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Abstract: The powder metallurgy process of the Al–graphene system is conducted by molecular dy-
namics (MD) simulations to investigate the role of graphene. During the sintering process, graphene
is considered to reduce the pore size and metal grain size based on the volume change and atomic
configuration of the Al parts in the composite. Compared with the pure Al system, the space occupied
by the same number of Al atoms in the sintered composite is 15–20 nm3 smaller, and the sintered
composite has about 5000 fewer arranged atoms. Because these models are carefully designed to
avoid a serious deformation of graphene in the tension of sandwich-like composite models, the
strengthening mechanism close to the experimental theory where graphene just serves to transfer a
load can be studied dynamically. The boundary comprising of two phases is confirmed to hinder the
motion of dislocations, while the crack grows along the interface beside graphene, forming a fracture
surface of orderly arranged Al atoms. The results indicate that single-layer graphene (SLG) gives rise
to an increase of 1.2 or 0.4 GPa in tensile strength when stretched in in-plane or normal direction,
while bilayer graphene (BLG) brings a clear rise of 1.2–1.3 GPa in both directions. In both in-plane
and normal stretching directions, the mechanical properties of the composite can be improved clearly
by graphene giving rise to a strong boundary, new crack path, and more dense structure.

Keywords: MD; sintering; graphene; composite; strengthening mechanism

1. Introduction

Owing to the superior mechanical properties, graphene is naturally expected to work
as an effective reinforcement phase to improve metal matrix composite materials. Existing
studies have provided quite a number of methods to fabricate metal–graphene composites
such as powder metallurgy sintering, composite electroplating, differential speed rolling,
etc. In those techniques, powder metallurgy sintering is supposed to be an efficient way
to prepare metal–graphene composite in bulk because of the simple process and precise
control, drawing considerable attention of researchers recently [1–3].

Generally, most of the investigations on sintering metal–graphene composites are
performed by experiments. Some focus on problems of graphene dispersion hindering
the preparation of a homogeneous structure. Mu et al. applied an electroless plating
method to prepare Ni-decorated graphene nanoflakes as a reinforcement to be uniformly
dispersed in a Ti matrix, and then spark plasma sintering (SPS) and hot-rolling are followed
to gain a titanium matrix composite with an enormous strength increase [4]. Ju et al.
prepared graphene-reinforced aluminum (Al) matrix composites with enhanced dispersion
and strength, based on an aqueous suspension mixing procedure and SPS technology [5].
Li et al. achieved a densified graphene–Al composite with uniform distribution of reduced
graphene oxide via electrostatic interaction and hot pressing [6]. Kumar et al. carried out
the dispersion of graphene by ultra-sonication followed by ball milling and adding Al6061
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alloy powder, before sintering under inert gas atmosphere. The others pay attention to
the rise in mechanical properties with graphene content [7]. Liu et al. revealed that there
are great increases of 32% and 43%, respectively, in hardness for Al matrix composites
with 0.3 wt% reduced graphene oxide and 0.15 wt% graphene nanosheets [8]. Tian et al.
found that the hardness, compressive strength, and yield strength of the composites are
improved with the addition of 1 wt% graphene, but further addition of graphene will result
in the deterioration in mechanical properties [9]. Shin et al. investigated the strengthening
behavior of composite containing 0.7 vol.% few-layer graphene, exhibiting 440 MPa of
tensile strength [10]. Rashad et al. reported an aluminum–graphene composite with a rise
of 14.7% in yield strength and an increase of 11.1% in ultimate tensile strength, using a
semi-powder method [11].

The experimental studies listed in Table 1 indicate that the mechanical properties
of the composite will be truly improved by the addition of graphene, and microscopic
images revealed that fine grain strengthening and dislocation strengthening can be en-
hanced by graphene. However, it is difficult to present the structural evolutions in both
sintering process and loading progress dynamically, especially in atomic scale. However,
the dynamical atomic configurations are readily available in molecular dynamics (MD)
simulations, which can trace the motion of each atom. Therefore, many efforts are made to
model the sintering process with different metal nanoparticles. Jiang et al. explored the
structural evolution and underlying sintering mechanism of aluminum nanoparticles in
terms of average displacement, mean squared distance, radius ratio, etc. [12]. Liu et al.
revealed the rule of atomic migration and the growth mechanism of the sintering neck
with Fe nanoparticles [13]. This means the structural evolution during sintering can indeed
be monitored through a computational study. Tavakol et al. investigated the mechani-
cal properties of nanocomposites produced by shock wave sintering of aluminum and
silicon carbide nanopowders [14]. Wejrzanowski et al. checked the melting behavior of
Al–Si nanolayers with two different thicknesses to explain a noticeable decrease in the
melting temperature [15]. He et al. studied the sintering process of graphene nanoplatelet-
reinforced aluminum matrix composite powder and the mechanical properties of sintered
composites [16]. Kumar et al. explored the orientation of aluminum atoms along with
the mechanical properties of an aluminum/graphene nanocomposite, after a cooling pro-
cess from 2500 K to 10 K [17]. It is illustrated that the MD method is also suitable for
investigating the sintering and mechanical behaviors of composite systems.

Table 1. Experimental hardness of Al–graphene composites sintered by powder metallurgy.

Graphene Type Al Matrix Graphene Content The Improvement in Hardness Research Group

Graphene nanoflakes Al6061 0.4 wt% 8.3% Kumar et al. [7]
Reduced graphene oxide Al 0.3 wt% 32% Liu et al. [8]

Graphene nanoflakes Al 0.15 wt% 43% Liu et al. [8]
Reduced graphene oxide Al 0.3 wt% 17% Li et al. [6]

Graphene oxide Al7075 1 wt% 15% Shin et al. [9]
Graphene nanoflakes Al 0.3 wt% 11.8% Rashad et al. [11]

Nevertheless, most of the MD papers only consider the system of pure metal parti-
cles [12,13] or metal nanoparticles [14,15]. The studies discussing the Al–graphene compos-
ite system often suffer the drawbacks of neglected details in initial models, where the size of
graphene is equal to the plane size of the composite system. Such a sandwich-like structure
under tension will give rise to a serious deformation in graphene bearing most of the
direct stress, and the tensile strength can be as high as 14 GPa [16]. Although the graphene
size in [17] is more reasonable, a crystallization process rather than sintering process is
employed to prepare the Al–graphene composite and multilayer graphene has not been
discussed. Furthermore, Kvashnin et al. proved that an increase in the width of graphene
can actually lead to a substantial increase in the mechanical characteristics by providing
efficient load transfer [18]. Therefore, it is significant to examine the metal–graphene system
by means of a rational model. Thus, carefully designed models in this paper are created
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to observe the changes in composite structure, revealing the effects of graphene on the
sintering and tensile processes.

2. Model Methods

In the sintering systems of Al–graphene composites, MD models shown in Figure 1a
contain eight spherical Al nanoparticles with a diameter of 56 Å, and the distance between
Al particles is set to 8 Å. A square nanoplatelet of monolayer or bilayer graphene with
each side of 64 Å is inserted into the gap between Al particles, as shown in Figure 1a. It
is worth mentioning that the crystal orientations of Al particles are different from each
other. Periodic boundary conditions (PBC) are applied in each dimension of the simulation
box, so the NPT ensemble can be adopted to relax the system at 300 K and 1 atm. After
a relaxation time of 100 ps, Al particles will be integrated together with the graphene
nanoplatelet embedded naturally, obtaining an initial structure for sintering.
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Figure 1. Details of the sintering models. (a) Atomistic models for building; (b) potential energy of
pure Al bulk with respect to temperature.

During the sintering process, the composite structure will be heated from 300 K to
773 K in 300 ps, with the external pressure increasing from 1 atm to 500 atm (50 MPa).
Then, the system maintains such temperature and pressure for 300 ps. At last, the external
conditions of sintered composite will return to 300 K and 1 atm after a cooling stage of
300 ps. The NPT ensemble is also applied in the entire sintering process. It should be noted
that parameter settings above such as the heating and cooling rate are selected according to
the similar sintering process of the Al–graphene system in reference [16].

Then, tensile simulation is conducted on sintered composite to examine the mechanical
behaviors. Another relaxation process will be carried out at 300 K for 100 ps to eliminate
thermal stress before tensile testing. The NVE ensemble is applied to operate quasi-static
tension by changing the shape of the simulation box in both in-plane and normal directions,
and the temperature is reset by explicitly rescaling their velocities.

All the MD simulations are carried out by LAMMPS and the generated data are
visualized by VMD software. The velocity Verlet algorithm is used to solve Newton’s
equations of motions and the time step is set to 1.0 femtosecond. The eam potential is
applied to the interaction between Al atoms [19], the file of which can be obtained from
the LAMMPS library, and a simple sintering model of pure Al bulk is carried out to verify
this potential file by checking the melting point (Figure 1b). The airebo potential is used to
link carbon atoms in graphene [20], as commonly applied in [16,21,22] to mimic graphene;
the Al–C interaction takes the style of the morse potential [23], which is proved to be more
suitable for the interface between metal and graphene [24].



Materials 2022, 15, 2644 4 of 10

3. Results and Discussion
3.1. The Sintering Processes

As is known to all, the powder metallurgy process can promote densification of metal
particles by virtue of plastic deformation and material transfer during the sintering, leading
to a decline in porosity, a shrinkage in volume, and an increase in density. To validate
the MD model in this paper, a sintering process of pure Al particles is operated, firstly,
after relaxation on the initial model, followed by monitoring of the changes in system
volume and surface morphology. As expected, the system temperature and pressure are
successfully controlled during the sintering process (Figure 2a). The black line in Figure 2b
indicates that the system volume falls rapidly from 918.2 nm3 to 816.9 nm3 in the heating
process, while the configures in Figure 2c reveal that surface energy may lead to formation
of the sintering neck before sintering, and then the sintering neck will grow quickly with
the temperature rising, leading to the diminishment of pore size. In the stage of constant
temperature and pressure, the bulk volume largely holds steady after a slight decrease
from 816.9 nm3 to 801.0 nm3; the surface morphology of sintered bulk has been basically
established and the final drop of volume can be simply attributed to cold shrink in the
cooling stage. This change is mainly in line with expectations, which have been reported in
many experimental studies [7,9].
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sintering times.

Based on the pure Al model, Al–graphene composite bulks are sintered to investigate
the role of graphene on the powder metallurgy process. The initial structures for sintering
are prepared by inserting the graphene nanoplatelet into the gap between Al particles.
Firstly, a single-layer graphene (SLG) is placed in the center gap of the pure Al model. It
means both sides of the SLG are adjacent to four Al particles, forming a pore containing
graphene, as marked in Figure 2d. After sufficient relaxation on this composite model, the
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same sintering process before will be conducted again to achieve the Al–SLG composite.
From the volume change shown by a red line in Figure 2b, it is fairly easy to find that the
development of the sintering process seems to be sped up by the addition of graphene; the
system volume goes down faster from 995.5 nm3 to 806.3 nm3 during the heating stage,
which keeps a lower than pure Al curve after about 150 ps, and then falls to 777. 4 nm3

at constant temperature and pressure. The curves also indicate a possibility of further
decline in volume, as reported in [25] with impulse pressure assisted. However, it is enough
to study the effect of graphene on the sintering process based on the models here. The
final volume is 753.4 nm3, which is a little less than 759.6 nm3 of the pure Al model, even
though there is an extra SLG. Therefore, the same number of Al atoms in the Al-SLG
composites occupies a smaller space, as presented in Table 2. These indicate that graphene
is conducive to promoting the sintering progress and improving the density of sintered
structures, which can be ascribed to the higher binding energy between Al atoms and
graphene [16], providing more energy for Al motions approaching graphene.

Table 2. Analysis on sintered structures.

Model
Final Volume (nm3) The Number of Atoms Analyzed by CNA

Entire System Al Atoms f.c.c. Atoms h.c.p. Atoms

Pure Al 759.6 759.6 38,944 4606
Al with SLG 753.4 744.8 35,216 3752
Al with BLG 759.0 739.0 31,687 6454

To gain insights into the inner structure of sintered bulk, centro-symmetry parameter (CSP)
analysis is performed, and the local lattice disorder is tinted in CSP values. Blue balls stand
for Al atoms with bulk lattice, red balls represent surface atoms, and other colorful balls
are classified as defects such as atoms in dislocation or grain boundary. Therefore, the
size of Al grains can be directly determined by color configurations of atomic structures.
Since red atoms imply surface atoms appearing inside, the pores can be easily found
in the sintered structure. As marked with yellow circles in Figure 3, the pores in the
Al–SLG composite are visibly smaller than those in the pure Al model, suggesting that
graphene can reduce the size of inner pores, accounting for the change of the system volume
above. Because the crystal orientations of Al nanoparticles in initial models are different
from each other, polycrystalline structures are expected to be formed naturally in sintered
structures, and Al grain sizes can be estimated by the blue areas divided by the green belts
in Figure 3. The grain size of the sintered composite seems to be a little smaller than that
of the pure Al model, on the basis of inner structures in different views. Especially in the
sectional view across graphene, it is easy to find that embedded graphene is obviously bent
as the volume shrinks and heavily disturbs the arrangement of near Al atoms, forming
dislocations and enlarging the grain boundary. For quantitative analysis on the sintered
structures, common neighbor analysis (CNA) is operated to count the number of atoms
in local f.c.c. (face-centered cubic) order and h.c.p. (hexagonal close-packed) order. The
former is considered as perfect grains, the latter is identified as stacking faults, and both
can be regarded as arranged atoms. Distinctly in Table 2, the Al–SLG composite has less
atoms of perfect lattice and arranged structures. Therefore, it is safe to say that graphene
can promote grain refinement.

In order to study the effect of multilayer graphene on the powder metallurgy process,
SLG in the models is substituted by bilayer graphene (BLG) to gain the Al–BLG composite.
Then, the sintering simulation and structure analysis are performed as before. In com-
parison with the composite structure of SLG, BLG is likely to make little difference in the
volume and structure of the Al–graphene composite. Based on Figure 2a and Table 2, the
curves of the composite volume are similar, the total number of arranged atoms is almost
the same, except for that more Al atoms are classified into the h.c.p. lattice. This is because
Al atoms arranged on the honeycomb lattice of graphene happen to form the close-packed
plane [26], which determines the local crystal orientation, and the interlayer space in the
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BLG may lead to a slight mismatch of grains on both sides of the BLG, facilitating the
occurrence of more stacking faults or grain boundaries that can be noticed in Figure 3.
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3.2. The Tensile Processes

The strengthening mechanism of graphene has been illumined experimentally by
some static micro images of composite structures, where high density of dislocations
accumulates around the boundary comprising two phases and this boundary is expected to
hinder the motion of dislocations effectively [27,28]. It suggests that graphene can improve
the adhesion strength of the interface to prevent the transcrystalline break. Here, such
dynamical progress can be easily detailed by MD simulations.

Uniaxial tensile simulations are performed here to investigate the enhancement mech-
anism of graphene in metal matrix composites, and the stretching direction is along
the y or z axis where the tension is roughly parallel or normal to graphene. Then, the
stress–strain curve is drawn to compare strength and deformation, and CSP analysis of
Al atoms is used to trace the change of inner structure including dislocation motion, propa-
gation of the cavities, and morphology of fracture surface. Figure 4 presents the changes of
inner structure under different strains in the tensile process. After relaxation for eliminating
thermal stress, there are no visible changes in the pore of the pure Al model, and then
the pore grows larger with the motion of dislocations deriving from the increasing strain.
However, the original pore in the Al–SLG model seems to be filled with the release of ther-
mal stress. The dislocations (indicated by a red arrow) pile up around graphene gradually
under tensile deformation, giving rise to a crack formed near the graphene (marked by
a yellow circle), and then the crack propagates along the interface beside the graphene
quickly. The entire processes of fractures are detailed by the evolution of atomic structures
in the whole range of strain (Figures S1 and S2). Due to the strong binding force between
Al and graphene, Al atoms on the fracture surface are arranged orderly. This cracking
behavior can also be observed in composite models with BLG, just as the crack initiation
and fracture appearance are shown in Figure 5.

It is remarkable that quite a few studies simply attribute the wonderful mechanical
performance to graphene sharing most of the stress, where the sizes of graphene are the
same as the plane size in models. However, the distribution of atom stress in Figure 6
reveals that only a part of the graphene bears tensile loads, and the deformation of graphene
lattice structure looks very small, despite that the stress values of the carbon atoms are
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visibly a little higher than those of the adjacent Al atoms. It means that embedded graphene
just plays a functional role in transferring tensile load [29], especially in the model with
normal tension where graphene is prone to in-plane bending. Therefore, it is safe to
say that graphene may give rise to a distinct improvement in mechanical performance,
but it is impossible for the composite to approach the level of graphene itself, unlike
other simulations on metal–graphene composites where graphene directly bears a large
deformation [16,30–32].
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Figure 5. The atomic details of initial cracks and fracture surfaces. (a,b) The composite with SLG is
stretched in Y and Z directions; (c,d) the composite with BLG is stretched in Y and Z directions.

The stress–strain curves of models stretched in in-plane and normal directions are
drawn in Figure 7. It should be noted that the inverse Hall–Petch relationship will lead
to a drop in strength at this scale where metal grains have a size of less than 10 nm.
Distinctly, composites with both SLG and BLG exhibit a rise of about 1.2 GPa in tensile
strength when stretched in in-plane direction, compared with the pure Al model. However,
the Al–SLG composite only shows a slight advantage of 0.4 GPa when stretched in the
normal direction. The Al–BLG composite can still achieve an improvement of 1.3 GPa at a
larger strain because the crack has not developed along the gap between BLG layers, as
depicted in Figure 5d. The interlayer space in the BLG may help to reduce the normal stress
concentration to some extent, rather than serve as the crack propagation path. Therefore,
we can conclude that graphene can definitively improve the mechanical property of the
metal–graphene composite by the enhanced interface described above, regardless of the
stretching direction. In addition, the pores in the pure Al model are visibly bigger than
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that in the sintered composite. Therefore, the enhancement mechanism of the Al–graphene
composite can be ascribed to a more compact structure, a two-phase boundary, and a new
crack path, all of which are deemed to be contributed by the graphene.
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Figure 6. The atomic details of SLG in the tensile process. (a) SLG in sintered structure before
stretching; the stress distribution in SLG under maximum stress stretched in the y axis (b) and
z axis (c). The networks on the left represent graphene, and the balls on the right represent adjacent
Al atoms, which are colored by per-atom stress (unit: bar × Angstrom3).
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Figure 7. The stress–strain curves in tensile simulations of the sintered models. (a) The models are
stretched in the y direction; (b) the models are stretched in the z direction.

4. Conclusions

MD simulations on the powder metallurgy process are performed to study the sin-
tering process and the strengthening mechanism of the Al–graphene system. Details on
volume and local crystal structure of Al atoms in a composite, which cannot be measured
through the experimental method, indicate that graphene is helpful for promoting the sin-
tering progress, improving the density of sintered structures, and refining metal grain size.
The space occupied by the same number of Al atoms in the sintered composite is 15–20 nm3

smaller than the pure Al structure, and the amount of arranged Al atoms in the sintered
composite is about 5000 fewer too. The effect of graphene in the mechanical property is
studied minutely through the tensile process on the sintered composite. The composite
with the SLG can exhibit an increase of 1.2 or 0.4 GPa in tensile strength when stretched
in in-plane or normal direction, while the composite with the BLG can achieve a clear rise
of 1.2–1.3 GPa in both directions. This suggests that graphene is of great importance for
composites to improve the mechanical performance whether in in-plane or normal tensile
direction. This improvement can be attributed to the effect of graphene, contributing to the
formation of two-phase boundary, new crack path, and more compact structure, which can
be easily found in view of the atomic configures.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma15072644/s1, Figure S1: The evolutions of atomic struc-
tures under different strains when stretched in plane direction, Figure S2: The evolutions of atomic
structures under different strains when stretched in normal direction.
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