries 12,
3). Accordingly, the bifunctional Sihgel@HDTMS@CTMS@CALB4 biocatalyst containing
equimolar amounts of CTMS and HDTMS achieved 60% yield in FDCA (entry 13), which
represents an intermediate value between CTMS (72%, entry 3) and HDTMS (50%, entry
12) taken separately.
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Table 2. Catalytic performance of lipase CALB immobilized in Sihgel modified with different functional groups in the oxidation of DFF to FDCA a.

Entry Catalyst Immobilization
Efficiency (%) b

Loading
Capacity
(wt.%) c

DFF
Conversion

(%)

Yield (%)
Specific Activity

(µmol g−1 min−1) g
TTN

(mol mol−1) h
TOF

(min−1) iFFCA
(%)

FDCA
(%)

1 free CALB - - 0 0 0 0 0 0

2 Sihgel@CTMS0.33 d @CALB2 e 95 9.5 88 69 19 8.5 117.4 16.8

3 Sihgel@CTMS0.33@CALB4 95 19 100 28 72 18.0 250.1 35.7

4 Sihgel@CTMS0.33@GPTMS0.68@CALB2 96 9.6 100 58 42 20.8 288.8 41.3

5 Sihgel@CTMS0.33@GPTMS1.00@CALB2 97 9.7 100 61 39 19.1 265.4 37.9

6 Sihgel@CTMS0.33@GPTMS1.50@CALB2 97 9.7 100 66 34 16.7 231.3 33.0

7 Sihgel@CTMS0.33@GPTMS0.68@CALB4 89 17.8 100 30 70 18.7 259.6 37.1

8 Sihgel@CTMS0.33@GPTMS0.34@CALB4 96 19.2 100 49 51 12.6 175.3 25.0

9 Sihgel@CTMS0.66@GPTMS0.68@CALB4 92 18.4 100 59 41 10.6 147.1 21.0

10 Sihgel@CTMS0.66@GPTMS0.68@CALB8 96 38.4 100 28 72 8.9 123.8 17.7

11 Sihgel@HDTMS0.33@CALB2 96 9.6 82 65 17 6.9 95.8 13.7

12 Sihgel@HDTMS0.33@CALB4 99 19.8 100 50 50 12.0 166.7 23.8

13 Sihgel@HDTMS0.33@CTMS0.33@CALB4 98 19.6 100 40 60 14.6 202 28.9

14 Sihgel@APTMS0.16-GAH@CALB4 89 8.9 44 44 0 0.0 0.0 0.0
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Table 2. Cont.

15 Sihgel@HDTMS0.33@APTMS0.16-GAH@CALB2 96 9.6 85 72 13 5.5 76.0 10.9

16 Sihgel@CTMS0.33@APTMS0.16-GAC@CALB2 95 9.5 100 59 41 20.6 284.8 40.7

17 Sihgel@CTMS0.33@APTMS0.16-GAH@CALB2 96 9.6 100 33 67 33.2 460.6 65.8

18 Sisg f @CTMS0.33@APTMS0.16-GAH@CALB2 72 7.2 24 24 0 0.0 0.0 0.0
a Reaction conditions: 10 mM DFF, 2 mL EtOAc/tBuOH (1:1. v/v), sequential addition of 2.0 equivalents aqueous H2O2 (30% v/v) every hour for seven hours, temperature 40 ◦C,
reaction time 7 h. b Calculated from Equation (3) (see Experimental part). c Calculated from Equation (4) (see Experimental part). d CTMS/SiO2 molar ratio = 0.33. e 2 mg CALB in 20 mg
support (1.33 mg/mL CALB in the immobilization solution). f template-free sol-gel silica. g specific activity was calculated as µmol of product formed (two µmol peracid per µmol of
FDCA) per g of protein in one minute. h TTN = moles of FDCA formed divided by moles of protein. i TOF = TTN divided by reaction time.
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The grafting density cannot explain such difference because it is slightly lower in the
CTMS-functionalized material compared to the HDTMS-functionalized one (45 mg/g vs.
67 mg/g, Table 1). Conversely, the surface coverage with hexadecyl chains was found to
be almost four times lower than that obtained with trimethyl groups (0.07 chains/nm2

vs. 0.28 chains /nm2). Therefore, the partial coverage of the hydrogel surface with hex-
adecyl moieties appears to be inadequate for the interfacial activation of lipase. Notably,
grafting of CALB on the non-hydrophobisized support gave negligible DFF conversion
(44%) and could not lead to the final product (0% FDCA yield) (entry 14), while 85% DFF
conversion and 13% FDCA yield could be achieved with the Sihgel@HDTMS0.33@APTMS-
GAH@CALB2 biocatalyst (entry 15). Taken together, these data indicate that the hydropho-
bic moieties of the silane and their surface coverage play a key role in optimal activation of
the lipase.

On the other hand, comparison of Sihgel@CTMS@APTMS-GAC@CALB2 (entry 16)
and Sihgel@CTMS@APTMS-GAH@CALB2 (entry 17) revealed that glutaric anhydride
was a less efficient linker than glutaraldehyde (67% vs. 41 % FDCA yields), although
higher grafting densities were obtained with the former (223 mg/g vs. 184 mg/g). This
suggests that the CAG-activated chains resulting from succinylation of both amino groups
and hydroxy amino acids from protein [52] may probably alter the proper function-
ing of lipase by masking the hydrophobic trimethyl groups, which are essential for
interfacial activation of CALB. It is worth noting that the FDCA yield achieved with
the Sihgel@CTMS@APTMS-GAH@CALB2 catalyst (entry 17) was also higher than that
obtained with Sihgel@CTMS@GPTMS@CALB2 (entry 4) giving a specific activity of
33.2 µmol g−1 min−1, a TTN of 460.6 mol−1, and a TOF of 65.8 min−1.

These observations highlight the important role played by both grafting and hydropho-
bic groups on the catalytic performance of immobilized CALB. Indeed, the steric hindrance
exerted by the thick layer resulting from crosslinking reactions of the epoxy ring [40,41]
may cause conformation constraints on immobilized enzyme, restricting access of substrate
to the active site. Conversely, partial covering of hydrogel surface with hardly hydrolysable
hexadecyltrimethoxysilane seems not being adequate for the interfacial activation of lipase.
Therefore, a proper balance needs to be found between chemically reactive groups and
hydrophobic functions for an optimal functioning of the biocatalyst.

4. Recyclability

The ability to recycle and reuse the catalyst is one of the most important criteria for in-
dustrial applications. Unfortunately, our most efficient catalyst, i.e., Sihgel@CTMS@APTMS-
GAH@CALB2, could not be reused under the employed reaction conditions since the lipase
completely lost its catalytic activity in the second run. Given that the furanic compounds
formed during this reaction (FFCA and FDCA) bear carboxylic acid moieties in their cycle,
they are likely to lower the pH in the vicinity of the enzyme, thereby creating an acidic
microenvironment that can inhibit the lipase activity [53]. In fact, the pH of reaction
medium was found to decrease at the end of the catalytic test from 4.8 to 3.1. To circumvent
limitations due to pH gradients and assess the recycling potential of the immobilized
CALB, we considered covering our biocatalyst with the cationic cross-linked β-cyclodextrin
(CCLβ-CD) employed as a lipase-stabilizing agent. The polymeric CD network is obtained
by crosslinking native β-CD with epichlorohydrin (EP) in the presence of a cationizing
agent, the glycidyltrimethylammonium chloride (GTMAC) [54]. CCLβ-CD has received
great interest as high performant carrier in drug [55,56] and gene delivery systems [57], as
well as in heterogeneous catalysis [58]. Because this CD-based polymer contains quaternary
ammoniums on its structure (Figure 6A), it should be able to protect the enzyme against
pH variations, thus acting as a “solid buffer”.
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Figure 6. Schematic structure of cross-linked β-cyclodextrin oligomers (A); DLS data of mixtures
prepared with 2 mg/mL CALB and different wt. % of CCLβ-CD (a: 0%; b: 0.5%; c: 1.5%; d: 2.5%;
e: 3.0%; f: 4.0%) (B). Zeta potential of aqueous solutions prepared increasing wt. % of CCLβ-CD
without (C) and with 2 mg/mL CALB (D).

Under the immobilization conditions employed, at pH below the isoelectric point of
CALB (acetate buffer, pH 4.6), the presence of positive charges on CCLβ-CD can result
in favorable electrostatic interactions with the negatively charged enzyme. Evidence for
such interactions was provided by DLS measurements. Thus, at 25 ◦C, CALB solution
(2 mg/mL) displayed three size populations that could be attributed to free enzyme
(8.7 nm) and its aggregates (35 nm and 260 nm) (Figure 6B). Upon addition of CCLβ-CD
up to 4 wt %, the size of the CALB aggregates decreased from 260 to 160 nm as a result of
their dissociation after interaction with the cationic polymer. Notably, the size population
at 8.7 nm corresponding to free enzyme totally disappeared at the expense of CALB/CCLβ-
CD assemblies with an average diameter of 25–30 nm. Zeta potential measurements also
confirmed interaction between the two entities. For instance, in the enzyme-free CCLβ-CD
solution (Figure 6C), ζ potential increased from +3.38 to +13.5 mV with polymer amount,
while negative values were obtained in the CALB/CCLβ-CD mixture, increasing from
−21.6 to −7.2 mV with CCLβ-CD loading. Overall, our results confirm that electrostatic
interactions take place between CALB and CCLβ-CD in aqueous solution, yielding stable
supramolecular assemblies.

With a surface coverage of 2 wt% in CCLβ-CD, the recyclability of the most efficient
nanoreactor, i.e., Sihgel@CTMS@APTMS-GAH@CALB was then evaluated and the activi-
ties obtained across three consecutive runs are shown in Figure 7. Although a drop in the
FDCA yield was noticed from 100% to 38% in the second run and to 25% in the third one,
the DFF conversions were still high (77%), with FFCA being the only intermediate (52%).
We explain such a decrease in the FDCA yield by the large number of small particles that
were lost at the very first rinsing step, causing a decrease of the amount of lipase remaining
in the reaction mixture. In fact, the silicified hydrogel is very polydisperse in size. It is
composed of very small particles originating from free (uncomplexed) cyclodextrin and
larger ones formed by silicification of polypseudorotaxanes and polypseudorotaxane-based
nanocrystallites. All of these species are present in the starting F127/α-CD hydrogel and
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are replicated after silicification producing a wide range of particle sizes, which are at the
origin of the microstructure heterogeneity. At the end of the first run, we observed an
important decrease in the amount of residual solid, which was actually almost half lower
(10.5 mg) than that introduced in the reaction medium (20.8 mg), then a stabilization to
8.4 mg in the second run and to 7.9 mg in the third one. This suggests that almost all tiny
particles were removed during the first rinsing step. However, we also noticed that the
rinsing solution was able to catalyze effectively the DFF oxidation, achieving conversions
close to 100% (Figure S2, ESI). Given that free CALB was not active in this reaction (entry
1, Table 2), this in an indication that enzyme leaching that may result from the hydrolysis
of the imine bond should not be significant under these modified conditions. Overall,
these results confirm that CCLβ-CD is a good stabilizing agent for our biocatalyst since it
effectively protects the enzyme against deactivation under acidic conditions. Nevertheless,
CCLβ-CD/CALB molar ratio in the nanoreactor is an important parameter that needs to be
further investigated in the future in order to optimize the effectiveness of recycling process.

Figure 7. Catalytic recyclability of SiO2@CTMS@APTMS-GAH@CALB@CCLβ-CD biocatalyst. Reac-
tion conditions: 10 mM DFF, 2 mL EtOAc/tBuOH (1:1 v/v), sequential addition of 2.0 eq. H2O2 (30%
v/v) every hour for seven hours, temperature 40 ◦C, reaction time 24 h.

5. Conclusions

In summary, we have shown that the hierarchically porous silica monoliths obtained by
silicification of a supramolecular Pluronic F127/α-cyclodextrin hydrogel act as a promising
host matrices for the immobilization of lipase B from Candida antarctica. Functionalization
of the silicified hydrogel surface with chemically reactive groups (epoxide and primary
amine) and hydrophobic functions (trimethyl and hexapropyl) permitted covalent an-
choring and interfacial activation of the lipase. Comparison of the catalytic activities of
different catalysts in the oxidation of 2,5-diformylfuran demonstrated the necessity to
find a balance between the density of surface coverage and hydrophobic chain length.
Therefore, the dense organic layer obtained with (3-glycidiloxypropyl) trimethoxysilane
resulting from crosslinking reactions of the epoxy ring was found to be detrimental for
lipase activity. Similarly, using glutaric anhydride (GAC) as a spacer on the (3-aminopropyl)
trimethoxysilane-functionalized material caused a decline in enzyme activity with respect
to glutaraldehyde. On the other hand, the hydrophobic chlorotrimethylsilane with a
shorter chain length was found to provide better coverage of the hydrogel surface com-
pared to hexadecyltrimethoxysilane and was more efficient for the interfacial activation
of CALB. Among the different biocatalysts, Sihgel@CTMS@APTMS-GAH@CALB gave
the best catalytic performance in the oxidation of DFF, achieving full DFF conversion
with 67% FDCA yield after 7 h at 40 ◦C and almost quantitative FDCA yield after 24 h.
While immobilized CALB was completely deactivated after the first run, the use of cationic
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cross-linked β-cyclodextrin as a stabilizing agent permitted to significantly increase the
operational stability of lipase, enabling efficient recycling and reuse of the biocatalyst in at
least three cycles. This study opens up new perspectives on the use of hierarchically porous
supramolecular hydrogels in construction of other chemoenzymatic cascades integrating
enzymatic and heterogeneous catalysts for spatially confined chemo-enzymatic reactions.

6. Experimental
6.1. Materials

Lipase B from Candida antarctica (CALB), recombinant from Aspergillus oryzae (Mw
33 kDa) was purchased from Sigma Aldrich (Saint-Quentin-Fallavier, France). CALB con-
tains 317 amino acid residues [59] and its active site is composed of a catalytic triad con-
sisting of nucleophilic serine, histidine, and aspartate or glutamate [60]. Pluronic F127
[PEO100PPO70PEO100 where PEO stands for poly(ethylene oxide) and PPO for poly(propylene
oxide), average Mw 12,500 g/mol], tetramethyl orthosilicate (TMOS 98%, Mw 152.22 g/mol),
chlorotrimethylsilane (CTMS > 98%, Mw 108.64 g/mol), hexadecyltrimethoxysilane (HDTMS
> 85%, Mw 346.6 g/mol), (3-aminopropyl)-trimethoxysilane (APTMS 97%, Mw 221.37 g/mol),
(3-Glycidyloxypropyl)trimethoxysilane (GPTMS, ≥ 98%, Mw 236.34 g/mol), glutaraldehyde
(GAH, 50% in H2O, Mw 100.11 g/mol), glutaric anhydride (GAC, 95%, Mw 114.1 g/mol), N-
(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC hydrochloride > 98%,
Mw 191.7 g/mol), 2,5-diformylfuran (DFF 97%, Mw 124.1 g/mol), 2,5-furandicarboxylic acid
(FDCA 97%, Mw 156.1 g/mol), 5-formylfuran-2-carboxylic acid (FFCA, Mw 140.1 g/mol),
phosphate buffer solution (50 mM, pH 7.5), ethylacetate (EtOAc), and tert-butanol (t-BuOH)
were purchased from Sigma Aldrich (Saint-Quentin-Fallavier, France). Acetate buffer solu-
tion (pH 4.6) was procured from Honeywell Fluka (Illkirch, France). Native α-cyclodextrin
(α-CD, 99%, Mw 972.85 g/mol) was procured from Wacker Chemie GmbH (Lyon, France)
while cationic cross-linked β-CD (CCLβ-CD, Mw ~20 kg/mol) was a gift from Roquette
Frères (Lestrem, France). The 1H NMR and 13C NMR spectra of polymer in D2O are shown
in Figure S3, ESI. All chemicals were used as received, without further purification.

6.2. Preparation of Silicified Hydrogel

The silicified hydrogel (denoted Sihgel) was prepared according to a previously re-
ported method with some modifications [30]. Briefly, 2.0 g of α-CD (100 mg/mL) was
introduced into 20 mL of a micellar F127 solution (25 mg/mL of Pluronic F127 in water).
The mixture was stirred at room temperature for 15 min, then stored in a closed vial at 4 ◦C
for 24 h until a water-swollen gel formed. The pH of the hydrogel was measured to be 6.3.
Subsequently, 1.42 g of TMOS (α-CD/TMOS molar ratio = 0.22) was added dropwise to
the hydrogel and maintained under stirring (800 rpm) at room temperature for 2 h. The
mixture was then loaded into a 40-mL Teflon-lined autoclave and heated at 60 ◦C for 48 h to
complete the condensation reaction between silanols. The excess of hydrogel was removed
by washing several times with water and ethanol.

6.3. Functionalization of Silicified Hydrogel

Prior to functionalization with different reactive and hydrophobic groups, 250 mg of
the silicified hydrogel (Sihgel) was dried under vacuum conditions at 180 ◦C overnight in
order to remove any traces of solvent adsorbed into the pores.

(i) Sihgel@CTMS@GPTMS. Surface functionalization with GPTMS and CTMS was car-
ried out according to a method reported earlier by Renard et al. [61] with some
modifications. Typically, 250 mg of dried Sihgel was introduced in 25 mL toluene
together with 175 µL CTMS (0.054 M, CTMS/SiO2 = 0.33) and 750 µL GPTMS (0.113 M,
GPTMS/SiO2 = 0.68). The mixture was maintained under reflux at 100 ◦C for 16 h.
Reaction was performed in toluene because non-polar solvents have been reported to
facilitate aggregation of silane ligands on the silica surface, thus favoring interaction
with silanol groups [48,62]. The solid was collected by centrifugation, then washed
with water and ethanol and finally dried under vacuum conditions at 25 ◦C for 10 h.
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GPTMS/SiO2 molar ratio was varied between 0.34 and 1.5 while CTMS/SiO2 one
was fixed to 0.33 or 0.66.

(ii) Sihgel@HDTMS@APTMS-GAH. Surface functionalization with APTMS was carried
out according to two methods reported earlier on conventional silica by Sorensen
et al. [63] and Kao et al. [64] with some modifications. Typically, 250 mg of silicified
hydrogel was suspended in 25 mL of anhydrous toluene, followed by successive
addition of 630 µL HDTMS (0.055 M, HDTMS/SiO2 = 0.33) and 122 µL APTMS
(0.027 M, APTMS/SiO2 = 0.16). Because of its high degree of hydrophobicity, HDTMS
was hydrolyzed first in an oxalic acid solution (0.1 M oxalic acid) before grafting.
After refluxing at 100 ◦C for 24 h, the solid denoted Sihgel@HDTMS@APTMS was
collected by centrifugation, washed several times with toluene, then dried under
vacuum and finally stored under inert (N2) atmosphere. Subsequently, 50 mg of the
functionalized Sihgel@HDTMS@APTMS material was dispersed in 1.5 mL acetate
buffer (pH 4.6) and 77 µL glutaraldehyde (GAH) was added (GAH/APTMS = 3.1).
After stirring at room temperature for 10 h, the GAH cross-linked material (denoted
Sihgel@HDTMS@APTMS-GAH) was collected by centrifugation, then washed with
water and ethanol and finally dried under vacuum conditions at 25 ◦C for 10 h.

(iii) Sihgel@CTMS@APTMS-GAH(GAC). Typically, 250 mg silicified hydrogel was sus-
pended in 25 mL of anhydrous toluene, followed by successive addition of 175 µL
CTMS (0.054 M, CTMS/SiO2 = 0.33) and 122 µL APTMS (0.027 M, APTMS/SiO2 =
0.16). After refluxing at 100 ◦C for 24 h, the solid denoted Sihgel@CTMS@APTMS
was collected by centrifugation, washed several times with toluene, then dried under
vacuum and stored under inert (N2) atmosphere. Subsequently, 50 mg of the func-
tionalized Sihgel@CTMS@APTMS material was dispersed in 1.5 mL acetate buffer
(pH 4.6) and 77 µL of glutaraldehyde (GAH) was added (GAH/APTMS = 3.1). Af-
ter stirring at room temperature for 10 h, the GAH cross-linked material (denoted
Sihgel@CTMS@APTMS-GAH) was collected by centrifugation, then washed with
water and ethanol and finally dried under vacuum conditions at 25 ◦C for 10 h. In
another synthesis, glutaric anhydride (GAC) was employed as a linker. Typically,
50 mg of Sihgel@CTMS was dispersed in 1.5 mL DMF, then 50 mg·GAC was added
(GAC/APTMS = 3.2). The mixture was stirred at room temperature for 1 h, then
refluxed at 60 ◦C for 9 h. The solid was recovered by centrifugation, then washed
with water and ethanol and finally dried under vacuum.

In some experiments, for comparison purposes, the Sihgel matrix was silanized
with hydrophobic groups from CTMS (Sihgel@CTMS) and HDTMS (Sihgel@HDTMS)
taken separately, before considering their combine use (Sihgel@CTMS@HDTMS). A non-
hydrophobized surface was also prepared for a control experiment by functionalizing
Sihgel with APTMS followed by the activation with GAH (Sihgel@APTMS-GAH). The
CTMS/SiO2 and HDTMS/SiO2 molar ratio used was 0.33 unless stated otherwise.

6.4. Immobilization of Lipase B from Candida Antarctica

For the immobilization of CALB, 2 mg of lipase solubilized in 0.3 mL buffer solution
was added to 20 mg of Sihgel@CTMS@GPTMS dispersed by ultrasound in 1.2 mL phos-
phate buffer. Immobilization was carried out at pH 7.5 because the epoxide-ring opening is
greatest under near neutral or moderate alkaline conditions [41]. After stirring in an ice bath
for 16 h, the supported biocatalyst was collected by centrifugation, washed several times
with water and ethanol, then dried under vacuum. The same immobilization procedure was
applied on Sihgel@HDTMS@APTMS-GAH and Sihgel@CTMS@APTMS-GAH(GAC) with
the only exception that phosphate buffer (pH 7.5) was replaced by acetate buffer (pH 4.6).
In fact, the formation of the imine bond is generally favored near a pH of 5.0 [42]. In the case
where GAC was used as linker, 10 mg of 1-(3-diméthylaminopropyl)-3-éthylcarbodiimide
(EDC) were added for carboxylic acid activation in GAC. For comparison purposes, CALB
was also anchored by ionic bonding on hydrophobized Sihgel. Typically, 2 mg of CALB
was first dissolved in 1.5 mL acetate buffer solution (pH 4.6), then 20 mg of Sihgel@CTMS
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(or Sihgel@HDTMS) was added. The pH of reaction medium was chosen between the
isoelectric point of CALB (pI 6) and the point of zero charge of silica (PZC 2.0–3.5), so that
attractive electrostatic interactions can occur between the support and the enzyme. After
stirring in an ice bath for 16 h, the supported biocatalyst was collected by centrifugation,
washed with water and ethanol, then dried under vacuum.

6.5. Characterization Methods

Attenuated total reflexion Fourier transform infrared (ATR-FTIR) measurements were
performed using a MIRacle Diamond prism on a Shimadzu IR Prestidge-21 spectrome-
ter. All spectra were recorded with a resolution of 2 cm−1 in the 4000–400 cm−1 region.
Thermogravimetric (TG) analyses were carried out in platinum crucibles using a Setaram
TG-DTA 92 microbalance. Samples were analyzed in duplicate. All measurements were
performed in air at a flow rate of 20 mL/min using a heating ramp of 8 ◦C/min, from 40 to
800 ◦C. The surface coverage of the silanized materials (Scov) (chain/nm2) was determined
based on the following equation as described by Chevigny et al. [65]

Scov =

(
SBET

Mgr × NA

)
×

(
Wtot − Wref

100− (Wtot − Wref)

)
(1)

where SBET is the specific surface area of the support (nm2/g), NA is the Avogadro’s
constant (6.02 × 1023 /mol), Mgr is the molar weight of the functional group, Wtot and
Wref are the weight losses of functionalized silica and bare silica respectively. Nitrogen
adsorption-desorption isotherms were collected at −196 ◦C using a Micromeritics Tristar
3020. Typically, prior to analysis, 40–60 mg samples were outgassed at 180 ◦C for 16 h to
remove species adsorbed on the surface. The specific surface area (SBET) was calculated
from N2-adsorption isotherms using the Brunauer-Emmet-Teller (BET) method. Pore
size distributions and pore volumes were determined using the BJH method assuming a
cylindrical pore structure. The maximum grafting density (Dg

max) (mg/g) was determined
using the following equation, assuming that a monolayer of silane was formed on the
surface of silanized hydrogel [48].

Dmax
g =

(
SBET

SSi

)(
MW

NA

)
(2)

where SBET is the specific surface area of the silicified hydrogel (nm2/g), SSi is the surface
area occupied by a silane ligand (nm2), MW is the organosilane molecular weight, and
NA is the Avogadro’s constant. Transmission electron microscopy (TEM) images were
recorded on a TECNAI microscope operating at 200 kV. Powders were deposited directly
on a carbon coated copper grid. Scanning electron microscopy (SEM) images were recorded
at 3 keV with a FEG Hitachi S-4700 microscope. UV-Visible measurements were carried
out using a Perkin Elmer (Lambda 19) spectrophotometer. Enzyme loading in the silicified
hydrogel was determined by measuring the initial and final concentration of protein within
the immobilization solution using the Bradford method [66]. Calibration curves were
established by measuring the ratio between the absorbance at 595 nm corresponding to
the anionic blue form of the Coomassie Brilliant Blue G-250 binding to the protein, and the
absorbance at 450 nm corresponding to the cationic red form of the dye. The immobilization
efficiency (%) and the loading capacity (wt. %) were deduced by mass balance using the
following equations [67]:

Immobilization efficiency =
(m−C1V1)

m
× 100 (3)

Loading capacity =
(m−C1V1)

Ws
× 100 (4)
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where m (mg) is the mass of the enzyme added to the immobilization solution, C1 (mg/mL)
and V1 (mL) are the concentration of enzyme in the supernatant and its volume respectively,
and Ws (g) is the weight of the support. Polarized optical microscopy images were recorded
on an Olympus (BX51) microscope. Viscosity measurements were carried out at 25 ◦C using
a viscosimeter from Brookfield equipped with a cylindrical geometry (module SC4–18). The
apparent viscosity vs. shear-rate plots were recorded in a 0.1–500 s−1 range of shear-rate.
Dynamic light scattering (DLS) and Zeta potential measurements were performed at 25 ◦C
using the Malvern Zeta Nanosizer Instrument equipped with a 4.0 mW He-Ne red laser
operating at 633 nm. Detection was carried out in backscattering mode (scattering angle
173◦) with respect to the incident beam. Each sample was analyzed three times with an
average of ten runs per measurement.

6.6. Activity Measurements

Free CALB used in this study had a hydrolytic activity of 9 U/mg. One lipase unit
corresponds to the amount of enzyme releasing 1 µmol of butyric acid per minute at 40 ◦C
(pH 8.0) using tributyrin as substrate. The catalytic performance of immobilized lipase
was evaluated in the oxidation of DFF to FDCA as reported by Qin et al. [68], with some
modifications. Typically, DFF (2.48 mg, 10 mM) was dissolved in 2 mL of a mixture of ethyl
acetate (EtOAc) and tert-butanol (t-BuOH) (1:1 v/v), to which 2.0 equivalents of aqueous
H2O2 (4.5 µL, 30% v/v) were added. The reaction was started with addition of 2 mg of CALB
and maintained under stirring in a thermostatic bath at 40 ◦C. About 2.0 equivalents H2O2
aliquots were added regularly every hour, up to 7 h of reaction time. The analysis of DFF
and its oxidation products (FDCA and FFCA) was carried out using 1H nuclear magnetic
resonance (1H NMR) spectroscopy and high liquid performance chromatography (HPLC).
1H NMR spectra were recorded on a BRUKER DPX300 Avance spectrometer operating
at 300 MHz at 25 ◦C with 16 scans per measurement. Prior to analysis, products were
dissolved in 600 µL DMSO. Typical profiles of the 1H NMR spectra of isolated products
and reaction mixture are shown in Figure S4. DFF conversion (%) together with the FFCA
and FDCA yields (%) was calculated according to the following equations:

DFF Conversion = 100−
(

ADFF/2
AFDCA/2 + AFFCA + ADFF/2

× 100
)

(5)

FFCA yield =
AFFCA

AFDCA/2 + AFFCA + ADFF/2
× 100 (6)

FDCA yield =
AFDCA/2

AFDCA/2 + AFFCA + ADFF/2
× 100 (7)

where AFDCA, AFFCA, and ADFF are the integrated areas of peak a: δ = 7.30 ppm (s, 2H, Ar)
from FDCA, peak b: δ = 7.60 ppm (d, 1H, Ar) from FFCA and peak a: δ = 7.67 ppm (s, 2H,
Ar) from DFF, respectively. The factor 2 derives from the two protons on the furan ring of
FDCA and DFF, whereas only one proton is available on the furan ring of FFCA. HPLC
analyses were performed on a Perkin Elmer Flexar apparatus using an Aminex HPX-87H
(300 mm length × 7.8 mm diameter) column heated at 60 ◦C. The mobile phase was acetic
acid (0.2%) at a flow rate of 0.6 mL/min. Aliquots of 1 µL of each sample were injected
and analyzed at a wavelength of 284 nm using a photodiode array detector. Standard
calibration curves were used to determine the amounts of DFF, FFCA, and FDCA. HPLC
calibration curves and typical chromatograms of the isolated products and reaction mixture
are shown in Figures S5 and S6.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/gels8010003/s1. Figure S1: (A) Viscosity vs. shear-rate curves for different mixtures prepared
with 100 mg/mL α-CD and increasing concentrations of pluronic F127: (a) 8 mg/mL, (b) 16 mg/mL
and (c) 30 mg/mL. All measurements were performed at 25 ◦C. (B) Visual aspect of the supramolecular
F127/α-CD hydrogel (16 mg/mL F127) before and after shaking. Figure S2: 1H NMR (300MHz,

https://www.mdpi.com/article/10.3390/gels8010003/s1
https://www.mdpi.com/article/10.3390/gels8010003/s1
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DMSO-D6) spectrum of the reaction products obtained on DFF oxidation catalyzed by the supernatant
recovered after the first run with the Sihgel@CTMS@APTMS-GAH@CALB2 biocatalyst. Reaction
conditions: 10 mM DFF, 2 mL EtOAc/tBuOH (1:1. v/v), sequential addition of 2.0 equivalents
aqueous H2O2 (30% v/v) every hour for 7 h, temperature 40 ◦C, reaction time 24 h. Figure S3: 1H
NMR (300MHz, D2O) (A) and 13C NMR (D2O, 12,000 accumulations) (B) spectra of cationic cross-
linked β-cyclodextrin (CCLβ-CD). The signal at 3.16 ppm in (A) is characteristic of the methyl protons
from trimethylammonium groups. The resonance a in (B) is typical of C7, C8, C7′, C8′, and C9′ from
the 2-hydroxypropyl ether segments. Resonances C8” and C9” indicate also the presence of glycidyl
group which may be responsible for gelation of CCLβ-CD after prolonged storage. Figure S4: 1H
NMR (300MHz, DMSO-D6) spectra of (a) DFF a: δ = 7.67 (s, 2H, Ar), b: δ = 9.82 (s, 2H, aldehyde);
(b) FFCA a: δ = 7.39 (d, 1H, Ar), b: δ = 7.60 (d, 1H, Ar), c: δ = 9.73 (s, 1H, aldehyde); (c) FDCA a: δ
= 7.30 (s, 2H, Ar); (d) Typical spectrum of reaction products obtained with Sihgel@CTMS@APTMS-
GAH@CALB2: DFF conversion 100%; FFCA yield 10% and FDCA yield 90%. Figure S5: HPLC
chromatograms of standard solutions: (a) DFF; (b) FFCA; (c) FDCA and (d) typical spectrum of the
reaction mixture. Analytical conditions: mobile phase acetic acid (0.2%), temperature 60 ◦C, flow rate
0.6 mL/min. UV detection at 284 nm. Figure S6: HPLC calibration curves of (a) DFF, (b) FFCA and
(c) FDCA. The analytical conditions were the same as those described in Figure S5.
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Abbreviations

CD Cyclodextrin
Pluronic F127 PEO100PPO70PEO100 PEO: poly(ethylene oxide) and PPO: poly(propylene oxide)
CALB Lipase B from Candida antarctica
TMOS Tetramethyl orthosilicate
CTMS Chlorotrimethylsilane
HDTMS Hexadecyltrimethoxysilane
APTMS (3-aminopropyl)-trimethoxysilane
GPTMS (3-Glycidyloxypropyl)trimethoxysilane
GAH Glutaraldehyde
GAC Glutaric anhydride
EDC N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
CCLβ-CD Cationic cross-linked β-CD
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EP Epichlorohydrin
GTMAC Glycidyltrimethylammonium chloride
DFF 2,5-diformylfuran
FDCA 2,5-furandicarboxylic acid
FFCA 5-formylfuran-2-carboxylic acid
DLS Dynamic Light Scattering
SBET Surface area determined by the Brunauer, Emmett and Teller method
BJH Barrett, Joyner and Halenda
TEM Transmission Electron Microscopy
SEM Scanning Electron Microscopy
NMR Nuclear Magnetic Resonance
HPLC High Performance Liquid Chromatography
ATR-FTIR Attenuated Total Reflexion Fourier Transform Infrared spectroscopy
TGA Thermogravimetric analysis
Dg Grafting density
Dg

max Maximum grafting density
Scov Surface coverage
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