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Introduction

Abstract

Cytochrome P450 (CYP) 3A4 is a membrane protein that catalyzes hydroxyl-
ation of endogenous and exogenous substrates. Protein—protein interaction is a
crucial factor that regulates the function of enzymes. However, protein—protein
interactions involving human CYPs have not been fully understood. In
this study, extensive protein—protein interactions involving CYP3A4 were
determined by a shotgun analysis of immunoprecipitate utilizing anti-CYP3A4
antibody. Our shotgun analysis revealed that 149 proteins were immunoprecipi-
tated with anti-CYP3A4 antibody in human liver microsomes. We further
determined that 51 proteins of 149 proteins were specifically immunoprecipitat-
ed with the anti-CYP3A4 antibody. Our analysis demonstrated that other CYP
isoforms are interacting with CYP3A4, which is in agreement with previous
findings. Based on our current and previous findings, we propose that drug-
metabolizing enzymes such as CYP3A4 and UDP-glucuronosyltransferase 2B7
form a metabolosome, which is a functional unit of metabolism consisting of
multiple metabolism-related proteins.

Abbreviation

CPR, NADPH-cytochrome P450 reductase; CYP, cytochrome P450; ER, endoplas-
mic reticulum; LC-MS/MS, liquid chromatography-mass spectrometry; UGTs,
UDP-Glucuronosyltransferases.

While the active site of CYPs locates in the cytoplas-
mic side of endoplasmic reticulum (ER), the active site

Cytochrome P450s (CYPs; EC 1.14.x.x) are important
membrane-bound enzymes that metabolize a number of
endogenous and exogenous substrates. Human CYP is a
superfamily of enzymes that are divided into 18 families with
a total of 57 isoforms (Lewis 2004). The CYP3A4 gene is
located on chromosome 7g22.1 and is the main CYP isoform
responsible for the metabolism of more than 50% of clini-
cally used drugs (Williams et al. 2004). As CYPs are called as
phase I drug-metabolizing enzymes, there is also a group of
phase II drug-metabolizing enzymes that catalyze the conju-
gation of their substrates. UDP-Glucuronosyltransferases
(UGTs; EC 2.4.1.17), which are the major phase II drug-
metabolizing enzymes, metabolize drugs by transferring the
glucuronic acid moiety of UDP-glucuronic acid to the
substrates (Dutton 1980; Mackenzie et al. 2005).
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of UGT proteins locates in the luminal side of ER (Shep-
herd et al. 1989). Whereas it has been reported that
CYPs and UGTs functionally interact with each other, as
CYPs catalyze hydroxylation of substrates so that UGT
can transfer glucuronic acid to the hydroxyl group of
the substrates (Nakajima and Yokoi 2005; Zheng et al.
2007). Physical interactions between CYPs and UGTs
have been demonstrated by immunoprecipitation assays
utilizing anti-CYP3A4 and anti-UGT2B7 antibodies
(Fremont et al. 2005; Ishii et al. 2007; Takeda et al.
2009), supporting that CYPs and UGTs are interacting
with each other to cooperatively metabolize the substrates.
Not only UGTs but also other drug-metabolizing
enzymes, such as epoxide hydrolase 1, have been
reported to interact with CYPs (Taura et al. 2000).
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However, the physiological role of these protein interac-
tions is still largely unknown.

Metabolosome, which is a functional unit of metabolism,
is the multimolecular assembly composed of metabolizing
enzymes, transport-related proteins (transporters, channels
or pumps), regulatory proteins, scaffold proteins, and other
functional cellular components, which are assembled by
means of multiple protein—protein interactions and/or pro-
tein-lipid interactions (Mori et al. 2011). The fact that
human CYPs have been reported to interact with other pro-
teins such as UGTs and epoxide hydrolase led us to investi-
gate whether CYPs form a metabolosome assembled by
extensive protein—protein interactions. In this study, large-
scale analysis of protein—protein interaction involving
CYP3A4 was carried out by shotgun liquid chromatogra-
phy—mass spectrometry (LC-MS/MS) proteomic analysis of
immunoprecipitated proteins to identify proteins interact-
ing with human CYP3A4 in human liver microsomes.

Materials and Methods

Chemicals and reagents

Human liver microsomes were obtained from BD Gentest
(Woburn, MA). Rabbit anti-human CYP3A4 antibody
(H00001576-D01) was purchased from Abnova (Taipei,
Taiwan). Control antibodies (IgG from rabbit serum) were
purchased from Sigma—Aldrich (St Louis, MO) and Abcam
(Cambridge, MA). Immunoprecipitation Kit Dynabeads
ProteinG was purchased from Invitrogen (Carlsbad, CA).
All other chemicals and solvents were of analytical grade or
the highest grade commercially available.

Immunoprecipitation and Nano-LC-MS/MS
analysis of the immunoprecipitate

Immunoprecipitation assay and nano-LC-MS/MS analysis
were conducted as described before (Fujiwara and Itoh
2014).

Results

Identification of proteins
immunoprecipitated with human CYP3A4
antibody

CYP3A4 is one of the major CYP isoforms involved in
metabolism of a wide variety of drugs in the human liver.
To identify proteins that interact with CYP3A4, human
liver microsomes were subjected to an immunoprecipita-
tion assay with rabbit anti-human CYP3A4 antibody, fol-
lowed by a shotgun analysis of the immunoprecipitate by
an LC-MC/MC analysis. Our shotgun analysis revealed
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that 149 proteins including human CYP3A4 were coim-
munoprecipitated with anti-human CYP3A4 antibody
(Fig. 1). Human CYP3A4 has been reported to interact
with human UGTs and epoxide hydrolases. In this study,
peptide sequences of these proteins were observed in the
LC-MC/MC analysis of the immunoprecipitate, showing
the reproducibility of the previous findings. Several pep-
tide sequences of other proteins such as protein transport
protein Sec61 were also obtained in the shotgun analysis.
These data indicate that CYP3A4 might interact with
multiple proteins to form a metabolosome.

To exclude the possibility that the anti-CYP3A4 anti-
body used in the immunoprecipitation assay nonspecifi-
cally reacted to proteins in human liver microsomes, we
incorporated our previous data into the current study.
We have previously carried out immunoprecipitation
assays with two different control rabbit IgG, followed by
shotgun analysis (Fujiwara and Itoh 2014). It was revealed
that more than 100 proteins were nonspecifically inter-
acted with IgG in the human liver microsomes. Table S1
shows the list of proteins specifically coimmunoprecipitat-
ed with the anti-human CYP3A4 antibody.

While the list of proteins coimmunoprecipitated with
the anti-CYP3A4 antibody contains several mitochondrial,
outer membrane, and extracellular proteins, it also con-
tains a number of proteins that are present in the ER
such as CYP3A5, CYP2A6, CYP4F2, and bile acyl-CoA
synthetase (Table 1).

Discussion and Conclusions

CYPs are the predominant proteins that are involved in
metabolism of a wide variety of drugs. Due to a greater
interest especially in the biomedical field, the insight into
the molecular mechanism of CYPs-catalyzed metabolism
(i.e., hydroxylation) of the substrate has been thoroughly
investigated. Protein—protein interaction is known as a
crucial factor that regulates the function of the proteins.
CYPs have been reported to interact with a microsomal
protein, NADPH-cytochrome P450 reductase (CPR).
Indeed, these interactions are required for CYP catalysis
(Bernhardt 2006). The physical and functional interac-
tions between CYP and CPR have been widely
demonstrated. Recent studies also revealed that CYPs
interact with other drug-metabolizing enzymes expressed
in ER such as UGTs and epoxide hydrolase (Taura et al.
2000; Ishii et al. 2007). It was further demonstrated that
the protein—protein interaction between CYPs and UGTs
affected their enzymatic activities (Ishii et al. 2014). Not
only with other proteins, but CYPs also interact with
CYP enzymes themselves to form homo- and heterodi-
mers (Subramanian et al. 2009, 2010; Davydov 2011;
Reed and Backes 2012). The presence of these complexi-
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Figure 1. Peptide sequence analysis of human CYP3A4. Six peptide sequences of human CYP3A4 were obtained with the shotgun analysis of
the immunoprecipitate with anti-CYP3A4 antibody (A). The middle panel indicates the MS/MS spectra of the peptide (B), whereas the bottom
panel indicates ion tables (C).
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Table 1. ER Proteins that were coimmunoprecipitated with anti-CYP3A4 antibody.

Number of
No.  Accession Score  Mass peptide sequences  emPAl  Protein name
2 CP3A4_HUMAN 140 57705 6 0.21 Cytochrome P450 3A4
7 S61AT_HUMAN 87 52687 1 0.07 Protein transport protein Sec61 subunit alpha isoform 1
9 SSRG_HUMAN 73 21067 1 0.18 Translocon-associated protein subunit gamma
10 NDUB4_HUMAN 70 15256 1 0.26 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4
12 ERP29_HUMAN 64 29032 1 0.13 Endoplasmic reticulum resident protein 29
14 S27A5_HUMAN 61 76420 2 0.1 Bile acyl-CoA synthetase
15 CO4A_HUMAN 61 194247 1 0.02 Complement C4-A
16 CISD2_HUMAN 59 15497 2 0.56 CDGSH iron-sulfur domain-containing protein 2
18 AT2A3_HUMAN 52 115444 1 0.03 Sarcoplasmic/endoplasmic reticulum calcium ATPase 3
21 SSRD_HUMAN 50 19158 1 0.2 Translocon-associated protein subunit delta
22 NDUAC_HUMAN 49 17104 1 0.23 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12
23 FAS_HUMAN 48 275877 1 0.01 Fatty acid synthase
24 AT1A1T_HUMAN 48 114135 1 0.03 Sodium/potassium-transporting ATPase subunit alpha-1
27 GLU2B_HUMAN 43 60357 1 0.06 Glucosidase 2 subunit beta
28 GANAB_HUMAN 43 107263 1 0.03 Neutral alpha-glucosidase AB
36 CP3A5_HUMAN 26 57357 1 0.06 Cytochrome P450 3A5
38 TM109_HUMAN 25 26194 1 0.15 Transmembrane protein 109
39 CP4F2_HUMAN 23 60442 1 0.06 Leukotriene-B(4) omega-hydroxylase 1
41 CP2A6_HUMAN 22 56636 1 0.07 Cytochrome P450 2A6
47 STRUM_HUMAN 18 135113 1 0.03 WASH complex subunit strumpellin

ties of the protein—protein interaction in ER suggests that
CYP3A4 might be involved in the formation of a meta-
bolosome, a functional unit of metabolism consisting of
multiple metabolism-related proteins.

Most of the metabolites of endogenous and exogenous
compounds produced by CYPs are subsequently metabo-
lized by phase II drug-metabolizing enzymes such as
UGTs to further increase in their hydrophilicity. The fact
that the majority of CYPs are localized on the cytoplasmic
and UGTs on the luminal side of the ER membrane leads
us to believe that their substrates and metabolites need to
be efficiently translocated across the ER membrane. How-
ever, CYPs and UGTSs solely possess a transmembrane
helix, which make it impossible to form a pore, suggest-
ing that other proteins might be involved in the transport
of the hydrophilic substrates/metabolites across the ER
membrane. In this study, it was revealed that a number
of microsomal proteins were interacting with CYP3A4 in
the microsomal fraction (Table 1). While the functional
relationship between CYP3A4 and the interacting proteins
is largely unknown, the formation of a metabolosome
might contribute to the accelerated translocation of the
hydrophilic substrates/metabolites across the ER mem-
brane. This hypothesis is supported by the finding that
several translocators such as Sec61 and translocon-associ-
ated proteins were coimmunoprecipitated with CYP3A4
in this study (Table 1). While the primary role of the
translocators is to translocate polypeptides across the ER
membrane, it has been reported that Sec61 was also
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involved in efflux of a small molecule, calcium, from the
ER (Lang etal. 2011). The functional relationship
between CYP3A4 and proteins listed in Table 1 needs to
be further investigated in the future.

To exclude the proteins nonspecifically interacting with
the antibody used in this study, we incorporated our previ-
ous data (Fujiwara and Itoh 2014), which showed that
more than 100 proteins were nonspecifically interacted with
IgG in the human liver microsomes. However, many mito-
chondrial, outer membrane, and extracellular proteins such
as ATP synthase and transhydrogenase were still included
in the list of proteins that were found to interact with
CYP3A4 (Table S1). While it is possible that those proteins
are transiently present in the ER to interact with CYP3A4,
it could be a result of indirect/nonspecific interactions.

In conclusion, we performed a shotgun analysis of
immunoprecipitate obtained with anti-CYP3A4 antibody
by utilizing nano-LC-MS/MS analysis. Twenty ER pro-
teins were newly identified as proteins interacting with
CYP3A4 in human liver microsomes. These proteins
might be associated with a formation of a metabolosome
involving CTP3A4. Functional roles of newly identified
proteins interacting with CYP3A4 in metabolism and
translocation of substrates or metabolites need to be
examined in future studies.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Table S1. Proteins that were coimmunoprecipitated with
anti-CYP3A4 antibody. Proteins specifically immunopre-
cipitated with the anti-CYP3A4 antibody are shown. Pro-
teins expressed in the ER are highlighted with a red color.
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