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Abstract

Background: Although toxic, the Chinese medicinal herb Xanthii Fructus (XF) is commonly used to treat traditional
Chinese medicine (TCM) symptoms that resemble cold, sinusitis and arthritis. According to TCM theory, stir-baking
(a processing method) can reduce the toxicity and enhance the efficacy of XF.

Methods: Cytotoxicities of raw XF and processed XF (stir-baked XF, SBXF) were determined by the MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in normal liver derived MIHA cells. Nitric
oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression were measured by the Griess reagent
and quantitative real-time PCR, respectively. The chemical profiles of XF and SBXF were compared using an established
ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method.

Results: SBXF was less toxic than XF in MIHA cells. Both XF and SBXF had anti-inflammatory effects as demonstrated
by their abilities to reduce nitric oxide production as well as inducible nitric oxide synthase mRNA expression in
lipopolysaccharide-stimulated RAW 264.7 macrophages. Interestingly, the anti-inflammatory effects of SBXF were more
potent than that of XF. By comparing the chemical profiles, we found that seven peaks were lower, while nine other
peaks were higher in SBXF than in XF. Eleven compounds including carboxyatractyloside, atractyloside and chlorogenic
acid corresponding to eleven individual changed peaks were tentatively identified by matching with empirical molecular
formulae and mass fragments, as well as literature data.

Conclusion: Our study showed that stir-baking significantly reduced the cytotoxicity and enhanced the
anti-inflammatory effects of XF; moreover, with a developed ultra-performance liquid chromatography/
quadrupole-time-of-flight mass spectrometry method we differentiated XF and SBXF by their chemical
profiles. Further studies are warranted to establish the relationship between the alteration of chemical
profiles and the changes of medicinal properties caused by stir-baking.
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Background
Xanthii Fructus (XF) is the ripe fruits of Xanthium
sibiricum Patr. (Compositae). In Sheng Nong’s herbal
classic (a book published 2,000 years ago), XF was first
documented to be able to smooth nasal orifices (通鼻窍)
and eliminate wind-dampness (祛风湿), and to be toxic.

It is commonly used in managing traditional Chinese
medicine (TCM) symptoms that would today be diag-
nosed as cold, sinusitis and arthritis [1]. To reduce the
toxicity and enhance the efficacy, XF is usually processed
by stir-baking (炒). In the Chinese pharmacopoeia,
more than ten Chinese proprietary drugs contain XF or
stir-baked XF (SBXF). Chemical analyses revealed that
XF contains water-soluble glycosides, sesquiterpene lac-
tones and phenolic acids [2]. Pharmacological studies
showed that XF has various bioactivities including anti-
oxidant [3], anti-bacterial [4] and anti-inflammatory [5]
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properties. In a carrageenan-induced hind paw edema
model in rats, XF was shown to have anti-inflammatory
effect as demonstrated by reducing the levels of indu-
cible nitric oxide synthase (iNOS) and cyclooxygenase-
2 (COX-2) expressions [5]. In an acetic acid-induced
writhing model, SBXF was shown to have better anal-
gesic effect than XF in mice [6]. Toxicological studies
demonstrated that XF induced obvious liver damage in
a long-term toxicity study in rats [7], the water extract
was more toxic than the ethanol extract of XF in mice
[8, 9], and the water extract of SBXF was less toxic than
XF in an acute toxicity study in mice [6]. However, the
comparison of the hepatotoxicities of XF and SBXF has
not been conducted. Proteins and water-soluble glyco-
sides have been thought to be the main toxic sub-
stances of this herb. Denaturing the toxic proteins by
stir-baking has been proposed as one of the reasons for
reducing its toxicity [10]. The water-soluble glycosides
carboxyatractyloside (CATR) and atractyloside (ATR)
have been recognized as other two toxic components of
this herb [11, 12].
To validate the impact of stir-baking on the

toxicity and efficacy, in this study, we compared the
cytotoxicities of XF and SBXF in non-tumorigenic
and immortalized human liver cells (MIHA), and
their anti-inflammatory effects in lipopolysaccharide
(LPS)-stimulated Raw 264.7 macrophages. In an at-
tempt to uncover the chemical basis behind the po-
tential changes of medicinal properties caused by
stir-baking, we compared the chemical profiles of
the water extracts of XF and SBXF using an estab-
lished UPLC/Q-TOF-MS method.

Methods
Chemicals and regents
Carboxyatractyloside potassium salt (C31H43O18S2K3) was
purchased from Merck (Merck Millipore, Taiwan). Atrac-
tyloside potassium salt (C30H44O16S2K2), chlorogenic acid
(C16H18O9 ), caffeic acid (C9H8O4), 1,5-O-Dicaffeoylquinic
acid (C25H24O12), 3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide (MTT), bacterial lipopoly-
saccharide (LPS) and Griess reagent were purchased
from Sigma-Aldrich (Sigma, USA). All solvents for
chemical analyses were purchased from RCI Labscan
Ltd. (Thailand). All materials for cell culture were ob-
tained from Life Technologies Inc. (GIBICO, USA).

Preparation of XF and SBXF extracts
Ten batches of XF were collected from different
places in China (01: Yulin, Shanxi province; 02:
Shunyi, Beijing; 03: Houma, Shanxi province; 04–05:
Baoding, Hebei province; 06: Handan, Hebei province;
07–10: Hong Kong), and their authentication were
confirmed by the corresponding author. Voucher specimens

were deposited at the School of Chinese Medicine,
Hong Kong Baptist University.
SBXF preparation: Raw XF was stir-baked in a pre-

heated wok. The processed herb is SBXF.
XF and SBXF extracts preparation: XF or SBXF

(100 g) was reflux-extracted twice with water (1:10, w/v)
for 2 h each. The combined extracts were filtered and
then concentrated under reduced pressure to remove
the water. The powdered XF (yield: 12.00 %) and SBXF
(yield: 17.22 %) extracts were obtained by lyophilizing of
the concentrated samples with a Virtis Freeze Dryer
(The Virtis Company, New York, USA).
XF and SBXF fractions preparation: XF or SBXF

(100 g) was reflux-extracted twice with 80 % ethanol
(1:10, w/v) for 2 h each. The combined extracts were fil-
tered and evaporated under vacuum, then suspended in
water and partitioned successively with petroleum (PE),
ethyl acetate (EA) and n-butanol (n-Bu). Each fractions
of XF and SBXF were evaporated in a Virtis Freeze Dryer
to yield the residues of PE (8.56 %), EA (5.99 %), n-Bu
(16.7 %) and aqueous (68.75 %) for XF, and PE
(10.18 %), EA (7.28 %), n-Bu (17.00 %) and aqueous
(65.54 %) for SBXF, respectively.

Cell culture
The non-tumorigenic and immortalized human liver
cells (MIHA) and the murine macrophage cells (Raw
264.7) were obtained from the American Type Culture
Collection (ATCC, Manassa, VA, USA). All cells were
cultured in dulbecco’s modified eagle medium (DMEM)
supplemented with 10 % heat inactivated fetal bovine
serum and 1 % penicillin/streptomycin at 37 °C in hu-
midified 5 % CO2 atmosphere.

Cytotoxicity assay
MIHA cells were seeded on a 96-well plate (5000
cells/well) and allowed to adhere overnight. The cells
were treated with various concentrations of the water
extracts and fractions of XF and SBXF as indicated
for 48 h, 20 μl of MTT solution (5 mg/ml) was added
to each well and incubated for an additional 3 h. The
formazan crystal formed was dissolved with 100 μl of
dimethylsulfoxide (DMSO), absorbance was detected
at 570 nm by a microplate spectrophotometer (BD
Biosciences, USA). Results were expressed as percent-
ages of the respective controls [13].

Nitric oxide (NO) production assay
RAW 264.7 cells were seeded on a 24-well plate (1 × 105

cells/ well) and allowed to adhere overnight. After pre-
treated with LPS (1 μg/ml) for 2 h, the cells were treated
with different subtoxic concentrations of XF or SBXF
water extract (100, 200, 300 μg/ml, cell survival >90 %)
in the presence of LPS for another 24 h. NO production
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was determined by assaying the accumulation of nitrite,
the primary stable breakdown product of NO in the cul-
ture medium, with the Griess reagent [14]. The absorb-
ance at 540 nm was measured using a microplate
spectrophotometer (BD, Bioscience USA).

Real-time polymerase chain reaction
RAW 264.7 cells were seeded as described in Section
“Nitric oxide (NO) production assay”. After pretreated
with LPS (1 μg/ml) for 2 h, the cells were treated with
different subtoxic concentrations of XF or SBXF water
extract (100, 200, 300 μg/ml, cell survival >90 %) in the
presence of LPS for another 18 h. Total RNA was iso-
lated using Trizol reagent (Invitrogen, USA) according
to manufacturer’s protocol [15]. Five micrograms of
RNA was used for reverse transcription by oligo-dT
using the SuperScript II Reverse Transcription Kit
(Invitrogen, USA). The primers were designed as
follows: iNOS (Sense 5’-AACGGAGAACGTTGGA
TTTG-3’ and anti-sense 5’-CAGCACAAGGGGTTT
TCTTC-3’). To normalize the amounts of RNA in sam-
ples, a PCR reaction was also performed with primers of
GAPDH (Sense 5’-AACTTTGGCATTGTGGAAGG-3’
and anti-sense 5’-TGTGAGGGAGATGCTC AGTG-3’).
Real-time PCR was performed using SYBR green reaction
mixture in the ABI 7500 Fast Real-time PCR System
(Applied Biosystems, USA).

UPLC/Q-TOF-MS analysis
Liquid chromatography was performed on an Agilent
1200 system coupled with an ACQUITY UPLC HSS
T3 column (2.1 mm × 100 mm, 1.8 μm) maintained
at 35 °C. Elution was performed with a mobile phase
of A (0.1 % formic acid in acetonitrile) and B (0.1 %
formic acid in water). A gradient elution of 12 % A
at 0–2 min, 12–25 % A at 2–5 min, 25–40 % A at
5–7.5 min, 40–65 % A at 7.5−10 min, 65–80 % A at
10–13 min and 80−12 % A at 13–17 min was
employed. The flow rate was set at 0.35 ml/min. The
injection volume was 5 μl.
Mass spectrometric detection was carried out on

an Agilent 6540 Q-TOF mass spectrometer (Hewlett
Packard, Agilent, USA) with electrospray ionization
(ESI) interface. The negative ion mode was used
with the mass range set at m/z 100–1700. The
conditions of ESI source were as follows: gas
temperature, 300°C; drying gas (N2) flow rate, 8 L/min;
nebulizer, 45 psi; sheath gas temperature, 350 °C; sheath
gas flow, 10 L/min; capillary voltage, 4000 V; fragmentor,
140 V; skimmer voltage, 65 V; OctopoleRFPeak,
750 V. Data were collected with the LC-MS-QTOF
MassHunter Data Acquisition Software Ver. A.01.00
(Agilent Technologies) and analyzed with the Agilent
MassHunter Qualitative Analysis Software B.06.00,
respectively.

Fig. 1 Cytotoxicities of XF and SBXF fractions in cultured MIHA cells. MIHA cells were treated with various concentrations of XF and SBXF
fractions as indicated for 48 h, cell viability was determined by the MTT assay. All data were presented as mean ± SD. PE: petroleum; EA: ethyl
acetate; n-Bu: n-butanol. *p<0.05, **p<0.01
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Statistical analysis
Each experiment was performed in triplicate and was re-
peated for at least three times. All results were presented
as mean ± SD. The significance of differences among
groups was determined by the one-way analysis of vari-
ance (ANOVA). Variance between two groups was eval-
uated by Student’s t-test. All analyses were performed
using SPSS 17.0 (IBM, USA) with p < 0.05 as the signifi-
cance level.

Results and discussion
Stir-baking reduced the cytotoxicity of XF in MIHA cells
It has been reported that XF has liver toxicity in animals
[7], and two water-soluble glycosides have been identi-
fied to be the toxic substances [11, 12]. To compare the
cytotoxicities of XF and SBXF water extracts, we used
the MIHA cell model. Results showed that both XF and
SBXF water extracts have no obvious cytotoxicities (data
not shown). However, whole power of this herb was also

Fig. 2 Effects of XF and SBXF on NO production (a), iNOS mRNA expression levels (b) in LPS-stimulated RAW 264.7 cells. (a) Raw 264.7 cells were
pretreated with LPS for 2 h, then cells were treated with XF or SBXF water extract in the presence of LPS for another 24 h. NO production was
determined by the Griess reagent. (b) Raw 264.7 cells were pretreated with LPS for 2 h, then cells were treated with XF or SBXF water extract in
the presence of LPS for another 18 h. iNOS mRNA expression was assessed by real-time PCR. All data were presented as mean ± SD. **p<0.01 vs.
control; &&p<0.01 vs. LPS; #p<0.05, ##p<0.01 vs. XF

Fig. 3 The representative negative base peak intensity (BPI) chromatograms of XF and SBXF. (a): Chemical profile of XF detected by UPLC/Q-TOF-MS
analyses. (b): Chemical profile of SBXF detected by UPLC/Q-TOF-MS analyses
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Table 1 Compounds identified from the water extracts of XF and SBXF

Peak no. tR (min) Assigned identity Molecular Mean measured
mass (Da)

Mass accuracy
(ppm)

Theoretical exact
mass (Da)

Quasi-molecular
ion

MS/MS m/z
(ESI−)

Change trend after
processing

References

1 1.368 1-O-caffeoylquinic acid C16H18O9 353.0866 3.51 353.0873 [M-H]− 191 ↓ 24

2 1.593 3-O-caffeoylquinic acid C16H18O9 353.0866 8.75 353.0873 [M-H]− 191;135 ↓* 23

3a 2.487 chlorogenic acid C16H18O9 353.0866 −1.35 353.0873 [M-H]− 191 ↑**

4 2.546 UN C7H12O5 175.0612 −3.78 175.0606 [M-H]− ↓

5 2.763 4-O-caffeoylquinic acid C16H18O9 353.0866 −6.55 353.0873 [M-H]− 173;135 ↑* 24

6a 3.623 caffeic acid C9H8O4 179.0350 5.36 179.0344 [M-H]− ↑** 27

7 4.349 1,3-O-dicaffeoylquinic acid C25H24O12 515.1179 3.05 515.1190 [M-H]− 353;299,173 ↑ 25,26

8 4.985 UN C25H24O13 531.1144 −0.36 531.1131 [M-H]− ↓

9 6.028 1,4-O-dicaffeoylquinic acid C25H24O12 515.1195 8.85 515.1190 [M-H]− 353;335;179 ↑ 23

10a 6.195 carboxyatractyloside C31H46O18S2 769.2110 1.23 769.2047 [M-H]− ↓** 12, 28,

11a 6.228 1,5-O-dicaffeoylquinic acid C25H24O12 515.1299 −6.07 515.1190 [M-H]− 353;335;191 ↑* 25,26

12a 7.03 atractyloside C30H46O16S2 725.2155 −0.62 725.2149 [M-H]− ↑** 28,29

13 7.239 UN C27H46O20 689.2536 −3.72 689.2490 [M-H]− ↓**

14 8.032 4'-desulphate-atractyloside C30H46O13S 645.2594 −1.05 645.2581 [M-H]− ↑** 29

15 8.575 UN C34H44O13 659.2733 −3.57 659.2691 [M-H]− ↑*

16 11.119 UN C19H30N4 313.2398 0.04 313.2386 [M-H]− ↓**

*P<0.05; **P<0.01; UN unidentified
↑increased after processing procedure; ↓decreased after processing procedure
aIdentified with reference standards
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used in the clinic, in order to know the cytotoxicities of
the components with different polarities, we prepared
fractions of an ethanolic extract of XF or SBXF and
individually tested their cytotoxicities. As shown in
Fig. 1, EA fractions (XF IC50: 231.1 μg/ml; SBXF IC50:
282.2 μg/ml) were more toxic than other three frac-
tions (PE fraction: XF IC50: 391.8 μg/ml; SBXF IC50:
499.5 μg/ml; n-Bu fraction: XF IC50: 271.8 μg/ml;
SBXF IC50: 512.9 μg/ml; aqueous fraction: XF IC50:
539.9 μg/ml; SBXF IC50: 560.8 μg/ml). Nevertheless,
SBXF was less toxic than XF in all four fractions,
suggesting that stir-baking reduced the cytotoxicity of
XF in MIHA cells.

Stir-baking enhanced the anti-inflammatory effects of XF
in LPS-stimulated macrophages
XF is commonly used to treat TCM symptoms that
resemble cold, sinusitis and arthritis. It has a good
anti-inflammatory activity. In this study, we used
LPS-stimulated macrophages as the model to examine
if stir-baking alters the anti-inflammatory effects of
XF. As shown in Fig. 2, LPS treatment enhanced NO
production (p<0.01) (Fig. 2a) and increased mRNA
expression of iNOS (p<0.01) (Fig. 2b) in RAW 264.7

macrophages. Both XF and SBXF water extracts sig-
nificantly reduced the LPS-elicited NO production
(p<0.01) (Fig. 2a) and mRNA expression of iNOS
(p<0.01) (Fig. 2b) in a dose-dependent manner. Inter-
estingly, when compared with XF at 300 μg/ml, SBXF
at the same concentration was more potent in the in-
hibition of NO production (p<0.01) (Fig. 2a) and in
the reduction of mRNA expression of iNOS (p<0.05)
(Fig. 2b) in the macrophages. NO is known to be syn-
thesized from L-arginine by nitric oxide synthase
(NOS) and plays a pivotal role as a proinflammatory
mediator in various diseases [16–18]. iNOS is highly
expressed in LPS-activated macrophages [19] and
plays a role in the development and maintenance of
inflammation and pain [20, 21]. Thus, NO production
by iNOS may reflect the degree of inflammation and
measurements of these two molecules provide options
for assessing the effect of drugs in the inflammatory
process [22]. These results showed that stir-baking
enhanced the anti-inflammatory effects of XF in vitro.

Stir-baking altered the chemical profile of XF
In an attempt to uncover the underlying chemical
basis of the reduced cytotoxicity and the enhanced

Fig. 4 Quantitative analyses of CATR and ATR. (a) The typical HPLC chromatograms of ten batches of XF and corresponding SBXF; (b) The
contents of CATR and ATR in ten batches of XF and corresponding SBXF. CATR: Carboxyatractyloside; ATR: Atractyloside
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anti-inflammatory effects caused by stir-baking, we
compared the chemical profiles of XF and SBXF by
UPLC/Q-TOF-MS analyses. As shown in Fig. 3, seven
peaks were lower, while nine peaks were higher in
SBXF than in XF. Compounds 1, 2, 3, 5 and 7, 9, 11
are two types of isomers, and these compounds were
identified by matching with their empirical molecular
formulae and mass fragments, as well as the literature
data [2329 ]. Compounds 3, 6, 10, 11, 12 were con-
firmed as chlorogenic acid, caffeic acid, carboxyatrac-
tyloside, 1,5-O-dicaffeoylquinic acid, and atractyloside
by the reference standards. Details of the MS of all
components, including phenolic acids and water-
soluble glycosides, corresponding to individual peaks
were shown in Table 1. Seven compounds, 1-O-
caffeotannic acid, 3-O-caffeotannic acid, chlorogenic
acid, 4-O-caffeotannic acid, 1,3-O-dicaffeotannic acid,
1,4-O-dicaffeotannic acid and 1,5-O-dicaffeotannic acid
have been documented to possess anti-inflammatory
effects [23].
It has been reported that two water-soluble glycosides

CATR and ATR are the toxic components of this herb
[11, 12]. In this study, we compared the contents of
CATR and ATR in ten batches of XF and corresponding
SBXF samples using a HPLC method. Results showed
that after stir-baking, the content of CATR was de-
creased 27.0-fold, however, the content of ATR was in-
creased 13.3-fold in this herb. It was reported that
CATR is more toxic than ATR in in vitro and in vivo
[30, 31]. Whether CATR in the herb transformed into
ATR during stir-baking needs to be further studied. The
typical HPLC chromatograms of ten batches of XF and
corresponding SBXF were shown in Fig. 4a, and the con-
tents of CATR and ATR in ten batches of XF and SBXF
were shown in Fig. 4b.
Chemical and bioactivity studies will be performed

to determine whether the changed compounds are
responsible for the reduced cytotoxicity and the
enhanced anti-inflammatory effects of XF after stir-
baking.

Conclusion
We demonstrated that stir-baking significantly re-
duced the cytotoxicity and enhanced the anti-
inflammatory effects of XF, which support the TCM
theory “stir-baking can reduce the toxicity and en-
hance the efficacy of XF”. We have also found that
stir-baking caused alterations of components in XF as
determined by an established UPLC/Q-TOF-MS
method, which might be responsible for the reduced
toxicity and enhanced efficacy afforded by processing.

Abbreviations
ANOVA: analysis of variance; COX-2: cyclooxygenase-2; DMEM: dulbecco’s
modified eagle medium; ESI: electrospray ionization; iNOS: inducible nitric

oxide synthase; NO: nitric oxide; TCM: Traditional Chinese medicine; UPLC/Q-
TOF-MS: ultra-performance liquid chromatography/quadrupole-time-of-flight
mass spectrometry.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The experiments were performed in Dr. YZL’s laboratory. Dr. YZL and ST
conceived and designed the research; ST and CCY performed experiments;
FXQ and LT analyzed data; GH and CHH interpreted experimental results;
KHY, TKW and YH drafted the manuscript. CH edited and revised the
manuscript. All authors have read and approved the final manuscript.

Acknowledgments
This work was supported by the Research Grants Council of Hong Kong (HKBU
262512); Food and Health Bureau of Hong Kong (HMRF 11122521); Science,
Technology and Innovation Commission of Shenzhen (JCYJ20120829154222473
and JCYJ20140807091945050); and the Hong Kong Baptist University
(FRG1/14-15/061 and FRG2/14-15/056).

Author details
1School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong,
Hong Kong, China. 2National Engineering Research Center for Modernization
of Traditional Chinese Medicine, Zhuhai, China. 3Institute of Integrated
Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute
and Continuing Education, Shenzhen, China.

Received: 12 August 2015 Accepted: 12 January 2016

References
1. Zhu QS, Zhao WY, Yin QF. Studies on the extraction methods of the

antibacterial constituents from Xanthium sibiricum Patr. Qingdao Ke Ji Da
Xue Xue Bao. 2008;29:413–8.

2. Chen B, Ma LH, Wang XB, Shen YP, Jia XB. Simultaneous determination of 5
phenolic acids in fried Xanthii Fructus from different production sites and
its dispensing granules by using ultra-pressure liquid chromatography.
Pharmacogn Mag. 2013;9:103–8.

3. Wang RY, Liu XF, Liu MH, Lv WY. The studies of the antioxidant activity and
the flavonoids determination of the Xanthii Fructus water extracts. Yunnan
Zhong Yi Zhong Yao Za Zhi. 2008;29:42–3.

4. Zhao CS. The study of the antibacterial effects of Xanthii Fructus and its
processed products. Shi Zhen Guo Yi Guo Yao. 2002;13:522.

5. Huang MH, Wang BS, Chiu CS, Amagaya S, Hsieh WT, Huang SS, et al.
Antioxidant, antinociceptive, and anti-inflammatory activities of Xanthii
Fructus extract. J Ethnopharmacol. 2011;135:545–52.

6. Jin CS, Wu DL, Zhang JS. Comparison of the chemical compounds and
pharmacological efficacy of different processing methods processed
Xanthium sibiricum Patr. Anhui Zhong Yi Yao Da Xue Xue Bao. 2000;19:54–6.

7. Wu B, Cao M, Liu SM. The hepatotoxicity study of the water extract of
Xanthium sibiricum Patr. in rats. Yao Wu Bu Liang Fan Ying Za Zhi.
2010;12:381–6.

8. Yan LC, Zhang TT, Zhao JN, Song J, Hua Y, Li L. Comparison of the acute
toxicitites of four extracts of Xanthii Fructus in mice. Zhong Guo Zhong Yao
Za Zhi. 2012;37:2228–31.

9. Li J, Gao T, Xie ZQ, Tang Y. Comparison of the toxicitites of different extracts
of Xanthii Fructus. Shi Zhen Guo Yi Guo Yao. 2005;16:484–7.

10. Gong QF. Science of processing Chinese materia medica. Beijing: Chinese
TCM Publishing House; 2013. p. 106.

11. Obatomi DK, Bach PH. Biochemistry and toxicology of the diterpenoid
glycoside atractyloside. Food Chem Toxicol. 1998;36:335–46.

12. MacLeod JK, Moeller PD, Franke FP. Two toxic kaurene glycosides from the
burrs of Xanthiun pungens. J Nat Prod. 1990;53:451.

13. Levy AS, Simon OR. Six-shogaol inhibits production of tumour necrosis factor
alpha, interleukin-1 beta and nitric oxide from lipopolysaccharide-stimulated
RAW 264.7 macrophages. West Indian Med J. 2009;58:295–300.

14. Pae HO, Oh GS, Choi BM, Shin S, Chai KY, Oh H, et al. Inhibitory effects of
the stem bark of Catalpa ovata G. Don. (Bignoniaceae) on the productions
of tumor necrosis factor-alpha and nitric oxide by the lipopolisaccharide-
stimulated RAW 264.7 macrophages. J Ethnopharmacol. 2003;88:287–91.

Su et al. BMC Complementary and Alternative Medicine  (2016) 16:24 Page 7 of 8



15. Chu JH, Wang H, Ye Y, Chan PK, Pan SY, Fong WF, et al. Inhibitory effect of
schisandrin B on free fatty acid-induced steatosis in L-02 cells. World J
Gastroentero. 2011;17:2379–88.

16. Colasanti M, Suzuki H. The dual personality of NO. Trends Pharmaco Sci.
2000;13:249–52.

17. Ye H, Xie C, Wu W, Xiang M, Liu Z, Li Y, et al. Millettia pachycarpa exhibits
anti-inflammatory activity through the suppression of LPS-induced NO/iNOS
expression. Am J Chin Med. 2014;42:949–65.

18. Chae HS, Kang OH, Lee YS, Choi JG, Oh YC, Jang HJ, et al. Inhibition of
LPS-induced iNOS, COX-2 and inflammatory mediator expression by
paeonol through the MAPKs inactivation in RAW 264.7 cells. Am J Chin
Med. 2009;37:181–94.

19. Petros A, Bennett D, Vallance P. Effect of nitric oxide synthase inhibitors on
hypotension in patients with septic shock. Lancet. 1991;338:1557–8.

20. Jeong JW, Lee HH, Han MH, Kim GY, Hong SH, Park C, et al. Ethanol extract
of Poria cocos reduces the production of inflammatory mediators by
suppressing the NF-kappa B signaling pathway in lipopolysaccharide-
stimulated RAW 264.7 macrophages. BMC Complement Altern Med.
2014;15:101.

21. Levy D, Hoke A, Zochodne DW. Local expression of inducible nitric oxide
synthase in an animal model of neuropathic pain. Neurosci Lett.
1999;260:207–9.

22. Naureckien S, Edris SK, Ajit SK, Katz AH, Sreekumar K, Rogers KE, et al. Use of
a murine cell line for identification of human nitric oxide synthase
inhibitors. J Pharmacol Toxicol Methods. 2007;55:303–13.

23. Han T, Li HL, Zhang QY, Han P, Zheng HC, Rahman K, et al. Bioactivity-
guided fractionation for anti-inflammatory and analgesic properties and
constituents of Xanthium strumarium L. Phytomedicine. 2007;14:825–9.

24. Morishita H, Iwahashi H, Osaka N, Kido R. Chromatographic separation and
identification of naturally occurring chlorogenic acids by 1H nuclear
magnetic resonance spectroscopy and mass spectrometry. J Chromatogr.
1984;315:253–60.

25. Clifford MN, Knight S, Kuhnert N. Discriminating between the six isomers of
dicaffeoylquinic acid by LC-MSn. J Agric Food Chem. 2005;53:3821–32.

26. Clifford MN, Wu W, Kirkpatrick J, Kuhnert N. Profiling the chlorogenic acids
and other caffeic acid derivatives of herbal chrysanthemum by LC-MSn.
J Agric Food Chem. 2007;55:929–36.

27. Sandra P, Pasquale C, Ilaria B, Donato A, Aldo DL, Marco E, et al. HPLC-DAD-
MS/MS characterization of phenolic compounds in white wine stored
without added sulfite. Food Res Int. 2014;66:207–15.

28. Carlier J, Romeuf L, Guitton J, Priez-Barallon C, Bévalot F, Fanton L, et al. A
validated method for quantifying atractyloside and carboxyatractyloside in
blood by HPLC-HRMS/MS, a non-fatal case of intoxication with Atractylis
gummifera L. J Anal Toxicol. 2014;38:619–27.

29. Sonia P, Cosimo P, Nunziatina DT, Francesco DS . Sesquiterpene and
diterpene glycosides from Xanthium pungens. Phytochemistry. 1996;41:
1357–60.

30. An J, Wang YD, Sheng CC. Comparative analysis of the contents of
carboxyatractyloside and atractyloside in Xanthii Fructus and its processed
products. Yao Wu Fen Xi Za Zhi. 2013;33:1910–3.

31. Yu J, Song MZ, Wang J, Li YF, Lin P, Que L, et al. In vitro cytotoxicity and in
vivo acute and chronic toxicity of Xanthii Fructus and its processed product.
Biomed Res Int. 2013;403491–503.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Su et al. BMC Complementary and Alternative Medicine  (2016) 16:24 Page 8 of 8


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Chemicals and regents
	Preparation of XF and SBXF extracts
	Cell culture
	Cytotoxicity assay
	Nitric oxide (NO) production assay
	Real-time polymerase chain reaction
	UPLC/Q-TOF-MS analysis
	Statistical analysis

	Results and discussion
	Stir-baking reduced the cytotoxicity of XF in MIHA cells
	Stir-baking enhanced the anti-inflammatory effects of XF in LPS-stimulated macrophages
	Stir-baking altered the chemical profile of XF

	Conclusion
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References



