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Coherent control theory and 
experiment of optical phonons in 
diamond
Hiroya Sasaki1, Riho Tanaka1, Yasuaki Okano2, Fujio Minami1,3, Yosuke Kayanuma1,4,  
Yutaka Shikano  5,6,7,8 & Kazutaka G. Nakamura1

The coherent control of optical phonons has been experimentally demonstrated in various physical 
systems. While the transient dynamics for optical phonons can be explained by phenomenological 
models, the coherent control experiment cannot be explained due to the quantum interference. 
Here, we theoretically propose the generation and detection processes of the optical phonons and 
experimentally confirm our theoretical model using the diamond optical phonon by the doublepump-
probe type experiment.

Coherent control was originally developed for controlling chemical reactions using coherent two-photon pro-
cesses, in which an electronic excited state was used as an intermediary to assist the chemical reaction to the elec-
tronic ground-state potential surface1–3. Coherent control has been performed for other physical properties, for 
example, electronic, vibrational and rotational states of atoms and molecules4–12 and excitons, spins, and phonons 
in the solid state13–29 and the superconducting electrical circuits30–32.

The coherent control of optical phonons was first demonstrated in the molecular crystals at cryogenic temper-
ature using multiple femtosecond pulses21. This was well explained by an impulsive stimulated Raman scattering 
(ISRS) mechanism to generate the coherent optical phonon. However, the similar coherent control experiments 
with double femtosecond pulses were performed on semimetal films23 to be explained by a displacive excitation 
mechanism33,34. To understand the unified generation mechanism of coherent phonons, the microscopic theory 
based on quantum dynamics is required35–38. However, in the coherent control experiment, the amplitude and 
phase dependences have been not yet understood from these microscopic theories.

The aim of this paper is to theoretically propose the unified process included the generation and detection of 
the coherent optical phonons from quantum dynamics under a two-electronic-level and a displaced harmonic 
oscillator model under the off-resonant condition to extend ref.36. The effect of detuning and the control scheme 
are discussed. In addition, we demonstrate the coherent control of 40 THz optical phonons in diamond using a 
pair of sub-10-fs optical pulses by the ISRS process since the band gap of diamond is well above the energy of a 
commonly used femtosecond laser pulse.

As an application to quantum information technology, diamond is expected to be applied to quantum memory 
using the nitrogen or silicon-vacancy center in diamond15,39–41 and the optical phonon42–45 since the high-purity 
material is available and it is working at room temperature. On the other hand, the phonon property of diamond 
has been discussed in the context of photophysics46–49. To understand the coherence of the optical phonon funda-
mentally and practically, our coherent control scheme might be helpful.
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Results
Two-electric-level coherent-phonon generation and detection model. It was shown that the gen-
eration and detection processes of coherent phonons can be described by the two-band density matrix formalism 
with the optical response function50. It was assumed that the band-gap energy is modulated by the coherent 
oscillation of the optical phonon due to the deformation potential interaction. In the case of excitation to the 
transparent wavelength region in diamond treated in the present work, we may adopt a much simplified version 
of this theory.

Let us consider a two-level system for the electronic state coupled with a harmonic oscillator36,51. The 
Hamiltonian is given by
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where the state vector |g〉 refers to the electronic ground state of the crystal, and |e〉 refers to the electronic excited 
state with the excitation energy ∈. In the case of diamond, |e〉 corresponds representatively to the electronic states 
above the direct band gap, and ∈ is approximately equal to the direct band gap energy 7.3 eV52,53.

The Hamiltonian Hg and He are the phonon Hamiltonians in the subspaces |g〉 and |e〉. Here we have intro-
duced the annihilation and the creation operator b and b† for the interaction mode50 which is defined as a linear 
combination of the normal modes lying close to the Γ point in the Brillouin zone. Because of the phase-matching 
condition, the wave vector of the phonon is equal to the wave vector of the incident photon modulated by the by 
refractive index of the crystal. In the case of coherent phonons, the incident pulse is decomposed into a linear 
combination of plane waves around the central mode. Therefore, the wave vector of the coherent phonon is also 
distributed over a small region around Γ point in the Brillouin zone. The dispersion of the optical phonon energy 
near the Γ point is neglected, and we set the energy of the interaction mode ω is equal to the optical phonon 
energy at Γ point. In the case of diamond, ω is evaluated as ~2π × 40 THz48,49. Note that the transverse and longi-
tudinal optical phonon cannot be distinguished at Γ point because of a non-polar material. The dimensionless 
coupling constant is denoted by α. In the bulk crystal, the Huang–Rhys factor α2 is considered to be small; 
α  12 . For simplicity, we consider a four-state model with two phonon states for each electronic state: |g, 0〉 and 
|g, 1〉 for phonon Fock states with n = 0 and 1 in the electronic ground state and |e, 0〉 and |g, 1〉 for those in the 
electronic excited state. The interaction Hamiltonian with the optical pulse is given by

μ= +− Ω ΩH E f t e e g e g e( )( ), (2)I
i t i t

0

in which μ is the transition dipole moment from |g〉 to |e〉, and E0, Ω and f(t) are the strength, central frequency 
and temporal profile of the electric field of the pump pulse, respectively. The time evolution of the density oper-
ator was obtained by solving the quantum Liouville equation using a perturbative expansion in the lowest order.

We restricted the well separated pulses for the two pump pulses (pump 1 and pump 2) and the probe pulse. 
Then the generation and detection processes were separately treated, which corresponded to a doorway-window 
picture in nonlinear spectroscopy51,54. When pump 1 and 2 were well separated, the excitation of the optical pho-
nons occurred with each pulse. The pathway of electronic excitation by pump 1 and the deexcitation by pump 2 
was not allowed for the off-resonant condition. We set the initial state in |g, 0〉, then ρ −∞ = g g( ) , 0 , 0 . This 
was reasonable for the diamond case, because the population number in the n = 1 state was approximately 0.005 
at  300  K.  There  were  four  L iouvi l l e  pathways  for  the  exc it ing  phonon p olar izat ion : 
| 〉 〈 | → | 〉 〈 | → | 〉 〈 |g g e g g g, 0 , 0 , 0 , 0 , 1 , 0 , | 〉 〈 | → | 〉 〈 | → | 〉 〈 |g g e g g g, 0 , 0 , 1 , 0 , 1 , 0  and Hermitian conjugates 
for each pump pulse.

The density operator for the excitation by pump 1 ρ t( )1
(2)  was obtained as
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where |E1| is the strength of the electric field of pump 1, ∈Δ ≡ − Ω/  is the detuning, and we assumed that t is 
well after the passage of the pump pulse.

In the case for far off-resonance excitation, the density matrix can be evaluated as follows. For simplicity, we 
assume a Gaussian pulse with pulse-width σ,
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where Ω is used to make the normalization factor, π σΩ, dimensionless. Following the calculations to ref.36, we 
obtain
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The density operator for the excitation by pump 2, ρ t( )2
(2) , was obtained in a similar calculation, and we obtain 

the density operator ρ ρ ρ= +t t t( ) ( ) ( )(2)
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τ is the delay between the pump 1 and the pump 2 (pump-pump delay), and E2 is the electric field strength of 
pump 2.

The coherent phonon dynamics can be investigated by calculating the mean value of the phonon coordinate 
ρ=Q t Q t( ) Tr{ ( )}(2) , where  ω≡ + †Q b b/2 ( ) and Tr indicate the trace. By considering the Hermitian conju-

gated paths, we obtain
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Therefore, the amplitude of the phonon oscillation controlled by the two short pulses is expressed by a sum of 
the two sinusoidal functions. The phonon amplitude is enhanced by two times or canceled when the pump delay 
matches an integer or half-integer multiple of the vibrational period through constructive or destructive interfer-
ence, respectively, at the =E E1 2  condition. Note that the amplitude of oscillation is inversely proportional to 
the square of detuning from the excited state.

When the heterodyne detection of the transmitted light is investigated, the detection intensity Ih(t) should be

= Ω × ⁎I t l E t P t( ) Im[ ( ) ( )], (9)h s3

where E3(t) is the strength of the electronic field of the probe pulse, Ps(t) is the polarization at time t, and l is the 
thickness of the sample51. The probe pulse irradiates the sample at delay tp. There are eight Liouville pathways for 
the exciting phonon polarization:
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and their Hermitian conjugates.
We obtain ρ ′t( )1

(3)  for the path 1 as
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where f3(t″) is the Gaussian pulse and tp is the pump-probe delay. For the polarization operator 
μ μ= + ⁎P g e e gop , the complex polarization at time t is given by ρ=P t t P( ) Tr{ ( ) }op(3) . Then the polariza-

tion (P1(t′)) for the path 1 is given by
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and the time-integrated intensity, I1(tp), of the product between the probe light and polarization is
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Using the Gaussian pulse (4), we obtain
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By considering the Hermitian conjugate paths, the time-integrated intensity of the heterodyne detection Ih(τ, tp) 
is given by
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The present model calculation clearly shows that the response of the transmitted light intensity measured with 
heterodyne detection exhibits the same dependence on the pump delay as that of the mean value of the phonon 
coordinate.
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Single-pump transmission experiment. In the followings, the experimental detection of the optical pho-
nons was performed using a pump-probe type transient transmittance measurement with femtosecond pump 
pulses, see the details in Methods. The transient transmittance change induced by only pump 1 or pump 2 were 
measured in Fig. 1(a,b), respectively, against the pump-probe delay tp between −200 and 1000 fs. It is noted that 
time zero was set at the time when pump 2 irradiates the sample; the minimum portion of the sharp response. 
After the sharp peak, which arose from the nonlinear response for overlapped pump and probe pulses, there was 
a modulation caused by the coherent optical phonons in diamond. The oscillation period was 25.1 ± 0.03 fs (fre-
quency of 39.9 ± 0.05 THz). The coherent oscillation in the transmitted pulse intensity arising from the optical 
phonons was the same as that obtained by the reflection experiments48,49.

To verify the theoretical treatment on the detection process in the previous section, Fig. 2 shows a pump laser 
power dependence of the oscillation amplitude of the 40 THz oscillation in the transmittance spectrum. 
According to Eq. (17) with | | =E 02

2 , the oscillation amplitude is a linear dependence on the pump laser intensity 
|E1|2. This is well agreement with our experiment data. It is noted that the deviation between our prediction and 
experimental data has not yet been identified such as the laser power and measurement-setup stability.

Figure 1. Transient transmittance change of diamond. The oscillation (a) is excited by the pump 1 only, and the 
oscillation (b) is excited by the pump 2 only. It is noted that the baseline in our previous experiment49 seems to 
more flat compared to the present one. This is because the experimental data shown in ref.49 has been already 
subtracted by the smoothing curve of the obtained experimental data to easily analyze this.

Figure 2. The pump power dependence of the amplitude of the 40 THz oscillation. It is noted that the statistical 
average was 4,800 signals.



www.nature.com/scientificreports/

6Scientific REPORTS |  (2018) 8:9609  | DOI:10.1038/s41598-018-27734-1

Coherent control experiment. Figure 3 shows typical examples of the transient transmittance changes 
induced by the pair of pump pulses (pump 1 and 2). Pump 1 induces a coherent oscillation in the transmis-
sion intensity with a frequency of 39.9 ± 0.05 THz. This oscillation amplitude was controlled by pump 2. It was 
reduced at τ = 237.9 fs, enhanced at τ = 251.4 fs, and reduced again at τ = 263.9 fs. The oscillation amplitude after 
pump 2 was obtained by fitting a sinusoidal wave in the range of the pump 2-probe delay between 200 and 650 fs. 
In this time range, the decrease of the amplitude was negligibly small. The obtained amplitude was plotted along 
the separation time τ in Fig. 4(a). We also estimated the initial phase of the oscillation after pump 2 by extrapola-
tion of the fitted sinusoidal function at the timing of the pump 2 irradiation. The estimated initial phase is plotted 

Figure 3. Transient transmittance change along the pump-probe delay (between pump 2 and the probe) for 
several pump-pump delays (τ between pump 1 and pump 2): at 237.9 fs (a), 242.4 fs (b), 251.4 fs (c), 259.4 fs (d), 
and 263.9 fs (e). In this figure, the time zero is set at the timing of the pump 2 irradiation. Each curve is plotted 
with vertical offsets.

Figure 4. The amplitude (a) and phase (b) of the controlled oscillation after pump 2 against the pump-pump 
delay τ. The amplitude is normalized using that obtained after excitation after only pump 1; oscillation between 
the pump 1 and pump 2 irradiation timing. Solid circles are the experimental data and the solid curves are 
obtained by calculation using Eqs (18) and (19) with = .E E/ 1 092

2
1

2 , ω π= × .2 39 9 THz, and the offset 
initial phase −0.29π.
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in Fig. 4(b). Measurement error to define the timing of the pump 2 irradiation was approximately ±0.5 fs, which 
corresponds to ±0.04π for the phase of the 39.9 THz oscillation.

In Fig. 4, the phonon amplitude was normalized by the phonon amplitude excited by pump 1, which was 
observed at the pump 2-probe delay between −270 and 0 fs. The phonon amplitude was enhanced almost twice 
at τ = 251.4 fs and diminished at τ = 237.9 fs by the constructive and destructive interference of phonon states.

The energy of the optical pulses (around 1.5 eV) was well below the direct band gap (7.3 eV) of diamond52,53. 
Therefore, the coherent optical phonons should be excited by the ISRS process36 at an off-resonant condition. The 
initial phonon state at room temperature was well expressed with the n = 0 state, because the phonon energy (39.9 
THz  135 meV) was higher than the thermal energy (~25 meV) and the population ratio between the ground 
and excited state of the optical phonon was 0.005. The coherent control of the phonon amplitude shown in Fig. 4 
was calculated using our proposed model (15). In this experiment, the intensity ratio between the light intensities 
of pump 1 and 2 was | | | | = .E E/ 1 092

2
1

2  and approximately agreed with the amplitude ratio of the coherent pho-
non, Δ Δ = . ± .T T/ 0 99 0 032 1  according to the single-pump experiment in Fig. 1. The transmission intensity 
change depending on the pump-pump delay τ was calculated using Eq. (17) and the frequency (ω π= × .2 39 9 
THz) for the optical phonon of diamond. The calculated result is shown in Fig. 4(a), where the intensity was nor-
malized to that induced by a single pump pulse (pulse 1). The initial phase of the oscillation after irradiation of 
pump 2 was also obtained from the calculation and shown in Fig. 4(b). Our proposed model for the coherent 
control of the optical phonons reasonably represents the experimental data. It is noted that the initial phase shift 
−0.29π, which corresponds to 3.6 fs, does not be explained in our proposed model. This may come from the 
calibration error of the pump-pump delay and the unknown mechanism of the phonon generation timing.

Although the phonon amplitude was not directly observed, the observed transmission intensity change (17) 
by heterodyne detection has the same pump-delay dependence (8) for the phonon amplitude. If the Huang-Rhys 
factor and the transition dipole were obtained from other experiments or calculations, the phonon amplitude can 
be estimated from the transient transmittance change. The phonon coherence induced by the pump pulse was 
detected by heterodyne detection. The coherent control by two separated pulses was expressed as the phonon 
coherences induced by each pump pulse (pump 1 and pump 2) interfering with each other.

Discussions
In summary, we investigated the coherent control of the optical phonons using a pair of optical pulses with two 
electronic levels and two harmonic phonon levels. The calculations showed that the controlled phonon amplitude 
and transmission intensity can be expressed by the sum of two sinusoidal functions. Furthermore, we demon-
strated a coherent control of the optical phonons in a single crystal diamond. We used a pump and probe protocol 
and the change in the transmitted light intensity was determined with heterodyne detection. The phonon ampli-
tude was coherently controlled by changing the pump-pump delay from 230 fs to 270 fs. The control scheme was 
well explained by our theoretical generation and detection model with the interference between the two phonon 
states excited by each pump pulse.

The wave packet dynamics of the coherent optical phonons is only measured in the transmission intensity 
change. Therefore, the amplitude and the phase of the wave packet cannot be individually controlled. To repro-
duce the wave packet of the coherent phonon, the transmittance and reflectivity changes should be simultaneously 
measured. According to the Kramers-Krönig relation, the transient complex dielectric constant can be measured. 
The optical phonon amplitude is also measured by combining to the Raman spectroscopy. Furthermore, there still 
are open questions on the nonlinear response of the optical phonon. The coherent control of the optical phonon 
around τ ~ 0 except for the pulse overlap region might give an insight on generation and detection processes for 
the optical phonon.

Methods
The experimental setup has been described in the previous paper49 in addition to that the optical pulses were 
generated by using a home-made Michelson-type interferometer28. While the transient reflectivity change was 
measured in ref.49, in this experiment, the transient transmittance change is measured. According to Fig. 5, the 
ultrafast laser conditions measured immediately behind the output port were a maximum-intensity wavelength 

Figure 5. The measured spectrum property of ultrafast laser.
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of 792 nm with a estimated pulse width of 8.2 fs as full width at half maximum under the assumption of the 
transform-limited pulse. This also has a repetition rate of 75 MHz. To reduce the statistical error, 3,200 signals 
were averaged and taken as the measured value. By converting the temporal motion of the scan delay unit to 
the pump-probe delay, the temporal evolution of the change in the transmitted light intensity, ΔT(td)/T0, was 
obtained. Here we used the heterodyne detection technique. The powers of the pump 1 and 2 and the probe were 
19.1 mW, 20.8 mW, and 3.0 mW, respectively. The sample used was a single crystal of diamond with a [100] crystal 
plane, which was fabricated by chemical vapor deposition and obtained from EPD corporation. The type of dia-
mond was intermediate between Ib and IIa and its size was 5 × 5 mm2 and 0.7 mm thick. The polarization of the 
pump and probe pulses were set along the [110] and [−110] axes, respectively.
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