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Calcineurin and glial signaling: neuroinflammation
and beyond
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Abstract

Similar to peripheral immune/inflammatory cells, neuroglial cells appear to rely on calcineurin (CN) signaling
pathways to regulate cytokine production and cellular activation. Several studies suggest that harmful immune/
inflammatory responses may be the most impactful consequence of aberrant CN activity in glial cells. However,
newly identified roles for CN in glutamate uptake, gap junction regulation, Ca2+ dyshomeostasis, and amyloid
production suggest that CN’s influence in glia may extend well beyond neuroinflammation. The following review
will discuss the various actions of CN in glial cells, with particular emphasis on astrocytes, and consider the
implications for neurologic dysfunction arising with aging, injury, and/or neurodegenerative disease.
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Background
Calcineurin (CN) is a Ca2+/calmodulin (Ca2+/CaM)-dependent
protein phosphatase expressed in most mammalian tis-
sues, but found at especially high levels in brain. The CN
holoenzyme is a heterodimeric protein containing a
60 kDa catalytic subunit (CN A) and a 19 kDa regulatory
subunit (CN B). Multiple isoforms of both subunits have
been identified and are expressed differentially throughout
brain and most other tissues (for review see [1-3]). CN A
contains the catalytic core as well as binding sites for the
CN B subunit and Ca2+/CaM. There is also a critical auto-
inhibitory domain located near the C terminus of CN A
that suppresses catalytic activity when Ca2+ levels are low.
The CN B subunit contains four Ca2+-binding EF-hand
motifs and is generally physically bound to CN A at rest-
ing Ca2+ levels. Allosteric interactions between CN B,
Ca2+/CaM, and the autoinhibitory domain allow CN to
respond to rapid Ca2+ fluctuations with relatively high fi-
delity [4,5]. Within the cell, CN can be found throughout
the cytosol and the nucleus, and is also commonly associ-
ated with membrane receptors, ion channels, and pumps
via physical interactions with a variety of anchoring pro-
teins [1,3].
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Immunohistochemical and in situ hybridization studies
on healthy adult rat brain performed in the mid-1980s to
early 1990s reported high levels of CN in neurons of the
striatum, hippocampus, amygdala, and neocortex [6-9],
with little to no expression observed in glial cells [6,7].
Many functional studies performed around this time
found that CN plays an integral role in coupling glutamate
receptor activation to the regulation of cytoskeletal pro-
teins and dendritic spine morphology [10,11]. Since these
initial studies, CN has been shown to interact with numer-
ous neuronal substrates and to modulate diverse cellular
functions including receptor and ion channel trafficking,
ion channel function, apoptosis, and gene regulation, to
name a few [2]. In the last 10 years, there have been a
steadily increasing number of studies identifying neuronal
CN as a primary suspect in synapse loss, dendritic atro-
phy, synaptic dysfunction, and neuronal vulnerability
[12,13]. Nevertheless, despite the apparently selective as-
sociation of CN with neurons and neuronal signaling cas-
cades, a handful of reports in the mid- to late 1990s found
that CN can also appear in primary glial cells and glial
cells of intact brain tissue, notably following inflammatory
insult [14-17]. The clear connection between glial cells
and neuro-immune/inflammatory signaling, in addition to
the well-defined role of CN in cytokine production in per-
ipheral immune cells, suggested a strong linkage between
glial CN and the neuroinflammation inherent to most
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acute and chronic neurodegenerative diseases. Recent and
ongoing work from our group and others has not only
largely confirmed CN as a major modulator of immune/
inflammatory processes in glial cells, but has also identi-
fied other possible functions for glial CN signaling that
may have a major impact on neurologic function. This art-
icle reviews the functional implications associated with
glial CN expression.

Review
CN and glial cells
Though primarily localized to neurons in healthy nervous
tissue, CN may also be strongly expressed in glia during
aging, injury, and/or disease. Greater numbers of CN-
positive astrocytes have been reported in the hippocampus
of aged, β-amyloid (Aβ)-bearing transgenic amyloid pre-
cursor protein/presenilin 1 (APP/PS1) mice, particularly
in the immediate vicinity of extracellular Aβ deposits [18].
A similar relationship between CN-positive astrocytes and
Aβ pathology was shown in postmortem brain tissue ob-
tained from human subjects diagnosed with Alzheimer’s
disease (AD) [19-21]. Though closely associated with Aβ
deposits, the expression of CN in astrocytes does not
necessarily depend on the presence of Aβ. Indeed, aged
wild-type mice showed a far greater number of CN-
positive astrocytes compared to younger wild-type mice,
while expression of CN in astrocytes of APP/PS1 mice
could be detected as early as three months of age, long be-
fore the appearance of extensive plaque pathology in this
model [18]. The presence of numerous CN-positive astro-
cytes in human hippocampus at very early stages of cogni-
tive decline [19] suggests that the upregulation of CN in
astrocytes is an antecedent to dementia found at later dis-
ease stages. In addition to aging and AD, CN expression
in astrocytes has also been reported for animal models of
acute injury. In an early study by Hashimoto et al. [16], an
increase in astrocytic CN labeling was observed in gerbil
hippocampus following bilateral carotid artery occlusion,
even though whole tissue levels of CN were reduced (as
measured by Western blot). Shifting expression patterns
for CN during aging, injury, and disease are notable be-
cause of the timing, i.e., CN can appear in astrocytes be-
fore widespread pathology is observed, and also because
of the selectivity, i.e., increased CN expression only ap-
pears to occur in a subset of astrocytes. These findings
suggest that changes in CN serve unique and perhaps crit-
ical roles in the initiation and progression of neurodegen-
eration and cognitive decline.

Phenotype switching in astrocytes and
neuroinflammation
Astrocytes are an abundant and diverse subtype of glia.
As a critical component of the neurovascular unit, astro-
cytes ensheath most microvessels via specialized end-
foot processes, which help to maintain the integrity of
the blood-brain barrier and promote osmotic balance
(for review see [22]). Many astrocyte processes are also
in close juxtaposition to synapses where they coordinate
nutrient exchange to neurons and detoxify the local en-
vironment via the uptake of K+, glutamate, and other
neurotransmitters [23,24]. Redistribution of imported
factors and excitotoxins across numerous neighboring
astrocytes is accomplished by an extensive gap junction
network, which helps minimize local concentration gra-
dients [25]. By ensheathing synapses, astrocytes play an
essential role in establishing and maintaining the struc-
tural integrity of nerve terminals and dendritic spines,
which, in turn, ensures the fidelity of interneuronal com-
munication. In healthy central nervous system (CNS) tis-
sue, astrocytes effectively carry out all of these functions,
plus others. However, with CNS injury, astrocytes often
look and appear to behave in very different ways. Hyper-
trophy of astrocyte somata and processes, with a corre-
sponding increase in the expression of the intermediate
filament protein, glial fibrillary acidic protein (GFAP), is
a pervasive feature of nearly every form of acute CNS in-
jury as well as most chronic neurodegenerative disorders
[22,26,27]. These changes have been extensively docu-
mented and are commonly referred to as “astrocyte acti-
vation” or “astrocyte reactivity” [28].
Along with activated microglia, astrocyte activation is

widely accepted as a hallmark of neuroinflammation,
though the functional phenotype of activated astrocytes
remains somewhat elusive. Protective roles for activated
astrocytes, particularly after acute injury, have been dem-
onstrated by many studies (for a review, see [29]). How-
ever, if not properly resolved, astrocyte activation can
become a chronic condition with apparently detrimental
effects on neuronal function and plasticity [28,30]. Acti-
vated astrocytes secrete numerous pro-inflammatory cyto-
kines and other factors that can interfere with synaptic
fidelity, impair neuronal viability, and/or maintain the
activation state of astrocytes and microglia [31-33]. Acti-
vated astrocytes also appear to be compromised in their
ability to take up excitotoxins (e.g., K+ and glutamate)
from the extracellular milieu, which could, in turn, lead to
further synaptic dysfunction, neuronal damage, and neu-
roinflammation [19,28,33,34]. The appearance of activated
astrocytes at very early stages of cognitive impairment
in humans [35-37] suggests that astrocyte activation may
help initiate and/or drive other pathophysiological changes
leading to dementia.
We have hypothesized that CN is a critical mechanism

for triggering phenotype switching (i.e., activated vs. non-
activated) and neuroinflammatory signaling inherent to as-
trocytes during neural damage and dysfunction [13,18,33].
In many peripheral tissues, CN is a pivotal regulator of
transcriptional programs involved in cellular remodeling
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[38,39]. Perhaps the best documented example is the role
that CN plays in the adaptive immune response through
the activation of NFATs (Nuclear Factor of Activated T
cells) and NFκB (Nuclear Factor κB) transcription factors.
In the resting state, NFATs and NFκB are both seques-
tered in the cytosol, albeit by different mechanisms. The
nuclear translocation signal of NFATs is masked by hyper-
phosphorylation. When activated, CN directly binds to
and dephosphorylates NFATs, exposing the nuclear trans-
location signal and promoting the accumulation of NFATs
in the nucleus [40]. A similar nuclear localization signal is
present in NFκB, but is masked not by hyperphosphoryla-
tion, but by the binding of subunits called inhibitory κBs
(IκBs) [41]. CN helps promote the activation of IκB ki-
nases [42], which phosphorylate and tag IκB for proteaso-
mal degradation, thereby allowing nuclear translocation of
NFκB. Once in the nucleus, NFATs and NFκB interact
with distinct DNA binding elements to drive the expres-
sion of multiple cytokine species that promote (or in some
cases suppress) the clonal expansion of T cells.
In astrocytes, CN appears to represent a fundamental link

between morphological changes and immune/inflammatory
signaling. Forced expression of activated CN in primary
mixed neuron/glia cultures was sufficient to cause an in-
crease in the width of astrocyte somata and processes
[18], while inhibition of astrocytic CN/NFAT activity in in-
tact amyloid-bearing mice caused a reduction in the sur-
face area of individual hippocampal astrocytes without
affecting overall cell number [43]. Multiple extracellular
factors that trigger astrocyte hypertrophy and/or neuroin-
flammation, including many “pro-inflammatory” cytokines
(e.g., interleukin 1β (IL-1β), tumor necrosis factor α
(TNFα), and interferon γ), glutamate, ATP, thrombin,
S100, and Aβ also robustly activate CN in primary astro-
cyte cultures [19,21,33,44-48]. Once activated, CN helps
drive the expression of numerous immune/inflammatory
factors in astrocytes [18,33,44,45], many of which are
found at elevated levels during injury, aging, and neu-
rodegenerative disease [49-54]. Moreover, we have found
that astrocytic CN/NFAT activity can propagate from one
astrocyte population to another in an autostimulatory
manner [33].
Through its actions on NFAT- and NFκB-dependent

transcriptional regulation, CN appears ideally suited to
drive the self-perpetuating “cytokine cycles” implicated
in chronic neuroinflammation [54,55]. Indeed, similar
immune/inflammatory functions of CN have been ob-
served in microglia [56-59], confirming CN’s role as a
global mediator of neuroinflammation. Nonetheless, it
is probably too simplistic to think of CN strictly as a “pro-
inflammatory” mechanism. Extensive work on peripheral
immune cells tells us that CN activation can participate in
diametrical processes, e.g., cytokine production and clonal
expansion under some conditions, and lymphocyte anergy
and/or tolerance under different conditions [60]. Such op-
posing phenotypic characteristics may depend, in part, on
the association of CN with a variety of transcription fac-
tors. T cell activation, for instance, is largely driven by syn-
ergistic actions of NFATs and activator protein 1 (AP1)
[40,61] (Figure 1A), while T cell tolerance and/or anergy
has been shown to result from interactions between
NFATs and forkhead box P3 (FOXP3) [61,62]. Based on
these observations in T cells, it is not surprising that CN
has been shown to have “anti-“, as well as, “pro-” inflam-
matory effects in astrocytes. In a series of studies from
Torres-Aleman’s group, CN was implicated in both the
initiation and resolution of neuroinflammatory signaling
in acutely injured mice [45] or mice with progressing
amyloid pathology [63]. In the latter study, performed
on APP mice expressing a dox-inducible CN fragment in
astrocytes, CN was shown to differentially affect neuroin-
flammation through its interactions with NFκB, peroxi-
some proliferator-activated receptor γ (PPARγ), and/or
forkhead box O3 (FOXO3) transcription factors. These in-
teractions were governed by the presence of specific extra-
cellular factors. TNFα was shown to stimulate interactions
between CN, FOXO3, and NFκB leading to increased
inflammatory signaling, while insulin-like growth factor
(IGF-1) was shown to disrupt the pro-inflammatory inter-
actions between CN, NFκB, and FOXO3 (Figure 1B)
in favor of anti-inflammatory interactions between CN,
NFκB, and PPARγ (Figure 1C).
Even the presence of different NFAT isoforms can

dramatically alter the functional impact of elevated CN
activity. A striking example of this is found in muscle
tissue where NFAT4 is selectively activated by Ca2+

elevations in myoblasts, while NFATs 1 and 2 are select-
ively activated by the same kind of stimulation in myotubes
[64]. In skeletal muscle fibers from adult rats, different
NFAT isoforms showed varying sensitivities to different
stimulation frequencies and regulated distinct genes asso-
ciated with slow- and fast-twitch transcriptional programs
[65]. The idea that individual NFAT isoforms play various
roles in astrocyte function has been proposed by our lab
and others [13,19,66-68]. We discovered that early stages
of cognitive decline were associated with increased nu-
clear levels of NFAT1 in astrocytes, while NFAT3 was
more strongly associated with astrocytes during late stages
of AD [19]. Based on the clear association between the
NFAT1 isoform and cytokine expression in lymphocytes,
as well as the comparatively weak association of NFAT3
with lymphoid tissues [40], we have suggested that NFAT1
is more strongly linked to the neuroinflammatory pheno-
type of astrocytes [13]. In contrast, NFAT3 has been more
closely linked to cell death and degeneration in multiple
cell types (e.g., see [69-71]), suggesting that the demise
of astrocytes in severe forms of injury/disease results
from the selective activation of NFAT3. The other
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Figure 1 CN pathways can drive or resolve neuroinflammatory
signaling in glial cells. (A) Factors that activate glial cells, including
multiple cytokine species and Aβ peptides, stimulate Ca2+ release
from endoplasmic reticulum (ER) and/or Ca2+ influx across Ca2+

channels in the plasma membrane leading to CN activation. CN
directly dephosphorylates and activates NFATs. CN also facilitates the
recruitment of IκB kinases (IKK) to the CARMA1-Bcl10-MALT1 (CBM)
complex, which, in turn, causes the phosphorylation of IκB and the
release (i.e., activation) of NFκB. NFATs and NFκB translocate to the
nucleus, and with other transcription factors, such as AP1, drive
the expression of numerous cytokines involved in the generation
and maintenance of neuroinflammation. (B) CN can also dephosphorylate
and activate FOXO3 transcription factors, which can also synergize
with NFκB to drive immune/inflammatory signaling in glial cells.
(C) Activation of IGF-1 receptors in glial cells also stimulates CN but
suppresses its interaction with FOXO3. Simultaneous activation of
PPARγ and NFκB by IGF-1 regulates transcriptional programs that
reduce or resolve neuroinflammation.
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CN-dependent NFAT isoforms (i.e., NFATs 2 and 4) have
also been detected in astrocytes and microglia at the
mRNA and protein levels [47,56,59,66-68,72-74]. Several
recent studies have reported a striking increase in NFAT4
expression in a subgroup of astrocytes following acute
CNS trauma [67,68,73], though the subcellular localization
of NFAT4 seemed to be limited to the cytosol, with very
little expression found in astrocyte nuclei [67]. Other
groups have shown that NFAT4 is indeed active in astro-
cytes and regulates the expression of transcripts involved
in Aβ production [66], as discussed in a later section of
this review.
In summary, the available literature suggests that CN

plays a major role in shaping the neuroinflammatory pheno-
type of astrocytes. The impact of CN on neuroinflammation
appears to be complex and may depend upon the co-
activation of other intracellular signaling pathways and/or
the association of CN with multiple transcription factors, in-
cluding different NFAT isoforms, NFκB, AP1, FOXO3, and
others. These differential CN interactions likely do not
simply promote a global phenotypic change but instead
may selectively affect specific glial functions (Figure 1).

CN and astrocyte-mediated glutamate regulation
One of the most important functions of astrocytes is the
removal of potentially toxic factors from the extracellu-
lar milieu, including K+, glutamate, GABA, and many
others. Glutamate is cleared by astrocytes using a variety
of excitatory amino acid transporters (EAATs), which
energetically couple glutamate uptake to the import of
Na+ ions. The EAAT2 isoform (or Glt 1) is expressed
predominantly in astrocytes and plays a lead role in glu-
tamate clearance from many brain regions [75]. Loss of
EAAT expression and/or function has been linked to a
variety of neurologic diseases including AD, amyotrophic
lateral sclerosis, Parkinson’s disease, and epilepsy, among
others (for reviews, see [24,75,76]). Elevated amyloid
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levels in human AD brain tissue and in AD animal models
is associated with a loss of EAAT expression and/or func-
tion [19,77-83]. This loss can occur very early in the pro-
gression of cognitive deficits [19], suggesting that changes
in glutamate regulation may be key to the initiation/
propagation of neuronal degeneration and death. Com-
mon phenotypic characteristics of multiple disease
models, including increased susceptibility to excito-
toxicity, altered synaptic plasticity, and impaired cognition
can be recapitulated in otherwise healthy animals by gen-
etically or pharmacologically knocking down EAAT func-
tion [84-86]. These observations and many others make
EAATs an intensely studied molecular target for prevent-
ing and/or limiting neurologic deficits associated with in-
jury and disease.
Changes in EAATs appear to be strongly linked to the

activated astrocyte phenotype. Immunohistochemical
analyses of postmortem human brain sections revealed
an inverse correlation between EAAT2 and GFAP ex-
pression levels [87]. Moreover, multiple extracellular fac-
tors that trigger profound astrocyte activation (including
pro-inflammatory cytokines and Aβ) can cause a reduc-
tion in EAAT expression and/or function in cell culture
and animal models [19,33,77,83,88-90]. Numerous mecha-
nisms have been proposed for regulation of EAATs at the
transcriptional, translational, and post-translational levels.
Many of these mechanisms show strong sensitivity to
immune/inflammatory signaling factors implicated in
astrocyte activation [91]. In regard to transcriptional
regulation, binding sites for NFκB and NFAT have been
verified in the human EAAT2 promoter [92]. Interestingly,
NFκB appears to play critical roles in both the up- and
down-regulation of EAAT2 expression levels. Exposure to
a variety of protective/reparative factors, including epider-
mal growth factor and TGF-β, causes an NFκB-mediated
increase in EAAT2 expression, while pro-inflammatory
factors like TNFα reduce EAAT2 levels in an NFκB-
dependent manner [92]. In our work on primary as-
trocytes [19,33], reductions in EAAT2 levels following
treatment with IL-1β or oligomeric Aβ, were strongly
inhibited by pretreatment with VIVIT, an NFAT in-
hibitory peptide. In addition to preserving EAAT levels,
VIVIT lowered extracellular glutamate, dampened neur-
onal hyperactivity, and reduced the appearance of excito-
toxic neuronal death. Given the relatively close proximity
between the NFκB and NFAT binding sites within the
EAAT2 promoter [92], we suggest that the downregula-
tion of EAAT2 during astrocyte activation and/or neuro-
inflammation is largely attributable to the synergistic
actions of CN, NFκB, and NFAT (Figure 2). Additional
work will be required to determine the viability of this
combinatorial mechanism for EAAT2 regulation, and to
identify possible conditions in which NFATs positively
regulate EAAT2 expression to promote glutamate uptake.
CN, astrocytes, and gap junctions
Astrocytes are extensively coupled to one another and,
to a lesser degree, to other cell types via gap junctions
(GJ). The GJ channel consists of a hexamer of special-
ized proteins called connexins (Cx), which are localized
to the cell membrane and directly apposed to a similar
Cx hexamer localized to the plasma membrane of another
cell [25]. The channel formed from apposing connexin
hexamers (i.e., Cx hemichannels) can accommodate the
passage of molecules up to ~1.2 kDa and provides a direct
cytoplasm-to-cytoplasm pathway for adjacent astrocytes.
GJs permit the exchange of numerous small molecules
and signaling factors between cells including ions, nucleo-
tides, and amino acids. Passage of critical second messen-
gers across GJs, such as Ca2+ and inositol trisphosphate
(IP3), also allow groups of astrocytes to respond in syn-
chrony to highly localized extracellular signaling factors,
which, in turn, can influence the plasticity of local synaptic
ensembles and/or modulate the tone of the local vascular
network [93]. In addition to forming GJs, some Cx hemi-
channels are unapposed (i.e., not coupled to Cx hemi-
channels on other cells) and provide a direct path between
the astrocyte cytoplasm and the extracellular milieu.
Unapposed Cx hemichannels are generally found in a
closed channel state, but may become permeable dur-
ing brain injury and disease [25].
The diffusion of K+ and glutamate across GJ-coupled

astrocyte networks during high levels of neuronal activity
is one of the fundamental mechanisms for preserving high
fidelity interneuronal communication and for preventing
excitotoxicity [94]. Transgenic mice lacking Cx43 and/or
Cx30 (i.e., the major connexin subtypes found in mature
astrocytes) show heightened vulnerability to seizure ac-
tivity and neuronal death, and may exhibit a variety of
neurologic alterations (e.g., altered motor function and
impaired cognition) depending on the brain region tar-
geted [95-97]. On the other hand, increased GJ perme-
ability may expose otherwise healthy astrocytes to toxic
signals carried from sites of injury or pathology. In this
way, GJs have been suggested as a mechanism for spread-
ing pathophysiology [98].
Similar to EAATs, astrocytic GJs are highly sensitive to

extracellular factors linked to neuroinflammation and
exhibit altered expression and/or function in a variety of
different neurologic disorders and diseases [94,99]. Mul-
tiple pro-inflammatory cytokines have been shown to ei-
ther reduce Cx43 expression levels or reduce GJ coupling
[100]. The C terminus tail region of Cx43, in particular,
contains numerous phosphorylation sites that are regu-
lated by inflammation-sensitive protein kinases [101].
Several research groups have also demonstrated stimulus-
evoked dephosphorylation of Cx43 in primary astrocytes,
suggesting the dynamic involvement of protein phospha-
tases [102,103]. Specific dephosphorylation of ser368 in
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the Cx43 cytoplasmic tail can occur within minutes fol-
lowing a hypoxic insult or after treatment with endogen-
ous factors linked to vascular damage and astrogliosis and
is highly sensitive to CN activation [102,103]. Dephos-
phorylation of ser368 in primary astrocytes following
hypoxia or treatment with extracellular factors, such as
endothelin-1 and phingosine-1-phosphate, was mostly
prevented by pretreatment with commercial CN inhibitors
(i.e., cyclosporine A and FK506), supporting a regulatory
role for CN in Cx43 dephosphorylation. Additionally, pre-
liminary studies in our laboratory indicate that CN medi-
ates the dephosphorylation of Cx43 ser368 in primary
astrocytes exposed to IL-1β or the exogenous Ca2+ mobil-
izing agents ionomycin and phorbol ester [104]. Parallel
investigations of Cx43 in postmortem human hippocam-
pal tissue performed by our group further showed that
Cx43 dephosphorylation (at ser368) is increased at early
stages of cognitive decline and positively correlated with
the levels of a proteolytically active form of CN, suggesting
that the CN/Cx43 interaction may have relevance to the
progression of neurodegeneration and/or dementia.
Despite these observations, the functional impact of the

CN/Cx43 interaction is not presently clear. Using a dye-
coupling approach, CN inhibitors were initially shown to
prevent the decoupling of GJs in astrocytes following a
hypoxic insult [102]. Later studies similarly demonstrated
a relationship between GJ inhibition and dephosphoryla-
tion of Cx43 ser368, but found that dephosphorylation
does not necessarily cause GJ decoupling [103]. Instead,
this report suggested that Cx43 dephosphorylation by CN
occurs after GJ decoupling and leads to the redistribution
of Cx43 to tight junctions. Clearly, additional studies
are needed to clarify the role of CN in the regulation of
gap junctions and determine whether this interaction
significantly impacts astrocyte function in particular, and
neurologic function in general (Figure 3).

CN and astrocytic Ca2+ dysregulation
Similar to neurons, activated astrocytes in models of
aging, injury, and disease exhibit numerous signs of Ca2+

dysregulation including elevated expression of a variety
of Ca2+ channels and Ca2+ regulated proteins, as well as
higher intracellular Ca2+ levels and/or more frequent
Ca2+ oscillations [105-107]. While it seems clear how
these changes could help set the stage for hyperactive
CN signaling, it is also important to note that CN may
play an active role in promoting or disrupting Ca2+

homeostasis. At the transcriptional level, CN helps drive
the expression of many key Ca2+ signaling mediators in
multiple cell types [108-111]. At the post-translational
level, CN directly or indirectly regulates plasma mem-
brane Ca2+ channels, intracellular Ca2+ release channels,
and Ca2+-dependent enzymes [2]. In astrocytes, inhibition
of CN was recently shown to reduce Ca2+ transients
evoked by Aβ [21] and to suppress the upregulation of
critical proteins involved in Ca2+-induced Ca2+ release, in-
cluding IP3 receptor 1 and metabotropic glutamate recep-
tor 5 [112]. Other potential targets for CN may be
predicted from findings gleaned from neurons and other
cell types. For instance, in neurons and cardiomyocytes,
CN has been shown to enhance the function of L-type
Ca2+ channels, which may, in turn, disrupt cellular activity
and viability [113-116]. Though found at very low levels in
astrocytes of healthy animals, L-type Ca2+ channels appear
to be present at high levels in activated astrocytes follow-
ing acute injury [117]. This differential pattern of expres-
sion in astrocytes is strikingly similar to that of CN.
Moreover, we have shown that 50% or more of CN/NFAT
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Figure 3 CN dephosphorylates Cx43 and modulates GJ coupling in astrocytes. (A) Cx hexamers on the astrocyte membrane form GJ
channels with apposing Cx hexamers in adjacent cells and allow the intercellular passage of small molecules like Ca2+ and IP3. (B) Activation of
astrocytes with inflammatory mediators stimulates CN, which dephosphorylates the cytoplasmic tail of Cx43. Dephosphorylation of Cx43 is
associated with reduced GJ coupling, though it is unclear whether dephosphorylation is a cause or consequence of decoupling.

Furman and Norris Journal of Neuroinflammation 2014, 11:158 Page 7 of 12
http://www.jneuroinflammation.com/content/11/1/158
activity in primary astrocytes treated with IL-1β is elimi-
nated by co-treatment with the L-type Ca2+ channel
blocker nifedipine [33], while others have shown that CN/
NFAT signaling is stimulated in astrocytes treated with the
L-type Ca2+ channel activator Bayk8644 [44]. These obser-
vations suggest that CN/L-type Ca2+ channel interactions
may play a critical role in promoting Ca2+ dysregulation in
activated astrocytes (Figure 4).

CN and astrocyte-derived Aβ production
In AD, CN expression and activity levels are directly cor-
related to increasing levels of the Aβ peptide [19]. Aβ
deposits in both human and mouse tissue are often sur-
rounded by astrocytes that label very intensely for CN
NFκB

CNER

Ca2+

L-VSCCs

NFAT

IκB

P

mGluRs

IP3R

A

Figure 4 CN is associated with Ca2+ dysregulation in astrocytes. (A) In
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[18-20]. The sensitivity of CN activity to rising Aβ levels
has been well-documented by several different research
groups using a variety of experimental models. Applica-
tion of the pathogenic, oligomeric form of Aβ rapidly
and robustly activates CN signaling pathways in both
neurons [71,118-123] and astrocytes [19,21,66,112] and
leads to numerous deleterious neurologic changes in-
cluding enhanced synaptic depression, impaired synaptic
potentiation, glutamate dysregulation, dendritic atrophy,
cell death, and cognitive deficits.
Interestingly, APP/PS1 mice treated with FK506 exhibit

reductions in Aβ plaque load relative to vehicle-treated APP
mice [124], suggesting that CN not only responds to ele-
vated Aβ, but also actively contributes to the accumulation
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of Aβ pathology. Though the mechanisms through which
CN modulates Aβ levels are unsettled, several studies
indicate that the CN/NFAT signaling pathway positively
regulates the expression of beta-secretases [66,125],
the rate-limiting enzymes for formation of Aβ peptides
(Figure 5). Jin et al. [66] showed that the NFAT4 isoform
binds to the beta-site APP cleaving enzyme 1 (BACE1)
promoter in primary astrocytes, which in turn, helps drive
Aβ production in response to rising intracellular Ca2+

levels. Similarly, our group showed that inhibition of
astrocytic NFAT activity reduces soluble Aβ levels and
plaque load in the hippocampus of APP/PS1 mice [43] in
parallel with a reduction in BACE1 protein levels. We did
not observe any changes in the levels for several key Aβ
clearing enzymes, including neprilysin and insulin degrad-
ing enzyme. Together, these findings are consistent with
the notion that astrocytic NFAT/BACE1 interactions play
an important role in amyloid regulation. Although BACE1
expression is very low in astrocytes of intact animals and
humans, the sheer abundance of this cell type, relative to
other cell types, could provide enough BACE activity to
contribute significantly to the production of amyloid
peptides and subsequent formation of parenchymal Aβ
deposits [126]. Nonetheless, effects of CN/NFAT on other
key regulators of Aβ formation and clearance, including
gamma secretases, apolipoprotein E, and lipoprotein
receptor-related protein 1, among others, are not clear
and will require further investigation.
In addition to directly influencing Aβ production in

astrocytes, it is perhaps just as likely that astrocytic CN
indirectly influences Aβ production/metabolism in neurons.
Indeed, numerous “pro-inflammatory” factors released by
glial cells, many of which are sensitive to CN activity, have
been shown to stimulate neuronal APP and/or Aβ produc-
tion, e.g., see [127-131]. Similarly, the loss of any number of
NFκκB

CN

NFAT

IκB

P

ER

Ca2+

Ca2+ Channels
APP
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Figure 5 CN regulates Aβ metabolism in astrocytes. (A) In resting astro
of astrocytes with inflammatory mediators stimulates CN. Nuclear translocatio
the protease BACE1 (the rate limiting enzyme for production of neurotoxic Aβ
production of Aβ peptides, which further aggregate and form Aβ plaques.
protective glial properties during chronic activation/
neuroinflammation would be expected to disrupt Ca2+

homeostasis in neurons and/or erode neuronal viability
leading to greater Aβ levels [132-136]. Whether direct or
indirect, these observations suggest that inhibition of astro-
cytic CN activity may be an effective strategy for slowing
the progression of Aβ pathology.

Impact of astrocytic CN on neurologic function
Numerous studies have shown that commercial CN in-
hibitors dampen glial activation, impart neuroprotection,
and/or improve neurologic function in animal models of
aging, injury, and disease [3,12]. Surely, at least some of
these beneficial effects are attributable to direct inhib-
ition of deleterious neuronal CN signaling pathways,
which have been shown to play important roles in neur-
onal degeneration and altered synaptic function (e.g., see
[105-107]). However, what about the impact of glial CN
signaling? This is a difficult question to address in intact
animals using basic pharmacologic reagents, given their
lack of cellular specificity. To overcome this difficulty,
our group recently employed an adeno-associated virus-
based approach to selectively express the NFAT inhibi-
tor, VIVIT, in hippocampal astrocytes of AD model mice
[43]. Suppression of astrocytic NFAT signaling in pre-
symptomatic mice was sufficient for reducing glial acti-
vation and Aβ plaque pathology during advanced age.
Arguably more important, this knockdown also proved
beneficial to neurologic function and plasticity, i.e., VIVIT-
treated mice showed improved synaptic strength, increased
levels of long-term potentiation, and better avoidance
learning relative to AD mice treated with vehicle or control
adeno-associated virus vectors. These observations support
a detrimental role for astrocytic CN/NFAT signaling in
neurologic function and are consistent with cell culture
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studies that report lower levels of pro-inflammatory cyto-
kines, reduced Aβ production/lower BACE1 activity, re-
duced Ca2+ transients, lower extracellular glutamate levels,
reduced neuronal excitability, and less excitotoxic neuronal
death following inhibition of astrocytic CN/NFATs as dis-
cussed in preceding sections.
In addition to directly suppressing NFAT activity, over-

expression of VIVIT may help to divert CN activity to
other substrates that are more protective in nature. For
instance, Fernandez et al. [63] reported that overexpres-
sion of an activated form of CN in astrocytes of intact
APP mice led to the increased association of CN with
PPARγ and NFκB, which, in turn, reduced glial activa-
tion and amyloid pathology and improved cognition. To-
gether with our findings, it is tempting to speculate that
astrocytic CN is generally protective in astrocytes, unless
it interacts extensively with NFAT transcription factors,
in which case the astrocyte phenotype becomes harmful,
marked by increased expression of pro-inflammatory cy-
tokines, impaired glutamate uptake, and other deleteri-
ous properties.

Conclusions
We are just beginning to understand the contribution of
CN to glial function. While it seems clear that CN is in-
timately involved in neuroinflammation, much work is
still needed to fully assess the specific interactions be-
tween CN-dependent and -independent transcription
factors, and how these interactions regulate specific in-
flammatory phenotypes. While this review has focused
primarily on the role of CN in astrocytes, other work
showing similar roles of CN in microglia [56-58,74] un-
derscores the necessity to characterize the signaling
properties of CN in other glial subtypes. Furthermore,
the identification of other cellular targets of CN, includ-
ing glutamate transporters, gap junctions, and BACE,
suggests that CN’s impact on glial function may extend
well beyond immune/inflammatory signaling. These ob-
servations highlight some of the complexities facing fu-
ture research into the role of glial CN signaling, but also
hint at the potential of discovering new molecular tar-
gets for treating neural injury and neurodegenerative
disease.
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