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abstract

PURPOSE Spatial heterogeneity of tumors is a major challenge in precision oncology. The relationship between
molecular and imaging heterogeneity is still poorly understood because it relies on the accurate coregistration of
medical images and tissue biopsies. Tumormolds can guide the localization of biopsies, but their creation is time
consuming, technologically challenging, and difficult to interface with routine clinical practice. These hurdles
have so far hindered the progress in the area of multiscale integration of tumor heterogeneity data.

METHODS We have developed an open-source computational framework to automatically produce patient-
specific 3-dimensional–printed molds that can be used in the clinical setting. Our approach achieves accurate
coregistration of sampling location between tissue and imaging, and integrates seamlessly with clinical, imaging,
and pathology workflows.

RESULTSWe applied our framework to patients with renal cancer undergoing radical nephrectomy. We created
personalized molds for 6 patients, obtaining Dice similarity coefficients between imaging and tissue sections
ranging from 0.86 to 0.96 for tumor regions and between 0.70 and 0.76 for healthy kidneys. The framework
required minimal manual intervention, producing the final mold design in just minutes, while automatically
taking into account clinical considerations such as a preference for specific cutting planes.

CONCLUSION Our work provides a robust and automated interface between imaging and tissue samples,
enabling the development of clinical studies to probe tumor heterogeneity on multiple spatial scales.
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INTRODUCTION

Molecular tumor profiling is used to stratify patients
and identify new actionable targets for precision
therapeutics. The assessment is typically based on
data from a single tumor biopsy.1 Often, however,
tumors display such a high degree of heterogeneity
that a single tissue sample is insufficient to capture the
full molecular landscape of the disease.2 A prime
example of such spatial heterogeneity is renal cell car-
cinoma (RCC), which has been shown to be radiologi-
cally, genetically, and metabolically heterogeneous.3-5

Macroscopic regions with distinct genotypes can
be identified within a single tumor through multi-
regional sampling.3,6 In parallel, radiologic imaging
provides noninvasive, 3-dimensional (3D) information
on phenotypic heterogeneity.7,8 The fact that RCC
displays spatial heterogeneity at such disparate
physical scales suggests that a combined approach
to integrate the relevant data sources (ie, genomics,
transcriptomics, radiomics) is needed to unravel the
complexity of the disease9 and the genomic evolu-
tion of the tumor.4,10-12

The foundation of a combined analysis is the accurate
spatial coregistration of imaging data and biopsies.
However, typically, multiregional tumor biopsies are
obtained after nephrectomy, when image guidance is
no longer possible. The challenge of coregistering
in vivo images to resected tumors has been addressed
in other contexts. Previous solutions included holding
the specimen with a cradle13 or solidified agar.14

However, these approaches had several disadvan-
tages, including not being clinically usable or not
providing accurate orientation. More recently, per-
sonalized 3D molds have been used to improve the
accuracy of coregistration in prostate cancer15-17 and
ovarian cancer studies.18

In RCC, however, 3D-printed molds remain compar-
atively underexplored,19 because the disease presents
unique challenges. The first challenge arises from the
pathology guidelines for assessment of radical ne-
phrectomy specimens, which require optimal visuali-
zation of the renal sinus–tumor interface. The most
commonly adopted initial plane of incision is along the
long axis at midpoint, with further sectioning usually
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perpendicular to this plane.20-22 Thus, the sectioning
planes are in general not the same as those used for im-
aging. An additional challenge is that pathologists need to
preserve the integrity of structures that are required for
staging, such as the renal vein. Finally, the specimen is
often covered by perinephric fat,23 which further compli-
cates the procedure and can make it impossible to identify
relevant structures. Because of these restrictions, pre-
vious 3D printing–based coregistration methods for RCC
either have been limited to preclinical models24 or have
only focused on patients undergoing early-stage partial
nephrectomy,25 in whom the fat-free resection margin
can be used as a base. In addition, none of the previous
methods addressed the issue of having different sec-
tioning and imaging planes. Therefore, new methods are
needed to accurately match macroscopic habitats defined
by imaging to specific tissue regions. Importantly, these
methods need to integrate smoothly into the clinical
pathway to allow future use in clinical trials and potentially
clinical practice.

Here, we report the design and implementation of an open-
source computational framework to create image-based
patient-specific tumor molds. The molds enable the cor-
egistration of surgical tissue samples to presurgical mul-
tiparametric magnetic resonance imaging (MRI) in patients
undergoing radical nephrectomy for suspected RCC. Our
methodology is fully automated, producing ready-to-print
3D models directly from the MRI segmentation. It is also
tailored for seamless integration with the clinical workflow.
In particular, it can deal with any desired sectioning plane
and is based on a robust landmark system that en-
sures accurate coregistration even in specimens obscured
by a thick adipose layer. Although the framework was
designed for renal cancer, it can be easily adapted to other
types of solid tumors. As such, it constitutes a substantial
step forward toward streamlining the creation of data sets
with accurately matched imaging, histologic, and genomic
data. Here, we present the computational details of the

framework and validate its performance on 6 patients who
underwent radical nephrectomy.

METHODS

Key Concepts

We present a framework to create molds that can assist the
tumor sampling process by coregistering tumor sections
with MRI slices. The mold is a 3D block, with vertical slots
that guide the sectioning and a cavity designed to precisely
fit the resected specimen (Fig 1A). The shape of the cavity
is derived from the regions of interest drawn by a radiologist
on an MRI scan. The 3D modeling process involves several
steps, including volume creation, reorientation, smoothing,
mesh creation, and the addition of slots and guides
(Fig 1A). All steps proceed automatically, and they integrate
with the clinical workflow (Fig 1B). The code is available
online on https://github.com/markowetzlab/cutter. See Ap-
pendix for additional methods.

Automated 3D Modeling

Step 1: Image segmentation. Our approach requires two
types of regions of interest (ROIs) to be drawn on the
images: tissue segmentations and anatomic landmarks.
Tissue segmentations are needed to define the mold cavity
and to test the spatial accuracy of the framework. They
include the tumor, normal kidney, and perinephric fat.
Combined, they form the global outline of the specimen,
which defines the shape of the mold.

In addition, at least four anatomic landmarks are needed to
determine the correct orientation of the specimen inside
the mold. The first two landmarks are the upper and lower
poles of the kidney, which ensure that the kidney can be
sectioned along or transverse to its long axis at midpoint.20

The other two anatomic landmarks are the hilum (exit point
of renal vessels and ureter) and the points in the tumor and/
or normal kidney with the thinnest fat coverage, referred to
as contact points. They are used to ensure that the
specimen is accurately positioned.

CONTEXT

Key Objective
How can we accurately coregister biopsy locations and 3-dimensional (3D) imaging volumes to improve our understanding of

tumor heterogeneity?
Knowledge Generated
We developed a computational framework to automatically design and 3D print patient-specific tumor molds that respect

clinical requirements. We used the framework to generate 3D molds for 6 patients with kidney cancer and found accurate
coregistration between tissue and imaging.

Relevance
Our work provides a robust and automated interface between imaging and tissue samples, enabling the development of

clinical studies to probe tumor heterogeneity on multiple spatial scales.
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FIG 1. A computational framework to create image-based patient-specific tumor molds. (A) The schematic depicts the various steps of the method,
bridging from magnetic resonance imaging (MRI) scans to spatially targeted surgical biopsies. The method starts with the delineation of an MRI scan,
which is then reoriented, carved out of a 3-dimensional–printed mold, and used for spatially accurate surgical biopsies. The slots of the mold guide the
knife for cutting. (B) Flowchart of the different analysis steps performed by the radiology, surgery, pathology, and computational groups to ensure
seamless integration between the clinical and research arms. The blue box highlights the computational steps of the pipeline. mpMRI, multiparametric
MRI.
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Step 2: Image orientation. Our approach controls the ori-
entation of the specimen within the mold. The first orien-
tation challenge concerns the direction along which the
specimen has to be sectioned, following pathology pro-
tocols for renal cancer staging. To address this, we apply
a 3D rotation to the images and create new slices that align
with the preferred sectioning plane, which is defined by the
tumor centroid and the upper and lower poles.

The second challenge concerns the need to accurately
orient the specimen in the mold, even when it is covered in
perinephric fat. We overcome this challenge by defining
reference landmarks that are expected to be exposed and
identifiable in the specimen and placing them at the base of
the mold. These points act as anchors that ensure that the
specimen is correctly positioned. The points are marked in
the mold by carving 2-cm holes in the base of the mold that
enable the pathologist to see and feel them (red arrows in
Fig 1A). The 2 landmark points used for this purpose are
the hilum and the tumor contact point.

Once the image has been rotated, we extract the outline
volume needed for the mold and smooth the surface
using a Gaussian kernel. The final output is a 3D integer
matrix that embeds the correctly oriented volume as
well as the location of the landmark points. This part of
the process is implemented in MATLAB (MathWorks,
Natick, MA).

Step 3: Mold generation and 3D printing. The mold gen-
eration process consists of several steps (Fig 1A). First, the
volumetric matrix obtained previously is converted into
a mesh and then simplified by face reduction, adaptive
remeshing, Laplacian smoothing, and Taubin smoothing.

Once themesh is smooth enough for printing, it is carved off
from a solid block-shaped base, and vertical slots are
created to guide the knife during sectioning. In addition,
a set of vertical guides is added to one side of the mold to
aid with the positioning of the knife. The location of the
interslot spaces in both the guides and themold is designed
to match the exact location of the imaging slices of interest.
In addition, the guides are numbered such that particular
slices can easily be identified and compared with imaging.
Finally, we carve the reference holes at the bottom of the
mold with a diameter of 2 cm at the hilum and contact
landmark points. This part was implemented in Python with
interfaces to Meshlab and OpenSCAD. The subsequent
slicing of the 3D model was carried out with Slic3r for print
preparation (Prusa Research, Prague, Czech Republic).

RESULTS

Ethics and Patient Cohort

The method was designed as part of a physiologic study
currently being undertaken at the University of Cambridge
with the aim of integrating imaging and tissue-based bio-
markers to unravel tumor heterogeneity in renal cancer.
Informed consent was obtained for the Molecular Imaging

and Spectroscopy with Stable Isotopes in Oncology and
Neurology (MISSION) substudy in renal cancer after prior
approval by the East of England–Cambridge South Ethics
Committee (REC: 15/EE/0378).

Of the 6 patients included in the analysis, 5 had clear cell
RCC and 1 had rhabdomyosarcoma of the kidney (Fig 2).
The patient with rhabdomyosarcoma was initially included
because the cancer had been diagnosed as renal cancer
presurgically. Because the 3Dmold printing and sectioning
protocols were the same as those used for the other patients
with RCC, it was decided to retain the sarcoma as a test of
the generalizability of the methodology. Relevant clinical
data are listed in Table 1.

3D Mold Generation and Sample Sectioning

Tumor, normal kidney, and perinephric fat were seg-
mented manually on a presurgical T1-weighted MRI im-
age, as well as the hilum, tumor and kidney contact point,
and kidney poles. For the first patient, the renal pelvis was
also segmented. The segmentations were checked by
a radiologist with 15 years of experience in genitourinary
imaging (E.S.).

We generated and 3D-printed molds for each patient using
the computational framework described earlier. After dis-
cussion with the pathologist, it was decided that the first
patient would be sectioned longitudinally to the kidney,
whereas the other 5 were sectioned transversally.

The automated design and generation of each mold took
, 5 minutes per patient. Manual verification of the seg-
mentation and mold results took between 10 and
20 minutes. Printing each mold took between 12 and
24 hours.

The specimens were placed in the mold and sectioned
20 minutes after nephrectomy. The resection margins were
inked for R staging, and all the perinephric fat was pre-
served. A slice where all the habitats of the tumor were
present, as well as being sufficiently separated from the
hilum, was chosen for sectioning in each patient. Cuts were
made with a 12-inch CellPath Brain Knife (CellPath,
Newtown, United Kingdom).

Anatomic Landmark Validation

In the first patient, the selected slice resulted in a clean
longitudinal cut of the kidney, including the renal pelvis,
and a cross-section of the tumor, as illustrated in Figure 3A.
The tumor presented two hemorrhagic areas and a necrotic
core. The other 5 patients were sectioned transversally, with
patients 2, 3, and 6 including large portions of normal
kidney.

Each patient’s slice was placed on a flat surface and
photographed. We then manually contoured the reference
tissues (tumor, kidney, and renal pelvis where visible) on
the tissue photograph. We coregistered the MRI segmen-
tations and tissue contours manually, obtaining Dice
similarity coefficients (DSCs)26 of 0.92, 0.80, 0.86, 0.93,
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0.92, and 0.96 for the 6 tumor ROIs, as shown in Figure 3A.
The 4 ROIs containing healthy kidney yielded DSCs of 0.76,
0.76, 0.70, and 0.72, respectively. For the first patient, the
renal pelvis yielded a DSC of 0.75.

Functional Signal Validation

Motivated by the presence of a necrotic core in the first
patient, we performed an additional validation step based
on the spatial distribution of different functional imaging

TABLE 1. Patient Characteristics

Patient No. Sex Age (years) Tumor Type Tumor Stage Nodal Stage Tumor Grade
No. of Days From
Imaging to Surgery Tumor Volume (mL)

1 M 70 Clear cell RCC pT3a pNx 3 14 145

2 M 81 Clear cell RCC pT3a pNx 4 29 218

3 F 60 Clear cell RCC pT3a pNx 2 19 89

4 M 51 Clear cell RCC pT3a pN0 4 22 107

5 M 47 Rhabdomyosarcoma pT4 pN0 Ungraded 11 1,342

6 M 55 Clear cell RCC pT1b pNX 4 8 90

Abbreviations: F, female; M, male; RCC, renal cell carcinoma.

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

FIG 2. Optimized, patient-specific tumor molds. Representative T1-weighted magnetic resonance imaging slices
and corresponding 3-dimensional renderings of the tumor molds created for the 6 patients included in the study.
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parameters inside the tumor. Multiparametric MRI images
were coregistered and used to define spatial habitats using
k-means clustering. In particular, we used T1- and T2-
weighted images, T1 map, K trans from dynamic contrast-
enhancedMRI as ameasure of tumor vascular leakage, the
D0 diffusion coefficient and perfusion fraction from intra-
voxel incoherent motion MRI imaging (f ) as a measure of
cellularity and tumor perfusion, and R2* as a measure of
oxygenation. We found 3 distinct habitats, as shown in
Figure 3B.

All three habitats presented with distinct distributions with
respect to perfusion fraction f , K trans, and R2* maps, as
shown in Figure 3B. We found habitat 1 to be poorly

perfused and have a high diffusivity, T1-weighted hypo-
intensity, and T2-weighted hyperintensity. This habitat
overlapped with the necrotic area found in the resected
specimen.

Habitats 2 and 3 showed similar parametric distributions.
Habitat 2 was adjacent to the kidney and showed the
highest levels of K trans. Habitat 3 showed the lowest dif-
fusion levels, as well as high R2*.

DISCUSSION

Capturing the full complexity of the disease is challenging in
cancers such as RCC, where tumors typically display a high
degree of spatial heterogeneity both at the imaging and

DS
C

1.0

0.5

0.0

Pat
ien

t 1

Pat
ien

t 2

Pat
ien

t 3

Pat
ien

t 4

Pat
ien

t 5

Pat
ien

t 6

DS
C

1.0

0.5

0.0

Pat
ien

t 1
 (R

P)

Pat
ien

t 2

Pat
ien

t 1

Pat
ien

t 3

Pat
ien

t 6

A

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

T
u

m
o

r
K

id
n

e
y

Patient 6

MRI segmentation

Specimen boundaries

Fat

Tumor

Renal
pelvis 

Lower pole

Upper
pole

 

Kidney

Habitat 3

Habitat 2

Habitat 1

B

5 x 103

2.5 x 103

500 1,000 1,500

T1w (AU)

0

N
o.

 o
f V

ox
el

s

N
o.

 o
f V

ox
el

s

103

101

0 20

DCE Ktrans (min–1)

5 x 103

5,0000

T2w (AU)

0

5 x 103

0
0.000 0.002

IVIM D0 (mm2/s)

4 x 103

2 x 103

0
500

R2* (ms–1)

5 x 103

0
0.0 0.5

IVIM f  (%)

Habitat 1

Habitat 2

Habitat 3

FIG 3. Validation results. (A) Overlay of the tissue region boundaries (black) and the corresponding magnetic resonance imaging (MRI) segmentations
(red) for tumor and kidney regions. Dice similarity coefficients (DSCs) are calculated for tumor and kidney tissues separately. (B) Left: Overlay of
a photograph of the section from the first patient and the corresponding MRI maps, including anatomic region segmentations (top) and multiparametric
tumor habitats (bottom). Right: Relative distributions of imaging parameters for the 3 tumor habitats. AU, arbitrary units; DCE, dynamic contrast-enhanced;
IVIM, intravoxel incoherent motion; RP, renal pelvis; T1w, T1-weighted; T2w, T2-weighted.
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genomics levels. In this article, we have presented a new
computational framework that overcomes a key challenge
for the combined analysis of imaging and genomics
data—the need to accurately match macroscopic habitats
defined by imaging to specific tissue regions in an auto-
mated way and without disrupting routine clinical practices.
By integrating smoothly into clinical practice, our meth-
odology has the potential to be widely applicable in clinical
trials and therefore enable the creation of unprecedented
data sets with matched imaging, histologic, and genomics
data.

Our framework successfully integrated all the steps to
automatically produce 3D-printable molds directly from
MRI segmentations. This facilitates the inclusion of mold-
guided samples into clinical studies because molds can be
generated fast with minimal additional workload.

Our approach was designed to address one of the lim-
itations of previous 3D printing–based coregistration
methods, which assume that tumors can be sectioned
along the same plane that was used for MRI imaging. This
assumption generally interferes with pathology protocols.
Commandeur et al27 proposed a methodology to coregister
histologic planes to MRI slices for prostate cancer. How-
ever, this coregistration has to be performed a posteriori,
and therefore the surgical biopsies would need to be ob-
tained without image guidance, which might result in
suboptimal tumor sampling.10 Instead, our approach uses
a landmark system based on the definition of two reference
points drawn by the radiologist on the MRI scan (the upper
and lower poles of the kidney). These points are then used
to define the rotation to be applied to the images. We found
that the rotation successfully provided the expected lon-
gitudinal or transversal cuts of the kidney.

The second challenge addressed by our approach is the
presence of perinephric fat, which adds two complications
to the tissue coregistration process: the difficulty in pre-
dicting the exact shape of the resected specimen, because
the definition of optimal margins is controversial,28 and the
lack of an anatomic frame of reference to correctly position
the specimen in the mold. Removing or trimming the fat
may interfere with clinical practice, as it could compromise
the surgical margins, which need to be evaluated for the
presence of tumor cells.29 A solution has been previously
proposed for partial nephrectomies, using the inner pa-
renchymal surface of the tumor as the base of the mold.25

This method involved the surgeon inserting fiducial
markers into the tumor during surgery, which interrupts the
routine clinical pathway. In addition, partial nephrectomy is
only recommended to treat small renal masses,30 so pa-
tients with more advanced disease, who have typically
poorer outcomes and are therefore of particular clinical
relevance,31 would not be tractable with this approach.

Our methodology instead relies on a second set of key
landmarks that can be used to orient the specimen even

when there is a large component of fat. These reference
points are placed at the base of the mold and marked with
holes that allow the pathologist to confirm their correct
positioning. This approach resulted in an accurate cor-
egistration between imaging and resected specimen in 6
specimens corresponding to renal cancers of stages III and
IV. In particular, we found that anatomic image segmen-
tations agreed with the corresponding tissue outlines after
mold-assisted sectioning, with DSCs ranging between 0.86
and 0.96 for tumor regions and between 0.70 and 0.76 for
healthy kidney regions.

In addition, we observed that the tumor habitats identified
from multiparametric MRI images from patient 1 coincided
with observable features of the tissue. In particular, habitat
1 presented all the characteristics of necrotic tissue (poor
perfusion, high diffusion, T1-weighted hypointensity, and
T2-weighted hyperintensity) and, indeed, coincided with
the necrotic core of the tumor.32 Similarly, habitat 3, which
was closest to the normal kidney and therefore potentially
could have better vascular access, was found to have high
K trans.

As expected, there was a thick layer of fat surrounding the
specimens, which made it difficult to see the kidney or
identify its orientation by simple visual inspection. This
would have been a challenge even in the standard clinical
setting, but the mold generally provided useful support and
assistance.

Our methodology is agnostic to both the type of tumor and
the imaging modality. The only input required by the
computational framework is a binary mask corresponding
to the volume of interest and a set of reference points that
determine the preferred orientation. As an example of the
generalizability of the method, we also assessed a patient
who had rhabdomyosarcoma of the kidney (patient 5,
Table 1), obtaining consistent accuracy values.

Our approach shares some limitations with most other
coregistration approaches. First, in this study, there was
a time constraint between imaging and surgery, which was
independent of the mold-building process. Imaging oc-
curred between 2 and 4 weeks before surgery, which could
have resulted in anatomic changes and therefore a sub-
optimal mold design. However, typical tumor doubling
times for renal cancer are long and suggest that the effects
should be minor.33,34 Importantly, compared with slower
manual approaches, our automated method reduces the
mold design process to under half an hour, with 3D printing
taking a further 24 hours at maximum. This implies that for
tumors with rapid growth rates surgery and mold-guided
sectioning could be performed as early as 2 days after
imaging. Shape-wise, additional uncertainty may arise from
the segmentation of the structures on the MRI images.
Although several approaches for semiautomatic segmen-
tation of kidney tumors exist,35-37 the preferred option
is still manual contouring. Our methodology requires the
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additional delineation of perinephric fat, for which manual
contouring, after discussion with the surgeon, is preferred.
Although placing the point with the least fat coverage at the
bottom of the mold helps reduce the uncertainty, intra-
operative decisions may result in a different fat distribution.
Having a single-sidedmold (without an upper half)means that
changes in the upper side of the specimen do not affect the
accuracy, but any variations in the other half might do so.
Finally, the work presented here demonstrates the robustness
and spatial accuracy of the methodology, but before the
technology can be routinely used in the clinic, testing over
a wider patient population from a clinical trial will be required.

The methodology we have presented here will be a core
element of the WIRE renal cancer trial (ClinicalTrials.gov
identifier: NCT03741426). By tightly integrating into the
workflow of clinical trials, our methodology will enable the
creation of large, spatially matched, multiscale data sets
including radiomics, genomics, and histology data. This
may allow true personalized treatment decisions to be
made based on imaging as a surrogate for molecular
characteristics, which in the case of renal cancer would
include the choice of surveillance versus surgery for small
renal cancers or surveillance versus adjuvant therapy for
later-stage localized RCCs.
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9. Alessandrino F, Shinagare AB, Bossé D, et al: Radiogenomics in renal cell carcinoma. Abdom Radiol (NY) 44:1990-1998, 2019

10. Soultati A, Stares M, Swanton C, et al: How should clinicians address intratumour heterogeneity in clear cell renal cell carcinoma? Curr Opin Urol 25:358-366,
2015

11. Turajlic S, Xu H, Litchfield K, et al: Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173:595-610.e11, 2018

12. Mitchell TJ, Turajlic S, Rowan A, et al: Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173:611-623.e17, 2018

13. Jhavar SG, Fisher C, Jackson A, et al: Processing of radical prostatectomy specimens for correlation of data from histopathological, molecular biological, and
radiological studies: A new whole organ technique. J Clin Pathol 58:504-508, 2005

14. Madabhushi A, Feldman MD, Metaxas DN, et al: Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI. IEEE Trans Med Imaging
24:1611-1625, 2005

15. Shah V, Pohida T, Turkbey B, et al: A method for correlating in vivo prostate magnetic resonance imaging and histopathology using individualized magnetic
resonance-based molds. Rev Sci Instrum 80:104301, 2009

16. Costa DN, Chatzinoff Y, Passoni NM, et al: Improved magnetic resonance imaging-pathology correlation with imaging-derived, 3D-printed, patient-specific
whole-mount molds of the prostate. Invest Radiol 52:507-513, 2017
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APPENDIX

Materials and Methods

Code. All the code necessary to reproduce these results, including
volume orientation, 3-dimensional (3D) mold design, 3D printing, and
habitat generation, can be found at GitHub (https://github.com/
markowetzlab/cutter).

Patient cohort. All patients recruited for the MISSION study be-
tween December 2018 and January 2020, a total of 9 patients, were
considered for 3D mold printing. Of those patients, 3 were excluded
from the validation study presented here; 1 patient was excluded as
a result of having withdrawn consent to imaging (no mold was
designed), 1 as a result of having a paraganglioma (no mold was
designed), and 1 as a result of not having tissue photographs for
anatomic validation. The analysis presented here is based on the
remaining 6 patients (Fig 2).

The methodology we have presented here will be a core element of the
WIRE renal cancer trial (ClinicalTrials.gov identifier: NCT03741426).
The WIRE trial is a prospective, phase II, multiarm, window-of-
opportunity clinical trial with a Bayesian adaptive design. It will involve
up to 76 patients with T1b+, N0-1, M0-1 clear cell renal cell carci-
noma. The trial will be conducted across multiple centers in the United
Kingdom. It is estimated that approximately 40 patients will be
recruited in Cambridge. Mold-guided biopsies will be taken in all of the
patients in Cambridge, thus providing further validation of the value of
the method in a population that replicates much of the diversity of the
clinical target population. If successful, the methodology will then be
extended to other WIRE trial centers.

Magnetic resonance imaging data acquisition. The 3D model
of the tumor was designed based on a T1-weighted magnetic reso-
nance imaging (MRI) scan acquired using a Dixon imaging sequence
(Appendix Table A1) acquired between 2 and 4 weeks before surgery
on a clinical 3T MRI (Discovery MR750; GE Healthcare, Waukesha,
WI). Regions of interest (ROIs) were manually delineated by a radiol-
ogist (S.U., with 2 years of experience in genitourinary imaging) on
each slice of theMRI scan using OsiriX (Version 10.0.0 [Rosset A, et al:
J Digit Imaging 17:205-216, 2004]). The contours were drawn on
coronal unenhanced T1-weighted images using registered T2-
weighted and postcontrast T1-weighted images to verify the accuracy
of the ROIs. The segmentation was independently reviewed by
a second radiologist (E.S., with 15 years of experience in genitourinary
imaging). ROIs were exported from OsiriX to comma separated value
files (.csv) encoding the coordinates of the edges of the ROI on each
slice using the Export ROIs plugin (Version 1.9). The centroid of each
ROI was calculated as the mean of all x, y, and z coordinates of the
voxels within it.

Image preprocessing. Before generation of parameter maps,
deformable motion correction was applied in MATLAB (MathWorks,
Natick, MA) and using Advanced Normalization Tools within the In-
sight Segmentation and Registration Toolkit (ANTs/ITK) (Avants BB,
et al: Front Neuroinform 8:44, 2014). In the case of diffusion-weighted
imaging (DWI) MRI, this was applied across acquisitions with differing
b-values; in the case of dynamic contrast-enhanced (DCE) MRI, this
was applied across acquisition time points, and the associated T1
maps were transformed accordingly. Parameter maps were then
generated using MATLAB in the case of DWI intravoxel incoherent
motion (IVIM) and using MIStar (Apollo Medical Imaging Technology,
Melbourne, Australia) in the case of DCE-MRI, employing the Tofts
model (Tofts PS, et al: J Magn Reson Imaging 10:223-232, 1999) and
a model arterial input function. R2* maps were generated at source on
the MRI scanner using standard manufacturer software. All parameter
map volumes were then aligned to the T1-weighted reference series
used to prepare the mold. This was performed in two stages. First,
each parameter map volume was resampled into the space of the
T1-weighted reference series. Finally, and only if necessary, a rigid
registration transform to more closely align the map with the refer-
ence image was determined manually using the software package

ITK-SNAP; this transform was then applied to the parameter map
volume using MATLAB.

Mold orientation. The method proceeds as follows. First, the MRI
scan is resampled to achieve an isotropic resolution of 1 × 1 × 1 mm3

using nearest neighbor interpolation, as implemented in CERR (Deasy
JO, et al: Med Phys 30:979-985, 2003), an open source MATLAB
environment for radiology research. Then, two 3D rotations are ap-
plied. Several vectors connecting the structure centroids are defined to
guide the reorientation process, as follows:

vL � 0.5 × (vhilum + vtumor contact),
vLC � vC0 − vL,

vpoles � vupper − vlower,

where VC0
indicates the coordinates of the centroid C0, with vupper

representing the centroid of the upper pole and vlower the centroid of
the lower pole. The first rotation aligns vpoles with the y-axis. The second
rotation is performed around the y-axis, aligning the x − z projection of
vLC with the z-axis. Combined, the two rotations ensure that the ori-
entation conditions are satisfied. Other rotation choices could also be
easily implemented.

Before extracting and exporting the reoriented volume for mold design,
the surface is smoothed using 3D Gaussian filtering with a convolution
kernel of size 9 × 9 × 9 voxels and standard deviation of 3 voxels. Finally,
the MRI images are sliced along the x − z plane with a spacing of 1 cm.
These are used to build reference maps that will later guide the tissue
sampling process; they also coincide with the location of themold’s slots.

Design optimization and mold generation. The resliced tumor
segmentation was exported from MATLAB and imported into
a Python script for postprocessing and mold generation. First, the
marching cubes algorithm (Lewiner T, et al: J Graphics Tools 8:1-
15, 2003) was applied on the 3D volume for conversion to a mesh
consisting of faces and vertices. Second, to ensure integrity of the
resulting tumor mesh, close vertices were merged, duplicate
faces and vertices removed, faces from nonmanifold edges re-
moved, and all face normals orientations inverted. Third, the
number of faces was reduced to a maximum of 5,000 by per-
forming quadric edge collapse decimation to simplify the mesh
and reduce computational overhead. Fourth, the first smoothing
step with a Laplacian kernel was performed. Fifth, because
Laplacian smoothing can result in geometric issues in certain
scenarios, faces were again removed from nonmanifold edges;
duplicated faces and vertices were removed as well. Sixth, Taubin
smoothing was performed to remove remaining irregularities.
Last, remaining holes in the mesh were closed to ensure a con-
tinuous surface for mold generation and printing. Detailed pa-
rameters for each step can be found in the file filter.mlx on https://
github.com/markowetzlab/cutter.

3D printing. The model was sliced using PrusaSlicer (Prusa Re-
search, Prague, Czech Republic) and printed with 0.2-mm layer height
on a Prusa i3 MK3 printer loaded with RS PRO PLA filament (RS
Components, Corby, United Kingdom).

Habitat clustering. To guide the process of tissue sampling, im-
aging maps were created for each tumor slice. The maps were ob-
tained by combining multiparametric MRI images and clustering them
into several spatial clusters.

Along with the reference T1-weighted images, additional sequences
were acquired to define phenotypic habitats in the first patient. In
particular, the images used for clustering were the T1- and T2-weighted
images, T1 map, K trans from DCE-MRI, the diffusion coefficient and
perfusion fraction from IVIM MRI imaging (f ), and R2*. Images were
obtained on a 3T MRI scanner in coronal orientation with a slice
thickness of 4 mm. Scans were corrected for motion artifacts and
coregistered using rigid transformations. Additional details on the
images, parameter maps, and methods can be found in Appendix
Table A1.
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Habitats were obtained by applying k-means clustering on the set of
coregistered images as well as the (x,y,z) coordinates corresponding to
each voxel, to ensure spatial cohesion. The number of clusters was set
to the maximum number that would allow taking 3 samples from each
habitat. In practice, this translated into increasing the number of
clusters until any of the habitats had an area smaller than approxi-
mately 3 cm2.

Evaluation of spatial accuracy. The slice was placed on a flat
surface and photographed. Tissue contours were drawn on the
image, being completely blinded to the MRI segmentations. The
resulting outline and the shape predicted after reorientation of
the magnetic resonance segmentation were then overlaid and

coregistered using manual rigid registration, maximizing the overlap
between the tumor contours. The accuracy of slice position recovery
was assessed after resection by comparing the DSC of MRI seg-
mentations and the corresponding tissue contours. This coefficient is
defined as:

DSC �
2|X\ Y |
|X | + |Y |

where the overlap of two binary masks X and Y (segmentations
originating from different image sources) can be calculated. The higher
the Dice similarity coefficient, the larger is the overlap between the two
binary masks.
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