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Abstract
To evaluate whether the addition of biomarkers to traditional clinicopathological pa-
rameters may help to increase the accurate prediction of prostate re-biopsy outcome. 
A training cohort with 98 patients and a validation cohort with 72 patients were 
retrospectively recruited into our study. Immunohistochemical analysis was used to 
evaluate the immunoreactivity of a group of biomarkers in the initial negative biopsy 
normal-looking tissues of the training and validation cohorts. p-STAT3, Mcm2, and/
or MSR1 were selected out of 10 biomarkers to construct a biomarker index for pre-
dicting cancer and high-grade prostate cancer (HGPCa) in the training cohort based 
on the stepwise logistic regression analysis; these biomarkers were then validated in 
the validation cohort. In the training cohort study, we found that the biomarker index 
was independently associated with the re-biopsy outcomes of cancer and HGPCa. 
Moreover supplementing the biomarker index with traditional clinical-pathological 
parameters can improve the area under the receiver operating characteristic curve of 
the model from 0.722 to 0.842 and from 0.735 to 0.842, respectively, for predict-
ing cancer and HGPCa at re-biopsy. In the decision-making analysis, we found the 
model supplemented with the biomarker index can improve patients’ net benefit. The 
application of the model to clinical practice, at a 10% risk threshold, would reduce 
the number of biopsies by 34.7% while delaying the diagnosis of 7.8% cancers and 
would reduce the number of biopsies by 73.5% while delaying the diagnosis of 17.8% 
HGPCas. Taken together, supplementing the biomarker index with clinicopathologi-
cal parameters may help urologists in re-biopsy decision-making processes.
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1  |   INTRODUCTION

Prostate cancer (PCa) is one of the most frequently diagnosed 
malignancies among men worldwide.1 Currently, prostate 
biopsy is regarded as the gold standard in the evaluation of 
abnormal PCa screening results. However, because of the 20 
to 40% false-negative rate of the initial biopsy and persistent 
abnormal clinical-pathological parameters more than 50% of 
patients who undergo initial biopsy are left with doubt regard-
ing the potential presence of PCa and need repeat biopsy after 
a period of follow-up.2-5 Despite the numbers of traditional 
clinical-pathological parameters, including prostate-specific 
antigen (PSA), percentage of free-PSA (fPSA), PSA velocity, 
and presence of high-grade prostatic intraepithelial neopla-
sia (HGPIN) or atypical small acinar proliferation (ASAP) in 
the previous negative biopsy tissues were used to screen pa-
tients for repeat biopsy, unfortunately, the positive biopsy rate 
among men undergoing repeat biopsy is only approximately 
20% to 40% and high grade PCa (HGPCa) accounted for less 
than half, which suggests that three out of every five biop-
sies are unnecessary.2-6 Prostate biopsy can be painful, anxi-
ety-provoking, expensive, and potentially morbid, so there is 
an urgent need to supplement the above mentioned traditional 
parameters with novel biomarkers that enhance its specificity 
so that unnecessary biopsies can be avoided.

Field effect (Also known as the field cancerization) re-
fers to genetically altered but phenotypically normal-looking 
tissues surrounding a cancer focus.7,8 Increasing evidence 
has shown that the field effect may also persist in PCa.9-12 
Prostatic tissue adjacent to tumors may be influenced by the 
tumor tissues and different from more remote prostatic tissue. 
Inflammatory cellular infiltration, abnormal angiogenesis, 
stromal structural changes, and dysregulated gene and protein 
expression would be observed in this field.7,13 Such changes 
may provide valuable information for the potentially unde-
tected tumors. Therefore, this type of tissue could be proposed 
to be termed phenotypically normal-looking tumor tissue 
(PNTI). For patients who actually have PCa but are negative 
at the initial biopsy, the initial biopsy might cover PNTI areas 
but not reach the actual tumor. Therefore, PNTI in the initial 
biopsy may be useful to diagnose the presence and evaluate 
the aggressiveness of PCa in patients with repeat biopsy.

Some immunohistochemical studies have demonstrated 
a group of biomarkers which may have potential field effects 
and may be helpful in the repeat biopsy decision-making pro-
cesses. Those biomarkers including inflammatory and immune 
cell infiltration—[CD3  +  T cells, macrophage scavenger re-
ceptor 1 (MSR1)+ cells and CD 68 + macrophages cells], an-
giogenesis—[CD31 + vascular endothelial cells and vascular 
endothelial growth factor (VEGF)], proliferation and apoptotic 
markers—[Ki-67, minichromosome maintenance complex 
protein 2 (Mcm2) and active-casp3 (a-casp3)] and some pro-
tein expression markers—[p-AKT and p-STAT3].11,14-19

However, no studies have evaluated the joint perfor-
mance of the above 10 biomarkers in a repeat biopsy cohort. 
Therefore, we designed the present study to investigate if 
above biomarkers are associated with repeat biopsy outcomes 
and if the combined biomarkers of various implications could 
enhance the capacity of decision-making for repeat prostate 
biopsy.

2  |   MATERIALS AND METHODS

2.1  |  Patients and specimens

The study design and role of each cohort was shown in 
Figure 1A and B respectively. This study was approved by 
the Ethics Committee at Xiangya Hospital, Central South 
University and Chenzhou NO.1 People's Hospital.

2.1.1  |  Repeat prostate biopsy cohort 
(training cohort)

From the 2009 to 2016, after receiving approval from the 
Hospitals’ Ethics Committees, Xiangya Hospital of Central 
South University and Chenzhou NO.1 Hospital retrospec-
tively provided data on the clinical and histopathological 
records of 98 consecutive patients with more than or equal 
to twice the prostate biopsies but were negative for the previ-
ous biopsy. The indications for repeat biopsy included per-
sistently abnormal PSA or percentage of fPSA, presence of 
ASAP/HGPIN on an initial biopsy or new suspicious digital 
rectal exam (DRE) during follow-up. To exclude extreme 
values, patients with serum PSA > 50 ng/ml, free/total PSA 
ratio > 0.5, and aged older than 90 years or less than 40 years 
were excluded from the study. The end points of follow-up 
included: (a) patients were diagnosed with a PCa within 
36 months or (b) at least 36 months of follow-up were com-
pleted without finding PCa. Patients would also be excluded 
if they did not reach the end points of follow-up. The clinical 
variables obtained from each patient during their initial bi-
opsy process included age, serum PSA, percentage of fPSA 
and DRE findings. The presence of HGPIN and/or ASAP 
from the initial biopsy was diagnosed according to previously 
published criteria.20,21 To minimize external influences, in-
cluded patients were free of urinary retention, urinary tract 
infections, catheterization, and other transurethral opera-
tions during the 2 weeks prior to the serum PSA test. Patients 
did not receive 5α-reductase inhibitors within the last two 
months. Previous biopsy samples of recruited patients were 
retrieved from Xiangya and Chenzhou NO.1 Hospital pathol-
ogy repository. The repeat prostate biopsy cohort was used 
as the training cohort to construct the biomarker index, and 
the clinical efficiency of the biomarker index in repeat biopsy 



7526  |      LONG et al.



      |  7527LONG et al.

was also evaluated in this cohort. The clinical characteristics 
of patients are summarized in Table 1.

2.1.2  |  Initial prostate biopsy cohort 
(validation cohort)

From 2014 to 2015, 72 consecutive patients from Xiangya and 
Chenzhou NO.1 Hospital who underwent initial biopsy because 
of suspicious of PCa were retrospectively recruited in our study. 
Among these patients, 24 patients were diagnosed with PCa dur-
ing the initial biopsy session. The remaining 48 patients were not 
involved in further repeat biopsy sessions and were free of PCa 
during the 3 years of follow-up after initial negative biopsy. The 
initial negative biopsy cores of these patients were collected for 
subsequent immunohistochemistry analysis. The initial prostate 
biopsy cohort served as an internal validation cohort to validate 
the predictive value of the biomarker index. The clinicopatho-
logical features of patients are summarized in Table S1.

2.1.3  |  Source of PCa and pericancer tissues 
(Radical prostatectomy patients)

Sixteen specimens from radical prostatectomy due to pT2 
PCa, which demonstrated a significant proportion of both 

neoplastic and benign tissues, were collected from Xiangya 
Hospital. Immediately after the procedure, the specimen 
was internally perfused and then externally perfused in 10% 
zinc formalin overnight. After fixation, the prostate gland 
was transversely sectioned at 0.3-cm intervals from the 
apex to the base, in each case using the modification of the 
Stanford technique.22 An average of twenty blocks of pros-
tatic parenchyma were obtained from each case. The block 
with significant proportions of both neoplastic and benign 
tissues was selected to attain pericancer tissues at differ-
ent distances (5  mm and 10  mm) from the tumor using a 
1-mm grid. Both the tumor and pericancer tissues were col-
lected for subsequent immunohistochemistry analysis. The 
clinicopathological features of patients are summarized in 
Table S2.

2.1.4  |  Source of benign prostate specimens 
(Radical cystectomy patients)

To obtain prostate specimens without the influence of PCa, 
benign prostate specimens were collected from 16 patients 
with muscle-invasive bladder cancer who underwent radi-
cal cystectomy. To minimalize the influence of bladder 
cancer, patients with stage T3 or higher stage and prostatic 
urethra tumor invasion were excluded from the study. All of 

T A B L E  1   Clinicopathological characteristics of the participants stratified by repeat biopsy results in the training cohort

Variables
Total 
(n = 98)

Repeat Biopsy Results P Value

Benign 
(n = 73)

Any prostate cancer 
(n = 25) HGPCa (n = 11)

Any cancer vs 
Benign

HGPCa 
vs Benign

Age,yr, (mean ± SD) 65.42 ± 7.19 65.16 ± 7.61 66.16 ± 5.84 64.55 ± 4.34 .55 .79

f/t PSA ratio, %, 
(mean ± SD)

16.55 ± 4.94 17.15 ± 4.75 14.80 ± 5.16 13.82 ± 5.72 .039 .038

Clinical serum PSA, ng/
mL, (mean ± SD)

8.30 ± 4.52 7.74 ± 3.79 9.92 ± 5.99 10.88 ± 6.39 .037 .023

No. of suspicious DRE, 
n, (%)

7 (7.14) 5 (6.85) 2 (8.00) 1 (9.09) 1.00 .58

ASAP history, n, (%) 13 (13.27) 6 (8.22) 7 (28.00) 2 (18.18) .19 .28

HGPIN history, n, (%) 13 (13.27) 9 (12.33) 4 (16.00) 1 (9.09) .73 1.00

No. of previous biopsy 
cores (mean ± SD)

7.01 ± 1.85 6.9 ± 1.88 7.1 ± 1.79 7.55 ± 1.37 .73 .31

HGPCa, High grade prostate cancer

F I G U R E  1   Study design and role of each cohort. (A) Study design. Briefly 10 biomarkers which proved may have potential field effects by 
previous studies and may be helpful in the repeat biopsy decision-making processes were selected in our study. In the training cohort, univariate 
logistic analysis was used to screen above 10 biomarkers significantly associated with positive repeat biopsy results (cancer and HGPCa). And 
multivariate stepwise logistic regression modeling was employed to construct a model using all factors that were significant in the univariate 
analysis (P < .1). The prediction probability of the model multiplied by 100 was set as biomarker index. Then the predictive ability of biomarker 
index was validated in the validation cohort. Finally the role of biomarker index in repeat biopsy decision-making processes was further validated 
by multivariate regression, ROC, reclassification and DCA analysis in the training cohort. (B) The role of each cohort in the study
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those specimens were found to have same degrees of benign 
hyperplasia.

The patients were clinically free of other systemic therapy 
or infections before the study. The clinicopathological fea-
tures of patients are summarized in Table S3.

2.2  |  Pathological analysis

B ultrasound-guided transrectal cores targeted biopsy was 
performed according to our institution's protocol. Average 
biopsy cores in repeat and initial prostate biopsy cohort were 
summarized in Table 1 and Table S1. We labeled the biopsy 
samples according to the gland region, then we fixed them in 
separate test tubes with formaldehyde for subsequent patho-
logical and immunohistochemical analyses. Histological 
analysis of those tissue slices was conducted by an expe-
rienced pathologist using a standard method described by 
previous studies.23 Standard Gleason scoring was used to 
evaluate the grade of the tumor. We defined HGPCa as any 
grade group (GG) ≥ 2.24

2.3  |  Immunohistochemistry and 
evaluation of immunostaining

Antibodies against CD3, CD68, MSR1, CD31, VEGF, 
p-AKT, p-STAT3, Ki-67, Mcm2, and a-casp3 were used to 
identify corresponding protein immunoreactivity.

Briefly, after incubation in 4% neutral buffer, para-form-
aldehyde was used to fix the sections of specimens followed 
by embedding the specimens in paraffin; the fixed samples 
were then cut into 4-5 μm slices. Before incubation with the 
corresponding primary antibodies and biotinylated second-
ary antibodies (Vector, Burlingame, CA), these sections were 
deparaffinized, hydrated, and antigen retrieved. The sources 
of antibodies and their dilutions are summarized in Table S4.

The slides were evaluated by observers who were blinded 
to the origin of the samples using an inverted Olympus mi-
croscope with the assistance of image processing software: 
Image Pro Plus 6.0 software (Media Cybernetics Inc). 
According to the staining proteins and previous studies,11,14-19 
three methods were used to evaluate the immunostaining: (a) 
When scoring the immunoreactivity of VEGF, p-STAT3, 
p-AKT, and a-casp3, we employed H-score a semi-contin-
uous variable scoring system which has been used in large 
number of previous studies.25-27 In detail, the percentage of 
immunostaining and the staining intensity were recorded. 
The percentage of immunostaining was measure with the as-
sistant of Image Pro Plus 6.0 software (Media Cybernetics 
Inc). The percentage of positive cells in each core was scored 
between 0% and 100%. For staining intensity, strongly, mod-
erate, and weak intensity was defined as dark brown, tan, and 

light yellow staining areas and no staining was defined as the 
same staining as negative control. When grading the staining 
intensity, we use the optical density value generated by Image 
Pro Plus as an important reference. The represented pictures 
of different grades and their corresponding optical density 
value were showed in Figure S1A. H-score was calculated 
using the following formula: (percentage of cells of weak in-
tensity × 1) + (percentage of cells of moderate intensity × 2) 
+ (percentage of cells of strong intensity × 3). As a conse-
quence, H-score provided a semi-continuous score between 0 
and 300 for each core.25-27 During the scoring process, we ig-
nored stromal staining as previous studies do. (b) The CD31+ 
blood vessels and CD3, CD68, and MSR1 positive individual 
infiltrating cells were quantified as the numbers of cells or 
blood vessels per unit area of the entire sections and changed 
transformed into density as cells or blood vessels/mm2. (c) 
When scoring Ki-67 and Mcm2, the luminal to basal ratio 
of the percentage of positive cells was calculated according 
to the previous study.11 Because tumor tissues lacked basal 
cells, we defined the Ki-67 and Mcm2 scores in the tumor 
tissues as positive infinity.

Immunoreactivity was independently assessed by two in-
vestigators (YKD and WLX) who were blinded to the clin-
icopathological data. The mean value of scores assessed by 
these investigators was taken as the final result. If their scores 
differed widely, the values were discussed until an agree-
ment was reached. Pearson correlation analysis was used to 
evaluate the inter-rater reliability between two investigators. 
The result showed that biomarkers’ immunoreactivity scores 
were highly correlated between two investigators (R = 0.87, 
P < .001).

2.4  |  Statistical methods

Mann-Whitney U statistics was used to compare the immu-
noreactivity of biomarkers between different groups. When 
screening biomarkers and constructing biomarker index, 
Univariate logistic analysis was used to screen biomark-
ers significantly associated with positive repeat biopsy 
results (cancer and HGPCa). Then multivariate analysis 
was performed by stepwise logistic regression modeling 
to construct a model using factors that were significant 
in the univariate analysis (P <  .1) in the training cohort. 
Biomarker index was defended as the prediction probabil-
ity of the model multiplied by 100. In detail biomarker 
index was set as 100 * 1/(e-P + 1). e is natural logarithm 
and P = β0 + β1 × X1 + β2 × X2 + β3 × X3 + …+ βn × Xn. 
X is the variable in the model, β0 is constant in equation. 
βx is coefficient of the corresponding variable. Then the 
biomarker index was validated in the validation cohort. 
We stratified patients with high and low risk group based 
on the biomarker index. Patients’ biomarker index values 
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F I G U R E  2   Screening of biomarkers 
and construction of biomarker index. (A) 
Immunoreactivity of biomarkers in initial 
negative biopsy samples of repeat biopsy 
cohort (original magnification x 20 and 
40). Violin-plot showed immunoreactivity 
of biomarkers in initial negative biopsy 
samples grouped by repeat biopsy result. 
Blue lines represent the median and the 
25th to 75th percentiles. (B, C) Univariate 
logistic regression analysis of the 10 
biomarkers when predicting cancer (B) 
and HGPCa (C) at repeat biopsy. (D) 
The immunoreactivity of p-STAT3, 
Mcm2 + luminal to basal ratio and number 
of MSR + cells in PCa, pericancer tissues 
with different distances from the tumor 
area and benign prostate tissues (original 
magnification x 20 and 40). Because the 
prostate tumor tissues lacked basal cells, we 
defined the Mcm2 + luminal to basal ratio 
score in the tumor tissues as positive infinity 
and did not show it in the violin plot for the 
PCa group. Violin-plot on the right showed 
immunoreactivity of biomarkers. Blue lines 
represent the median and the 25th to 75th 
percentiles
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higher than 30 and 14 were classified as high-risk respec-
tively, when predicting cancers and HGPCas. We chose the 
threshold value according to the LOESS smooth curves as 
previous studies do.28 The corresponding biomarker index 
value of the inflection region where the slope of the Loess 
curve goes from relatively stable to significantly rising is 
selected as our cut-off value. In the training cohort, univar-
iate and multivariate logistic regression models were used 
to test the significance of the association of each clinical 
variable and biomarker index with a positive repeat biopsy 
outcome (cancer or HGPCa) and to develop predictive 
models using the enter strategy. Area under the receiver op-
erating characteristic curve (AUC) was used to assess how 
well each variable or model discriminated between patients 
with and without cancer or HGPCa. For internal valida-
tion, models were subjected to 1000 bootstrap resamples, 
and the calibration plot was used to illustrate the level of 
agreement between the model predictions and the true risk 
of finding cancer or HGPCa. Finally, reclassification and 
decision curve analyses were used to determine the clinical 
value of different models.29 Where categorized, According 
to the LOESS curve, model scores of 0.2 and 0.11 were 
used as threshold values to classify patients as high and 
low-risk groups when predicting cancers and HGPCas. The 
data were analyzed using R software version 3.6.1 (https://
www.R-proje​ct.org/), MedCalc software (MedCalc soft-
ware bvba, Ostend, Flanders, Belgium) and SPSS version 
21 (SPSS Inc, Chicago, IL). For all tests, P-values less than 
0.05 were considered significant.

3  |   RESULTS

3.1  |  Screening of biomarkers and 
construction of biomarker index

The immunoreactivity of biomarkers in the initial negative 
biopsy samples of the training cohort are shown in Figure 2A 
and Table  S5. We found that the Immunoreactivity of p-
STAT3 and ratios of the luminal to basal of Mcm2 + cells in 
the initial negative biopsy tissues were significantly elevated, 
while the number of MSR1 + cells was significantly lower in 
those patients who were diagnosed with PCa and HGPCa as 
compared to those with a benign prostate biopsy (Figure 2A 
and Table  S5). Univariate logistic regression analysis fur-
ther confirmed that the immunoreactivity of p-STAT3, 
Mcm2 + luminal to basal ratio and MSR1 + cell number in 
the initial negative biopsy tissues were significantly associ-
ated with a positive repeat biopsy outcome of PCa (Table S6, 
Figure 2 B and C). In addition, the immunoreactivity of p-
STAT3 and Mcm2 + luminal to basal ratio were significantly 
associated with a positive repeat biopsy outcome of HGPCa 
(Table S5, Figure 2 B and C).

To further confirm the field effects of p-STAT3, 
Mcm2  +  luminal to basal ratio, and MSR1  +  cell num-
ber, we detected the immunoreactivity of the p-STAT3 and 
MSR1 + cell number in the PCa, pericancer tissues near and 
far from tumor core, and benign tissues. We also measure the 
Mcm2 + luminal to basal ratio in pericancer tissues near and 
far from tumor core, and benign tissues. Figure 2D showed 
that the immunoreactivity of the biomarkers significantly dif-
fered in the PCa sections and/or pericancer tissues compared 
to the benign prostate sections. In addition, in the pericancer 
tissues, the difference could still be observed as far as 10 mm 
from the tumor area as compared with the benign prostate 
tissues (Figure 2D).

Based on above results, multivariate analysis was per-
formed by stepwise logistic regression modeling to construct 
a model using all factors that were significant in the univari-
ate analysis (P < .1, Table S6). Finally p-STAT3, Mcm2, and 
MSR1 were used to construct the model for predicting cancers 
in the repeat biopsy cohort. When predicting HGPCa in the 
repeat biopsy cohort, p-STAT3 and Mcm2 were selected to 
construct the model (Table S7). The multivariate analysis re-
sults and coefficients for these biomarkers in models predict-
ing cancers and HGPCa were shown in Table S7. We defined 
the biomarker index as the model's prediction probability mul-
tiplied by 100 (ranging from 0 to 100). So biomarker index 
was calculated as 100 × 1/(e-P + 1). e is natural logarithm and 
when predicting cancers, P = p-STAT3 × 0.009138 + MSR1 
× −0.005494  +  Mcm2 × 0.133981 + (−0.654652). When 
predicting HGPCa, P  =  p-STAT3  ×  0.011919  +  Mcm2 × 
0.147794 + (−3.966242). Biomarker index represents the 
joint efforts of the selected biomarkers.

3.2  |  Validation of biomarker index

The differential immunoreactivity of the three biomarkers 
in the initial negative biopsy tissues of the benign, PCa, and 
HGPCa groups from the validation cohort were shown in 
Figure 3A. We constructed the biomarker index in the vali-
dation cohort according to the biomarkers and corresponding 
coefficients from the training cohort. To evaluate the predic-
tive value of the biomarker index as a linear variable in the 
training and validation cohorts, ROC curve was performed. 
The AUC of the biomarker index was 0.725 and 0.731, re-
spectively, when predicting the positive biopsy results and 
HGPCa in the training cohort and was 0.717 and 0.718, re-
spectively, in the validation cohort (Figure 3B and 3C). Then, 
LOESS smooth curves of the biomarker index for predicting 
cancer and HGPCa in the training and validation cohorts are 
shown in Figure 3D and E. Finally, we generated threshold 
values according to the LOESS smooth curves (Figure  3D 
and E) and divided patients into high-risk and low-risk 
groups. And univariate analysis showed that our grouping 

https://www.R-project.org/
https://www.R-project.org/
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F I G U R E  3   Validation of biomarker index. (A) Differential immunoreactivity of p-STAT3, Mcm2 + luminal to basal ratio and MSR + cell 
number in the initial negative biopsy tissues of the validation cohort grouped by initial biopsy result. (B, C) ROC curve of biomarker index when 
predicting cancer and HGPCa in the training (B) and validation (C) cohorts. (D, E) LOESS smooth curves showed the probability of detecting 
cancer or HGPCa increased with the increase of the biomarker index in the training (D) and validation (E) cohorts. The corresponding biomarker 
index value of the inflection region of curves was selected as threshold values. According to the LOESS curves, 30 and 14 were selected as 
threshold values to divide patients into high-risk and low-risk groups when predicting cancer and HGPCa respectively. The corresponding OR 
(odds ratio) and 95% CI were calculated by univariate logistic regression according to the threshold values. (F, G) PCa or HGPCa detection rate in 
the high-risk and low-risk patients in the training (F) and validation (G) cohorts
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strategy was strongly correlated with repeat biopsy results 
(Figure 3D and E). Also Figure 3F and 3G showed high-risk 
patients had a significantly higher probability of PCa and 
HGPCa compared with low-risk patients in both the training 
and validation cohorts.

3.3  |  The role of biomarker index in repeat 
biopsy decision-making processes

Clinicopathological characteristics of the training cohort are 
shown in Table 1. In total, 25 (25.5%) of 98 patients had a 
positive biopsy after a previous negative biopsy during the 
follow-up. The majority of cancers diagnosed were GG 1 
(n = 14; 56.0%), whereas 11 (44.0%) were HGPCas (2 cases 
with GG2, 6 cases with GG3, and 3 cases with GG 4 or 
higher).

The univariate logistic analysis showed that the biomarker 
index, fPSA% and serum PSA were predictive factors asso-
ciated with a positive repeat biopsy outcome (Table 1). The 
AUC of each variable when discriminating between patients 
with and without positive biopsy is given in Table  2. The 
biomarker index possessed the maximum AUC (0.72), fol-
lowed by fPSA% (0.65), ASAP history (0.60), and serum 
PSA (0.58).

When predicting HGPCa, the univariate analysis showed 
the biomarker index, fPSA%, and serum PSA were associ-
ated with HGPCa in the repeat biopsy. Table 2 shows that the 
biomarker index had the maximum AUC (0.73), followed by 
fPSA% (0.66) and serum PSA (0.62).

In the multivariate logistic analysis, the fPSA%, ASAP 
history and biomarker index were independent predic-
tive factors associated with cancers in the repeat biopsy. 
However, when predicting HGPCa, the fPSA%, serum PSA, 
and biomarker index were independent predicting factors 
(Table 2).

Various models were constructed using multivariate lo-
gistic regression analysis. The ROC was used to evaluate 

the value of each model for predicting cancer or HGPCa 
in the repeat biopsy (Table 3). The base model incorporat-
ing factors of age, fPSA%, serum PSA, DRE, and ASAP/
HGPIN history, had an AUC of 0.722 and 0.735, respec-
tively, when predicting cancer and HGPCa (Table  3). In 
addition, the addition of the biomarker index (full model) 
improved the AUC of the base model for predicting cancer 
(0.842) and HGPCa (0.842) in the repeat biopsy (Table 3). 
Then, the calibration plots were drawn to internally vali-
date each model (Figure S2 A and S1B). The calibration 
plots of both the base and full models closely paralleled 
the ideal prediction line and the departures from ideal pre-
dictions were within acceptable scope when observing the 
rate of cancer or HGPCa (Figure S2A and S1B). Finally, a 
nomogram was constructed incorporating predictors likely 
to be associated with detecting cancer or HGPCa (P < .1 in 
the multivariate logistic regression analysis, Table 2) and is 
shown in Figure S2C, and D

Patients were risk-stratified according to their base and 
full model scores into high-risk and low-risk groups when 
predicting cancers (threshold value: 0.2) and HGPCas 
(threshold value: 0.11). The threshold values were de-
fined by LOESS curve and showed in Figure S3A and B. 
The categorization by the “clinical-only” base model was 

T A B L E  2   Multivariate logistic analysis with corresponding predictive accuracy for each variable

Variables

Biopsy outcome of prostate cancer Biopsy outcome of HGPCa

OR (95%CI) P Value AUC OR (95%CI) P Value AUC

Age (Continuous) 1.04 (0.95-1.14) .39 0.52 0.97 (0.85-1.10) .63 0.55

f/t PSA ratio (Continuous) 0.88 (0.79-0.99) .031 0.65 0.85 (0.73-0.99) .039 0.66

Serum PSA (Continuous) 1.11 (0.98-1.26) .098 0.58 1.19 (1.01-1.40) .043 0.62

DRE, n, (Abnormal) 3.11 (0.35-27.85) .31 0.51 1.31 (0.071-24.45) .86 0.51

ASAP history (Present) 7.10 (1.31-38.57) .023 0.60 2.31 (0.14-37.84) .56 0.53

HGPIN history (Present) 2.62 (0.37-18.53) .34 0.52 5.14 (0.28-96.13) .27 0.52

Biomarker index 1.06 (1.03-1.09) <.001 0.72 1.08 (1.03-1.13) .002 0.73

Abbreviations: AUC: Area under curve;CI: Confidence interval; HGPCa: High grade prostate cancer; OR: odd ratio.

T A B L E  3   ROC curves of each model for predicting the risk of 
any prostate cancer or HGPCa at re-biopsy

Biopsy outcome of any 
prostate cancer

Biopsy outcome of 
high-grade prostate 
cancer

AUC
Gain in 
AUC AUC

Gain in 
AUC

Base model 0.722 0.735

Full model 0.842 0.120 0.842 0.113

Abbreviations: AUC, area under curve; ROC, receiver operating characteristic.
Base model: Age, PSA, %fPSA, DRE, ASAP, and HGPIN.
Full model: Base model + Biomarker index.
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compared with the full model (biomarker-clinicopatholog-
ical classifiers). Figure  4A showed that, when predicting 
cancers, the full model reclassified 24 patients into differ-
ent predicted risk categories, of which 18 (74.0%) were cor-
rectly reclassified. Similarly, when predicting HGPCa, the 
full model reclassified 28 patients originally risk stratified 
by base model, of which 21 (75.0%) were correctly reclas-
sified (Figure 4B).

The decision curve analysis indicated that in the range 
of threshold probabilities from 10% to 40%, the full model 
offered net benefit over the base model in predicting either 
cancer (Figure 4C) or HGPCa (Figure 4D).

To put these results in a clinical context, we expanded 
our repeat biopsy cohort to 1,000 people proportionally and 
calculated the number of biopsies and number of cancers or 
HGPCas that could be avoided or missed per 1000 patients 

F I G U R E  4   Role of biomarker index in repeat biopsy decision-making process. (A, B) Reclassification of base model score categories by 
biomarker-clinicopathological classifiers (full model) score for patients in the cohort. Based on LOESS curves of models’ scores, 20 and 11 were 
selected as threshold value to reclassify patients into high-risk and low-risk groups when predicting cancers (A) and HGPCa (B). Individual patients 
were represented as dots colored by repeat biopsy outcomes; sizes of dots represented the biomarker index as indicated. Gray quadrants represented 
situations in which the full model classifier reclassifies patients compared to the base model. Patients who did not have cancer or HGPCa (blue 
dots) in the bottom-right quadrant and patients who had cancer or HGPCa (red dots) in the top-left quadrant were reclassified correctly by the 
full model. (C, D) Decision curves for outcome of cancer (C) and HGPCa (D) using the base model and full model. Strategies for biopsies in all 
men (biopsy all) or no men (biopsy none) were also shown. The line with the highest net benefit at any particular threshold probability for biopsy 
(x-axis) will yield the best clinical results. E, F: Number of biopsies that could be avoided and number of cancers (E) or HGPCa (F) that could be 
missed per 1000 patients based on prediction models at different predicted probabilities
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based on prediction models at different predicted probabil-
ities (Table 4). For example, we considered the scenario in 
which a clinician would recommend a biopsy to patients with 
a predicted probability of 10%. Applying this rule, the full 
model would reduce the number of biopsies by 34.7% while 
delaying the diagnosis of 7.8% cancers per 1000 men with 
suspicion of cancer, and when detecting HGPCa, the full 
model would reduce the number of biopsies by 73.5% while 
delaying the diagnosis of 20 HGPCas per 1000 men with sus-
picion of HGPCa. Compared with the base model, Figure 4 E 
and F showed that the full model appeared to overlook fewer 
cancers (Figure 4E) and HGPCas (Figure 4F) while avoiding 
the same number of biopsies.

4  |   DISCUSSION

Relatively higher rates of PCa on repeat biopsy, ranging 
from 20% to 34%, have been reported by previous studies.3-5 
However, the criteria or indications for making a decision 
to perform a repeat biopsy procedure are not well defined. 
The AUC of models constructed by traditional clinical pa-
rameters in the repeat biopsy is only approximately 70%.5 
In our study, the AUC of the baseline model was only 0.722 
and 0.735 when predicting cancer and HGPCa, respectively. 
Therefore, it is necessary to identify novel biomarkers to 
help urologists in the decision-making processes.

Over the past decades, to improve the diagnosis accuracy 
of PCa many attempts has been made. A novel urine exosome 
gene expression assay has been reported by a large prospec-
tively study. Plus this assay with traditional clinical param-
eters could significant improved discrimination between 
HGPCa and others at initial biopsy.30,31 Other biomarkers 
like urinary PCA3 and TMPRSS2:ERG,32 and IsoPSA™ (a 
blood based, structure focused assay)33 can improve the diag-
nostic accuracy of traditional clinical parameters and showed 
promising predicting ability at initial biopsy.

However unlike the initial biopsy, the previous negative 
biopsy tissue may provide valuable information for repeat 

biopsy patients.. In our study, after screening a group of bio-
markers which may have potential field effects, we found that 
the immunoreactivity of p-STAT3, Mcm2  +  and/or MSR1 
were associated with cancer and HGPCa at repeat biopsy. The 
field effects of those biomarkers were further confirmed in 
our analysis. The biomarker index that combined the effects 
of the biomarkers showed promising discrimination abilities 
both in the training and validation cohorts. The AUC of the 
biomarker index when discriminating cancer or HGPCa from 
a benign prostate was 0.725 and 0.731, respectively, which 
was higher than any other single traditional parameter and 
any single biomarker alone. More importantly, the full model 
supplemented with the biomarker index with traditional pa-
rameters both had an AUC0.842 when predicting cancer and 
HGPCa in the repeat biopsy (Table 3), which significantly 
improved the AUC of the base model. In the decision-making 
analysis, we found that the full model could offer more net 
benefits than other models, which could help urologists to 
make better decisions.

Disorders in DNA replication and cell proliferation are 
basic aspects of many cancers, including PCa. Mcm2, a pro-
tein involved in the eukaryotic DNA replication procedure 
and that serves as the convergence point of several cell pro-
liferation pathways, could be a promising biomarker that can 
provide relevant diagnostic and prognostic information.34-36 
From normal to tumor tissues, a shift in Mcm2 immunoreac-
tivity from the basal to luminal cell compartment was noted 
by a previous study.11 Moreover the Mcm2 luminal to basal 
cell ratios were significantly higher in the normal glands from 
prostates with cancer than in the normal glands from pros-
tates free of cancer.11 In our study, we found that the Mcm2 
luminal to basal cell ratios not only showed considerable filed 
effects but also were significantly associated with positive 
repeat prostate biopsy results. Also in a prospective study, 
detection of MCM2 in voided urinary samples could serve 
as a promising biomarker for diagnosis of bladder cancers.37

Previous studies have demonstrated that many inflamma-
tory and immune cells contribute to carcinogenesis or pro-
gression of PCa, including MSR1  +  cells.38-41 Decreased 

T A B L E  4   Number of biopsies that could be avoided for repeat biopsy at 5%, 10%, 15%, 20% threshold

Any cancer HGPCa

Biopsies Cancer Biopsies Cancer

Performed Avoided Found Missed Performed Avoided Found Missed

Biopsy all 1000 0 255 0 1000 0 112 0

Full model

>5% 857(769- 917) 143(83-231) 245(198-254) 10(1-57) 541(437-641) 459(359-563) 102(64-111) 10(1-48)

>10% 653(549-745) 347(255-451) 235(185-251) 20(4-70) 265(184-366) 735(634-816) 92(53-108) 20(4-59)

>15% 561(457-660) 439(340-543) 224(173-247) 31(8-83) 194 (124-289) 806(711-876) 71(35-98) 41(14-80)

>20% 479(378-582) 520(418-622) 224(173-247) 31(8-83) 122(68-208) 878(792-932) 61(28-92) 51(20-84)

Abbreviations: HGPCa, High-grade prostate cancer.
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infiltration of MSR1 + cells has been proven to be associated 
with the progression of PCa and worse clinical outcomes.41 
Norio et al reported that the number of MSR1  +  cells in 
previous negative biopsy specimens was significantly lower 
in patients with cancer than those without cancer at repeat 
biopsy, which indicated that the MSR1 + cells count in the 
initial negative biopsy might be a promising biomarker in 
predicting a positive repeat biopsy outcome.14 However, the 
study failed to evaluate the clinical effects of MSR1 in a re-
peat biopsy cohort. In our study, we found that MSR1 + cell 
count was significantly associated with cancers in the repeat 
biopsy.

STAT3 is a member of the JAK-STAT signaling path-
way, and constitutively activated STAT3 is correlated with 
the prognosis, progression and metastasis of various can-
cers including PCa.42-44 Dhir et al detected significantly 
higher levels of constitutive STAT3 activity in both pros-
tate carcinomas and pericancerous glands compared to the 
normal prostates without the influence of PCa.19 Moreover 
another study and our study showed that the immunore-
activity of p-STAT3 in the initial negative biopsy tissues 
could be used to predict the positive biopsy outcome.18 
However, the diagnosis role of p-STAT3 in other cancers 
were sparely reported.

There are several limitations to this study. First, this study 
was a retrospective study. Second, many variables, such as 
prostate volume, PSA velocity, and family history, were not 
included in our study due to limited sample size. An addi-
tional limitation of this study would be that lack of further 
external validation. We believe that future large sample, mul-
ticenter studies incorporating results from more variables or 
biomarkers would provide a more profound understanding of 
the repeat biopsy.

Taken together, the biomarker index constructed by 
p-STAT3, Mcm2 luminal to basal ratio and/or MSR1 + cell 
count is significantly associated with positive repeat prostate 
biopsy results, and supplementing this biomarker index with 
traditional clinical parameters may help urologists in deci-
sion-making processes regarding who will benefit from re-
peat biopsy.

ACKNOWLEDGMENTS
This work is supported by the following grants: the National 
Natural Science Foundation of China (No. 81001137, No. 
81874094, and No.81800590), Innovation project of Peking 
Union Medical College (2019-1002-69), Hunan Provincial 
Natural Science Foundation of China (No. 2019JJ40484), 
Science and Technology Plan Projects of Changsha city 
(kq1801114), the Project from Health and Family Planning 
Commission of Hunan Province (No. C20180105)

CONFLICT OF INTEREST
The authors have no conflict of interest.

AUTHOR CONTRIBUTION
LY, LX, WL, and WZ designed study. LX, WL, ZX, HX, JH, 
and ZL analyzed data. LY and LX reviewed the manuscript. 
LX and WL wrote the manuscript. YK and WL performed 
immunohistochemistry research and analysis. CY, YC, WZ, 
and ZX collected data.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data 
were created or analyzed in this study.

ORCID
Yuan Li   https://orcid.org/0000-0002-5249-3172 

REFERENCES
	 1.	 Miller KD, Nogueira L, Mariotto AB, et al. Cancer treat-

ment and survivorship statistics, 2019. CA Cancer J Clin. 
2019;69(5):363-385.

	 2.	 Huang G-L, Kang C-H., Lee W-C, Chiang P-H. Comparisons of 
cancer detection rate and complications between transrectal and 
transperineal prostate biopsy approaches - a single center prelimi-
nary study. BMC Urol. 2019;19(1):101.

	 3.	 Rosenkrantz AB, Verma S, Choyke P, et al. Prostate magnetic res-
onance imaging and magnetic resonance imaging targeted biopsy 
in patients with a prior negative biopsy: a consensus statement by 
AUA and SAR. J Urol. 2016;196(6):1613-1618.

	 4.	 Huang C, Song G, Wang HE, et al. MultiParametric magnetic res-
onance imaging-based nomogram for predicting prostate cancer 
and clinically significant prostate cancer in men undergoing repeat 
prostate biopsy. Biomed Res Int. 2018;12:2018.

	 5.	 Moussa AS, Jones JS, Yu C, Fareed K, Kattan MW. Development 
and validation of a nomogram for predicting a positive re-
peat prostate biopsy in patients with a previous negative bi-
opsy session in the era of extended prostate sampling. BJU Int. 
2010;106(9):1309-1314.

	 6.	 Bhindi B, Jiang H, Poyet C, et al. Creation and internal validation 
of a biopsy avoidance prediction tool to aid in the choice of di-
agnostic approach in patients with prostate cancer suspicion. Urol 
Oncol. 2017;35(10):604.e17-.e24.

	 7.	 Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff 
RH. A genetic explanation of Slaughter's concept of field can-
cerization: evidence and clinical implications. Cancer Res. 
2003;63(8):1727-1730.

	 8.	 Slaughter DP, Southwick HW, Smejkal W. Field cancerization in 
oral stratified squamous epithelium; clinical implications of multi-
centric origin. Cancer. 1953;6(5):963-968.

	 9.	 Cunha GR, Hayward SW, Wang YZ, Ricke WA. Role of the stromal 
microenvironment in carcinogenesis of the prostate. Int J Cancer. 
2003;107(1):1-10.

	10.	 Bergh A. Characterization and functional role of the stroma com-
partment in prostate tumors. Future Onco. 2009;5(8):1231-1235.

	11.	 Ananthanarayanan V, Deaton RJ, Yang XJ, Pins MR, Gann PH. 
Alteration of proliferation and apoptotic markers in normal and prema-
lignant tissue associated with prostate cancer. BMC Cancer. 2006;6:73.

	12.	 Yu YP, Landsittel D, Jing L, et al. Gene expression alterations in 
prostate cancer predicting tumor aggression and preceding devel-
opment of malignancy. J Clin Oncol. 2004;22(14):2790-2799.

https://orcid.org/0000-0002-5249-3172
https://orcid.org/0000-0002-5249-3172


7536  |      LONG et al.

	13.	 Ge L, Meng W, Zhou H, Bhowmick N. Could stroma contribute to 
field cancerization? Med Hypotheses. 2010;75(1):26-31.

	14.	 Nonomura N, Takayama H, Kawashima A, et al. Decreased infil-
tration of macrophage scavenger receptor-positive cells in initial 
negative biopsy specimens is correlated with positive repeat biop-
sies of the prostate. Cancer Sci. 2010;101(6):1570-1573.

	15.	 Kervancioglu E, Kosan M, Erinanc H, et al. Predictive values of vascu-
lar endothelial growth factor and microvessel-density levels in initial 
biopsy for prostate cancer. Kaohsiung J Med Sci. 2016;32(2):74-79.

	16.	 Merseburger AS, Hennenlotter J, Simon P, et al. Activation of the 
PKB/Akt pathway in histological benign prostatic tissue adjacent 
to the primary malignant lesions. Oncol Rep. 2006;16(1):79-83.

	17.	 Santinelli A, Mazzucchelli R, Barbisan F, et al. alpha-Methylacyl 
coenzyme A racemase, Ki-67, and topoisomerase II alpha in cysto-
prostatectomies with incidental prostate cancer. Am J Clin Pathol. 
2007;128(4):657-666.

	18.	 Han G, Yu JY, Chen YD, et al. The usefulness of phosphorylated-sig-
nal transduction and activators of transcription 3 in detecting prostate 
cancer from negative biopsies. Eur J Surg Oncol. 2012;38(4):367-373.

	19.	 Dhir R, Ni Z, Lou W, De Miguel F, Grandis JR, Gao AC. Stat3 
activation in prostatic carcinomas. Prostate. 2002;51(4):241-246.

	20.	 Epstein JI, Potter SR. The pathological interpretation and signifi-
cance of prostate needle biopsy findings: implications and current 
controversies. J Urol. 2001;166(2):402-410.

	21.	 Epstein JI. Atypical small acinar proliferation of the prostate gland. 
Am J Surg Pathol. 1998;22(11):1430-1431.

	22.	 Noguchi M, Stamey TA, McNeal JE, Yemoto CE. Assessment 
of morphometric measurements of prostate carcinoma volume. 
Cancer. 2000;89(5):1056-1064.

	23.	 Norberg M, Egevad L, Holmberg L, Sparén P, Norlén BJ, Busch C. The 
sextant protocol for ultrasound-guided core biopsies of the prostate 
underestimates the presence of cancer. Urology. 1997;50(4):562-566.

	24.	 Gupta A, Roobol MJ, Savage CJ, et al. A four-kallikrein panel for 
the prediction of repeat prostate biopsy: data from the European 
Randomized Study of Prostate Cancer Screening in Rotterdam, 
Netherlands. Brit J Cancer. 2010;103(5):708-714.

	25.	 Yeo W, Chan SL, Mo FKF, et al. Phase I/II study of temsirolimus 
for patients with unresectable Hepatocellular Carcinoma (HCC)-a 
correlative study to explore potential biomarkers for response. 
BMC Cancer. 2015;15(12):395.

	26.	 Akfirat C, Zhang X, Ventura A, et al. Tumour cell survival mecha-
nisms in lethal metastatic prostate cancer differ between bone and 
soft tissue metastases. J Pathol. 2013;230(3):291-297.

	27.	 Lotan TL, Gurel B, Sutcliffe S, et al. PTEN protein loss by immu-
nostaining: analytic validation and prognostic indicator for a high 
risk surgical cohort of prostate cancer patients. Clin Cancer Res. 
2011;17(20):6563-6573.

	28.	 Miyake K, Miyake N, Kondo S, et al. Seasonal variation in liver 
function tests: a time-series analysis of outpatient data. Ann Clin 
Biochem. 2009;46(Pt 5):377-384.

	29.	 Vickers AJ, Elkin EB. Decision curve analysis: a novel method for eval-
uating prediction models. Med Decis Making. 2006;26(6):565-574.

	30.	 McKiernan J, Donovan MJ, O’Neill V, et al. A novel urine exo-
some gene expression assay to predict high-grade prostate cancer 
at initial biopsy. JAMA Oncol. 2016;2(7):882-889.

	31.	 McKiernan J, Donovan MJ, Margolis E, et al. A prospective adap-
tive utility trial to validate performance of a novel urine exosome 
gene expression assay to predict high-grade prostate cancer in 

patients with prostate-specific antigen 2–10 ng/ml at initial biopsy. 
Eur Urol. 2018;74(6):731-738.

	32.	 Sanda MG, Feng Z, Howard DH, et al. Association between com-
bined TMPRSS2:ERG and PCA3 RNA urinary testing and detection 
of aggressive prostate cancer. JAMA Oncol. 2017;3(8):1085-1093.

	33.	 Stovsky M, Klein EA, Chait A, et al. Clinical validation of IsoPSA™, 
a single parameter, structure based assay for improved detection of 
high grade prostate cancer. J Urol. 2019;201(6):1115-1120.

	34.	 Dudderidge TJ, McCracken SR, Loddo M, et al. Mitogenic growth 
signalling, DNA replication licensing, and survival are linked in 
prostate cancer. Br J Cancer. 2007;96(9):1384-1393.

	35.	 Majid S, Dar AA, Saini S, et al. Regulation of minichromosome 
maintenance gene family by microRNA-1296 and genistein in 
prostate cancer. Cancer Res. 2010;70(7):2809-2818.

	36.	 Toubaji A, Sutcliffe S, Chaux A, et al. Immunohistochemical ex-
pression of minichromosome maintenance complex protein 2 pre-
dicts biochemical recurrence in prostate cancer: a tissue microarray 
and digital imaging analysis-based study of 428 cases. Hum Pathol. 
2012;43(11):1852-1865.

	37.	 Kapoor K, Datta C, Pal DK. Immunocytochemical detection 
of minichromosome maintenance protein 2 as a potential uri-
nary-based marker of bladder cancer: A prospective observational 
study. Indian J Urol. 2020;32-36.

	38.	 Palapattu GS, Sutcliffe S, Bastian PJ, et al. Prostate carcino-
genesis and inflammation: emerging insights. Carcinogenesis. 
2005;26(7):1170-1181.

	39.	 Wagenlehner FME, Elkahwaji JE, Algaba F, et al. The role of 
inflammation and infection in the pathogenesis of prostate carci-
noma. BJU Int. 2007;100(4):733-737.

	40.	 De Marzo AM, Platz EA, Sutcliffe S, et al. Inflammation in pros-
tate carcinogenesis. Nat Rev Cancer. 2007;7(4):256-269.

	41.	 Yang G, Addai J, Tian W-H, et al. Reduced infiltration of 
class A scavenger receptor positive antigen-presenting cells 
is associated with prostate cancer progression. Cancer Res. 
2004;64(6):2076-2082.

	42.	 Wu P, Wu D, Zhao L, et al. Prognostic role of STAT3 in solid 
tumors: a systematic review and meta-analysis. Oncotarget. 
2016;7(15):19863-19883.

	43.	 Yu Y, Zhao Q, Wang Z, Liu XY. Activated STAT3 correlates with 
prognosis of non-small cell lung cancer and indicates new antican-
cer strategies. Cancer Chemother Pharmacol. 2015;75(5):917-922.

	44.	 Gordziel C, Bratsch J, Moriggl R, Knösel T, Friedrich K. Both 
STAT1 and STAT3 are favourable prognostic determinants in col-
orectal carcinoma. Br J Cancer. 2013;109(1):138-146.

SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

How to cite this article: Long X, Wu L, Zeng X,  
et al. Biomarkers in previous histologically negative 
prostate biopsies can be helpful in repeat biopsy 
decision-making processes. Cancer Med. 2020;9: 
7524–7536. https://doi.org/10.1002/cam4.3419

https://doi.org/10.1002/cam4.3419

