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Abstract

Females and males are known to have different abilities to cope with stress and disease.

This study was designed to investigate the effect of sex on properties of a complex inter-

linked network constructed of central biochemical metabolites. The study involved the blood

collection and analysis of a large set of blood metabolic markers from a total of 236 healthy

participants, which included 140 females and 96 males. Metabolic profiling yielded concen-

trations of 168 metabolites for each subject. A differential correlation network analysis

approach was developed for this study that allowed detection and characterization of inter-

connection differences in metabolites in males and females. Through topological analysis of

the differential network that depicted metabolite differences in the sexes, we identified

metabolites with high centralities in this network. These key metabolites were identified as

10 phosphatidylcholines (PCaaC34:4, PCaaC36:6, PCaaC34:3, PCaaC42:2, PCaeC38:1,

PCaeC38:2, PCaaC40:1, PCaeC34:1, PC aa C32:1 and PC aa C40:6) and 4 acylcarnitines

(C3-OH, C7-DC, C3 and C0). Identification of these metabolites may help further studies of

sex-specific differences in the metabolome that may underlie different responses to stress

and disease in males and females.

Introduction

It is well known that women and men react in different ways to stress, show distinctive clinical

presentations in a number of conditions, and generally have dissimilar abilities of coping with

illnesses [1,2]. Coronary heart disease, for example, has a higher prevalence in men than in

women; this difference is even more striking if only pre-menopausal women and age-matched

men are included in the comparison [3]. The latter observation contrasts with findings that the
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risk of developing stroke and heart failure is higher in women than in men [4,5]. The occur-

rence and severity of knee osteoarthritis (OA) also appears to be influenced by sex, with older

females affected to a greater degree by the disease compared to age-matched males [6,7]. In

our own investigations, we found that a large number of key biochemical metabolites studied

in subjects affected by OA show gender-specific associations [8,9]. Considering that the devel-

opment of heart diseases, obesity, and OA and other conditions is accompanied by changes in

the biochemical makeup of organs and tissues, metabolic disturbances can be either the result

of pathological changes or a factor contributing to the pathogenesis, or both. Sex, in combina-

tion with multiple other factors such as genetics and environmental influences may play differ-

ential effects, including those via influences on biochemical metabolism, in the onset,

development and outcomes of a disease.

As a method of analysis, metabolomics involves comprehensive studies of large sets of bio-

chemical metabolites in various states and conditions that allow investigations of complex

mechanisms underlying biological functions and phenotypes [9,10]. In the analysis of compos-

ite metabolomics data, complex metabolite-phenotype relationships are often revealed by using

either principal component analysis (PCA), partial least square discriminant analysis (PLS), or

other techniques that allow binary class discriminations [11]. However, to understand the roles

of metabolites in complex human physiological status, just as genes, they need to be studied in

the context of the regulatory systems they are involved in [12]. These regulatory networks can

provide the cellular context of all interested metabolites and give a means to identify specific

subnetworks that are dysfunctional in a given disease or physiological state. However, those are

infrequently used, largely because of limited availability of accepted methodologies [13]. For

example, metabolic analysis of correlations between concentrations of metabolites has not seen

wide adoption due to the lack of accepted methods of analysis. Investigations of such correla-

tions, however, would be of great interest and may provide information about intricate inter-

connections between the components of complex biochemical systems.

With the goal of elucidating the complex relationships between components of metabolic

makeup that are explicitly associated with sex, our specific objective in this work was further

development of a method for characterizing the interconnections of metabolite pairs exhibit-

ing significant differences in males and females. We term this method as the differential corre-

lation network approach. Our methodology is sufficiently distinct from other existing types of

approaches to analysis of metabolomics data. Through the topological analysis of differential

associations of metabolite concentrations in males and females, we were able to identify the

key metabolites that appear to play central roles in controlling network functional connectivity

and information flow. Identification of these significant metabolites and associations should

help our understanding of the foundation for sex-related effects in health and disease.

Patients and methods

Subjects

The subjects for this study were recruited from the cohort of Newfoundland, Canada [14]. All

of the participants were adult healthy volunteers. Inclusion criteria are: 1) at least a third gener-

ation Newfoundlander, 2) not pregnant at the time of study. These people’s medical informa-

tion was collected by a self-administered questionnaire. This study was approved by the

Health Research Ethics Authority of Newfoundland and Labrador.

Demographics and anthropometrics

The demographic and medical information of the study subjects was collected using a self-

administered questionnaire with the help of the research staff when necessary. Anthropometric
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data including height and body weight were retrieved using hospital admission and/or medical

records where applicable. The body mass index (BMI) was calculated by dividing weight in kilo-

grams by squared height in meters. Age of each participating subject was recorded at the time of

the blood sample collection.

Plasma sample preparation

The EDTA-containing vacutainer tubes were used for sample collection. Blood was collected

after an overnight (minimum 8 hours) fast. Plasma was separated from red cells immediately

after collection by centrifugation using a standard protocol. The centrifugation was performed

at 20,000 rpm for 10 mins and the plasma was immediately transferred into a clean polypropyl-

ene tube in which it was stored capped at -80˚C until analysis.

Metabolomics data collection

Metabolic profiling was performed on plasma samples in the batch mode by using the Waters

XEVO TQ MS mass spectrometry system (Waters Limited, Mississauga, Ontario, Canada).

Samples together with the Quality Control material at three concentration levels and calibra-

tors were extracted, internal standard added and data question files exported for data process-

ing. The analysis and data processing were performed with the help of the commercial reagent

kit Biocrates AbsoluteIDQ p180. The kit allows quantitative analysis of a metabolic panel con-

sisting of 186 metabolites; these included 90 species of glycerophospholipids, 40 species acyl-

carnitines (including free L-carnitine), 21 species of amino acids, 19 species biogenic amines,

15 species of sphingolipids and one hexose of which 90% was glucose. Additional details on

the reagent kit, data acquisition and processing were previously described [15].

Statistical methods

Differential analysis of metabolite correlations. Before applying the differential correlation

analysis, certain pre-processing steps were conducted on the metabolomic data. First, missing

entries in the data were imputed using the mean values separately for different sex. Then, we per-

formed covariant adjustment on BMI and age, in order to remove their confounding effects.

Lastly, metabolite concentration values in the population were normalized to zero mean and unit

standard deviation. Next, we analyzed correlations between pairs of metabolites in females and

males using Pearson’s correlation coefficient r. The analysis yielded correlation coefficients rfemale

and rmale for the two sex groups. These coefficients were subsequently used to compute changes in

the correlation strength between the paired metabolites across two different sex categories. Specifi-

cally, for any two metabolites i and j, the differential correlation rdiff (i, j) was calculated as normal-

ized difference of the Fisher’s z-transformations of rfemale (i, j) and rmale (i, j) [16–18].

rdiff i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nfemale� 3

2

r

� Zfemale i; jð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffi
nmale� 3

2

r

� Zmale i; jð Þ ð1Þ

Where z is the Fisher’s z-transformation of correlation coefficient r,

Zfemale i; jð Þ ¼
1

2
ln

1þ rfemaleði; jÞ
1 � rfemaleði; jÞ

" #

;Zmale i; jð Þ ¼
1

2
ln

1þ rmaleði; jÞ
1 � rmaleði; jÞ

� �

ð2Þ

We used nfemale and nmale to denote the total number of samples in the female and male groups,

respectively. This approach should capture the change of the normalized correlations across the

two dissimilar conditions. We applied this method to evaluate whether the paired metabolites are

differentially correlated by comparing males and females. Note that rdiff, found by subtracting the
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correlation in male from that in female describes a change of correlations, i.e. this value can be

either positive or negative. A 1000-fold permutation test was applied to evaluate the significance

of each differential correlation [19]. In order to remove associations among metabolite correla-

tions and sex status, we randomly shuffled the sex status of all samples for each permutation.

Differential correlation network. Only metabolite pairs showing significant differential

correlations were used to construct the networks. In a network constructed this way, each

node represented a metabolite while the “edges” linking metabolite pairs represented signifi-

cant differential correlations between the components of the network. The differential correla-

tions of each of the metabolite pairs calculated in this approach can take either a positive or

negative value, the sign meaning that the correlation is either stronger in females than in males

or vice versa. The network visualization was generated using Cytoscape.30.

Identification of key metabolites in the differential correlation network. In network

and graph analysis, indicators of centrality, node degree, betweenness centrality and closeness

centrality are the most important metrics [20]. Centrality captures the importance of a discrete

node in a network while the betweenness centrality is a measure of centrality that describes the

number of times the shortest path between any pair of nodes, represented by
P

s 6¼ v 6¼
t 2 V sstðnÞ

sst
, crosses a node v, where σst is the number of all shortest paths from a node s to node

t, and σst(v) is the number of all paths that pass through the node v. Closeness centrality is

defined as 1P
s6¼n

dns
, where dvs is the distance between nodes v and s. Betweenness captures the

degree to which nodes stand between each other [21]. This metric is a measure of the degree to

which a given node is near other nodes in a network. Centrality in the differential correlation

networks is used to identify key metabolites with important roles in the overall interrelated

structure. Highly connected nodes are the nodes with high degrees, referred to as “network

hubs” to indicate that they have more connections than other nodes. Nodes with high

betweenness or closeness are referred to as “bottlenecks” to indicate that they have crucial

roles in controlling the information flow in the network.

Results

Demographics and anthropometrics

A total of 140 healthy females and 96 healthy males were included in the study, with no dis-

eases reported by the participants. The mean age was 48.0±12.6 years in females and 51.0±12.8

years in males, and the mean BMI was 29.1±5.5 kg/m2 in female and 28.9±4.3 kg/m2 in male.

There were no significant differences between males and females in terms of age and BMI.

Metabolite correlations in male and female populations

The pairwise Pearson’s correlations for the 168 metabolites were calculated using the dataset

assembled from metabolite concentrations measured in all samples included in the study. We

used a p-value threshold of 0.05 to define statistical significance. Close to 80% of metabolite

pairs in females were positively (or negatively) correlated pairs, and a similar observation was

made in datasets constructed for males. This similarity of observed numbers of correlated

pairs in females and males suggests that these matching correlations were likely related to

“housekeeping” biochemical reactions unrelated to sex.

Differentially correlated metabolites

As described in Methods, the analysis of differential correlations of all pairs of metabolites was

performed by comparing correlations in females to those in males. By subtracting correlations
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in males from corresponding correlations in females, the sex-related differences between

metabolite pairs were “magnified”, while the sex-neutral correlations cancelled out. This differ-

ential correlation approach allowed us to extract dynamic correlations that were most likely

related to sex differences. As a result of this analysis, 554 pairs of metabolites were uncovered

to have significant positive differential correlations while 78 pairs of metabolites showed strong

and negative differential correlations (permutation testing p< 0.05) between the female and

male subjects. The metabolites showing the strongest correlations with high statistical signifi-

cance were PC aa C34:3 and PC aa C40:1 (rdiff = 5.73, p< 0.001), and C0 and PC aa C32:3

(rdiff = −4.53, p = 0.002).

Differential correlation network of sex

We used a set of metabolite pairs showing significant differential correlations (permutation

testing significance with the cutoff of p< 0.05) to build the differential correlation network for

each sex. It was found that a total of 632 pairs showed statistically significant differential corre-

lations in this analysis, involving 146 metabolites. As seen in Fig 1, the majority of metabolite

pairs were positively differentially correlated, as represented with red edges in the graph. Nega-

tive differential correlations were less abundant and clustered in sub-structures of the network;

these links are denoted by edges of blue color in the graph. The node degree had a mean of

8.66 indicating large number of connections a typical node of this network has to other nodes

suggesting robust connectivity and information flow. Overall, the graph shows two distinct

clusters. The network appears to be comprised of two dense clusters and other peripheral

nodes. One cluster includes mostly phosphatidylcholine metabolites and the other mostly acyl-

carnitine metabolites.

Fig 2 shows the betweenness and closeness centralities in relation to the node degrees.

Table 1 lists key nodes in the differential correlation network for the same set consisting of 14

metabolites. As indicated, the network model showed two main metabolite clusters. The larg-

est cluster mainly consisted of phosphatidylcholines, of which ten metabolites were identified

as key nodes (core metabolites); these were PCaaC34:4, PCaaC36:6, PCaaC34:3, PCaaC42:2,

PCaeC38:1, PCaeC38:2, PCaaC40:1, PCaeC34:1, PC aa C32:1 and PC aa C40:6. The smaller

cluster mainly consisted of acylcarnitines, of which C3-OH, C7-DC, C3 and C0 were identified

as key nodes (core metabolites). The network diagram indicated that correlations of metabolite

pairs in phosphatidylcholines’ and in acylcarnitines’ classes showed significant differences in

males and females.

Discussion

A growing body of evidence indicates that sex is a significant factor in epidemiology, clinical

presentation, and outcome in non-communicable diseases. The majority of related reports are

focused on stratification of various risk factors, including sex, for such diseases as cancer, dia-

betes and chronic respiratory disease [22]. Other studies have looked into influence of sex dif-

ferences in mounting responses of immune system to infectious diseases [23,24]. An

increasing number of studies attempt to unravel specific mechanisms underlying influence of

sex on disease and health outcomes [25,26]. In contrast, there are only a few studies so far that

used metabolomics to investigate the influence of sex on blood serum metabolomic profiles

[27–29]. This approach, however, may help to define specific risk factors such as those associ-

ated with sex and insulin resistance [27,28].

Metabolic differential correlation occurs when two metabolites show dissimilar associations

between physiological/disease status. Differential correlation has been regarded as another

approach to analyzing omics data, especially when individual metabolites may not show
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differential expression or abundance, but may be differentially associated between groups

and imply a potential biological interaction [30]. Differential correlation has been previously

examined in both low and high throughput studies [31,32], and has also been used with meta-

bolomics data to identify condition-specific alterations in metabolic pathways [33,34]. Consid-

eration of metabolites as a group of interconnected components, i.e. as a network, allows a

powerful approach to the characterization of complex systems. In this study, we used network

analysis to evaluate properties of the global inter-connected structure composed of metabolites

that showed significant correlation variations in male and female subjects. We examined the

topological properties of corresponding differential correlation networks that allowed us to

Fig 1. The differential correlation network showing linkages between components of the metabolite dataset. (Only pairs that have significant differential

correlations are shown. The network is visualized using the force-directed layout presentation with a closer node layout distance representing a stronger pairwise

correlation. Edge width is proportional to differential correlation strength and edge color shows positive (red) and negative (blue) differential correlations).

https://doi.org/10.1371/journal.pone.0207775.g001
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identify a set of key metabolites responsible for modulating connectivity and information flow

in the network. The results of this examination suggest the existence of an association between

network properties and differences in the biochemical makeup of males and females.

Analysis of metabolite correlations in male and female groups of subjects showed signifi-

cant overlap of correlated metabolite pairs. This observation indicated that these overlapping

metabolite associations were not specifically related to sex. Further differential analysis took a

unique approach that consisted in subtracting the correlation coefficients of metabolite pairs

in males from those in females so that the persistent pairwise correlations across the two sex

groups were removed and the pairs with significant variations were magnified. This approach

was expected to provide useful new insights into the underlying sex-specific biological pro-

cesses. We observed considerably larger number of significant positive differential correlations

than those with negative correlations (Fig 1). This indicated that the number of correlations in

metabolite pairs were significantly higher in females than in males.

Fig 2. Metabolites as hubs (high degree) and bottlenecks (high betweenness or closeness) in the network.

https://doi.org/10.1371/journal.pone.0207775.g002

Table 1. Key nodes (metabolites) in the differential correlation network. DC: degree centrality; BC: betweenness

centrality; CC: closeness centrality. Key nodes: either with high degrees, or high betweenness/closeness, or both.

metabolite DC BC CC

PCaaC34:4 33 0.062 0.455

PCaaC36:6 31 0.069 0.453

PCaaC34:3 30 0.053 0.458

PCaaC42:2 29 0.078 0.442

PCaeC38:1 27 0.117 0.476

C3-OH 25 0.076 0.416

PCaeC38:2 23 0.065 0.469

PCaaC40:1 22 0.019 0.409

PCaeC34:1 21 0.023 0.423

C7-DC 21 0.028 0.390

PCaaC32:1 21 0.030 0.416

C3 21 0.066 0.410

PCaaC40:6 21 0.087 0.453

C0 20 0.083 0.382

https://doi.org/10.1371/journal.pone.0207775.t001
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In this study, we found phospholipids and acylcarnitines were the core metabolites in the

differential network which indicated that these two species play a key role in the integrated

metabolic networks of the body. Phospholipids play an essential role in the formation of a lipid

bilayer in biological membranes and membrane-related phenomena such as signal transduc-

tion and regulation of membrane trafficking [35]. It has been proposed that changes in phos-

pholipid compositions are linked to the development of OA [36]. In our previous study, we

identified metabolites that are associated with OA and revealed differences of this association

in females and males patients [9,37].

Acylcarnitines is a group of metabolites related to energy metabolism. Carnitine and its acyl

fatty acid esters, i.e. acylcarnitines, are essential compounds for the oxidative metabolism of

fatty acids. Carnitine assists in the transport of fatty acyl-CoA into the mitochondrial matrix.

Deviations and abnormalities of acylcarnitine metabolism have been detected in cardiovascu-

lar diseases, type-2 diabetes and obesity [38–40]. Differences in metabolic networks in males

and females that were found in this study may be one of the underlying factors that can explain

differences between the sexes in their responses to stress factors and diseases.

Conclusion

To our best knowledge, this is the first study using a differential metabolomics approach to

analyze the characterization of the diversity of metabolite networks between males and

females. This study shows the power of differential correlation network analysis to better

understand the phenotypes of sex in the human population and to apply this knowledge in

functional studies. In the study, we found that the metabolic networks of paired phosphatidyl-

cholines and acylcarnitines do show significant differences between males and females.
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