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Abstract A neuron that is stimulated by rectangular current
injections initially responds with a high firing rate, followed
by a decrease in the firing rate. This phenomenon is called
spike-frequency adaptation and is usually mediated by slow
K+ currents, such as the M-type K+ current (IM) or the Ca

2+-
activated K+ current (IAHP). It is not clear how the detailed
biophysical mechanisms regulate spike generation in a cortical
neuron. In this study, we investigated the impact of slow K+

currents on spike generation mechanism by reducing a de-
tailed conductance-based neuron model. We showed that the
detailed model can be reduced to a multi-timescale adaptive
threshold model, and derived the formulae that describe the
relationship between slow K+ current parameters and reduced
model parameters. Our analysis of the reduced model suggests
that slow K+ currents have a differential effect on the noise
tolerance in neural coding.

1 Introduction

Neuronal adaptation is the change in the responsiveness
of a neuron over time. Adaptation may play an impor-
tant role in the extraction of important information from
an ever-changing environment and is the product of
several factors, including ion channels, synapses, and
network dynamics. In this study, we focus on adaptation
at the single neuron level. When a neuron is stimulated
by rectangular current injections, it initially responds
with a high firing rate, followed by a decrease in the
firing rate. This phenomenon is called spike-frequency
adaptation and is observed in most pyramidal neurons in
various brain areas. The spike-frequency adaptation is
usually mediated for by M-type K+ current (IM)
(Brown and Adams 1980; Adams et al. 1982), Ca2+-
activated K+ current (IAHP) (Brown and Griffith 1983;
Madison and Nicoll 1984), Na+-activated K+ current
(Schwindt et al. 1989), or the slow inactivation of Na+

current (Fleidervish et al. 1996; Kim and Rieke 2003).
In terms of the spike-frequency adaptation generated by
slow K+ currents, conductance-based models including
slow K+ channels have been studied. These models
can reproduce the electrophysiological properties of a
neuron (see Koch 1999 for a review) and provide in-
sights into the underlying biophysical mechanisms.

Studies using the conductance-based models have
suggested that the distinct biophysical mechanisms re-
sponsible for the spike-frequency adaptation have differ-
ent impacts on neural coding (Ermentrout et al. 2001;
Prescott and Sejnowski 2008). For example, IM im-
proves spike-timing coding, whereas IAHP improves
spike-rate coding (Prescott and Sejnowski 2008). These
results indicate that specific biophysical mechanisms un-
derlying adaptation may impact the coding properties of
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a neuron. On the other hand, due to the complexity of
the detailed models, it remains unclear how the kinetics
of slow K+ currents influence the spike generation
mechanism.

In order to understand the spike generation mechanism,
it is essential to reduce the detailed neuron models to
simplified models. There have been many attempts to sim-
plify the detailed models (Ermentrout and Kopell 1986;
Abbott and Kepler 1990; Destexhe 1997; Kistler et al.
1997; Richardson et al. 2003; Fourcaud-Trocmé et al.
2003 for review Rinzel and Ermentrout 1998; Gerstner
and Kistler 2002; Izhikevich 2007). A direct approach to
obtain the reduced model is to fit the simplified model to
simulated data set generated by the detailed model. This
approach has clarified the underlying mechanism of spike
generation, such as, integration properties (Kistler et al.
1997; Jolivet et al. 2004), adaptation (Brette and
Gerstner 2005), and spike threshold variability (Kobayashi
and Shinomoto 2007). However, this approach cannot
predict the effect of the detailed model parameters
(physiological parameters) on spike generation. Another
approach is to develop a mathematical framework to
simplify the detailed models. For example, the
FitzHugh–Nagumo model and integrate-and-fire models
(Gerstner and Kistler 2002) were derived from the
Hodgkin–Huxley model (Abbott and Kepler 1990;
Richardson et al. 2003).

In this study, we extend the mathematical reduction
approach by including the spike history effect that is
essential to describe the impact of slow K+ currents
on spike generation. We show that the detailed
conductance-based neuron model can be reduced to a
multi-timescale adaptive threshold model (Kobayashi
et al. 2009; Yamauchi et al. 2011), and derive the for-
mulae that describe the relationship between the slow
K+ current parameters and the reduced model parame-
ters. We evaluate the reduced model by predicting spike
trains of the detailed model. Finally, we examine the
effect of noise on the coding property of a neuron using
the reduced model.

2 Materials and methods

2.1 Single neuron models

2.1.1 Conductance-based model

We analyzed a single-compartment conductance-based
model based on a model for the cerebral cortex and tha-
lamic neurons proposed by Pospischil et al. (2008), that
was extended to include Ca2+-activated K+ (AHP) current
(Mainen and Sejnowski 1996; Tsubo et al. 2004). The

membrane voltage V of a neuron is described by the fol-
lowing equation:

Cm
dV

dt
¼ −IL−INa−IKd−IM−ICa−IAHP þ I ex; ð1Þ

where Cm is the membrane capacitance and Iex is the external
input current. The ionic currents consist of the leak current
IL = gL(V − EL), Na

+ current INa = gNam
3h(V − ENa), delayed

rectifier K+ current IKd = gKdn
4(V − EK), muscarinic K+ cur-

rent IM = gMp(V − EK), Ca
2+ current ICa = gCaq

2r(V − ECa),
and AHP current IAHP = gAHPs(V − EK), where gx and Ex are
the maximal ionic conductances and the reversal potentials,
respectively. The gating variables w ∈ {m, h, n, p, q, r, s} are
described by the Hodgkin −Huxley formalism.

dw

dt
¼ αw V ; Ca2þ

� �� �
1−wð Þ−βw V ; Ca2þ

� �� �
w; ð2Þ

where αw and βw are the activation and inactivation functions,
respectively (see Table 1 for details), and [Ca2+] represents the
calcium concentration. The Ca2+ concentration is described by
(Mainen and Sejnowski 1996; Tsubo et al. 2004)

d Ca2þ
� �
dt

¼ −105⋅
ICa
2F

−
Ca2þ
� �

− Ca2þ
� �

∞
τCa

; ð3Þ

where F = 9.6485 × 104 [C/mol] is the Faraday constant,
[Ca2+]∞ = 0.05 [μM] is the equilibrium concentration, and τCa
is Ca2+ time constant. The slow K+ current parameters were
varied in the ranges gM ∈ [0.05, 0.4] [mS/cm2], gAHP ∈ [0.05,
0.4] [mS/cm2], τmax ∈ [0.5, 4] [s], βs ∈ [10, 90] [/s], and
τCa ∈ [0.1, 0.9] [s]. The remaining parameters are shown in
Table 1. This model was solved numerically using the forward
Euler integration method with a time step of 0.025 [ms] (Jolivet
et al. 2004). We further confirmed that the results were quanti-
tatively the same for a time step of 0.01 [ms].

2.1.2 Adaptive threshold models

The potential u of a model neuron obeys a linear differential
equation,

du

dt
¼ −

u

τm
þ I ex

Cm
: ð4Þ

where τm is the membrane time constant. The neuron gener-
ates a spike if the potential u reaches the spike threshold θu(t)
from below, and the threshold is linearly modulated by spikes
(Kobayashi et al. 2009; Yamauchi et al. 2011)

If u tð Þ > θu tð Þ→ Emit a spike at time t;

θu tð Þ ¼ θ∞u þ
X

k:tk< t
Hu t−tkð Þ; ð5Þ

where tk is the k-th spike time,Hu(t) is the threshold kernel that
describes the effect of previous spikes, and the sum is taken up

348 J Comput Neurosci (2016) 40:347–362



to the most recent spike time. The multi-timescale adaptive
threshold (MAT) model (Kobayashi et al. 2009) is a special
case of the adaptive threshold model (Eq. (5)). The threshold
kernel is given by the sum of exponential functions for each
spike in the history,

Hu tð Þ ¼
0 t≤0ð ÞX L

j¼1
α je

−t=τ j 0 < tð Þ

(
; ð6Þ

where L is the number of exponential functions and αj and τj
are the weights and the threshold time constants, respectively.

It is worth noting that the potential u of the adaptive thresh-
old model is different from the voltage of the leaky integrate-
and-fire (LIF) model (Gerstner and Kistler 2002). The poten-
tial does not reset after a spike and continuously integrates the
input current, whereas the voltage in the LIF model is reset
after each spike.

2.2 Input currents

We used two types of input current Iex(t). The first input is a
constant current with a pulse,

I ex tð Þ ¼ Ic þ qcδ t−tp
� �

; ð7Þ

where Ic [μ A/cm2] is the strength of the constant current, qc
[nC/cm2] and tp [ms] are the amplitude and timing of the
pulse, respectively, and δ(t) is the Dirac’s delta function. The
constant part Ic is tuned to maintain the membrane potential at
Vc and the pulse amplitude is set to shift the voltage up to −45
[mV], qc = Cm(−45 − Vc). The amplitude should be large
enough that the neuron always generates a spike. In all simu-
lations, the neuron was stimulated by the pulse after it

achieves the steady state. The second input is an in vivo-like
current modeled by the Ornstein − Uhlenbeck process
(Tuckwell 1988; Kobayashi et al. 2011),

dI ex
dt

¼ −
I ex−μ
τ syn

þ
ffiffiffiffiffiffiffiffi
2σ2

τ syn

s
η tð Þ; ð8Þ

where, μ and σ are the mean and standard deviation (SD) of
the input, τsyn = 2 [ms] is the synaptic time constant, and η(t) is
the Gaussian white noise with zero mean and unit variance.

2.3 Calculation of the spike threshold

We evaluated the instantaneous spike threshold of the detailed
conductance-based model (Eqs. (1), (2), and (3)). To evaluate
the spike threshold at time t0, i.e., θV(t0), we stimulate the
model neuron with an impulse, Iex(t) = qδ(t − t0), and observe
whether the model neuron generate a spike or not. The spike
threshold is defined as θV(t0) = V(t0 − 0) + qmin, where V(t0 −
0) is the voltage immediately before the pulse injection and
qmin is the minimal pulse amplitude for generating a spike
(Fig. 1).

The minimal amplitude qmin can be calculated using the
bisection method (Press et al. 2007). Initially, a voltage inter-
val [a, b] is selected such that a (b) is lower (higher) than the
spike threshold. The initial interval was set as [−80, 0]. Next,
we check whether the midpoint c = (a + b)/2 is larger than the
spike threshold by observing the voltage for 50 [ms]. If the
neuron emits a spike after the voltage shift, c is higher than the
threshold and the subinterval [a, c] is selected. Otherwise the
subinterval [c, b] is selected. This procedure is repeated
until the interval is sufficiently small (less than 10− 4).

Table 1 Parameters of a detailed conductance-based model

Channel x Gating variables w αw [/ms] βw [/ms] gx [mS/cm2] Ex [mV]

Na m −0:32 Vþ45ð Þ
e− Vþ45ð Þ=4−1

0:28 Vþ18ð Þ
e Vþ18ð Þ=5−1

50.0 50.0

h 0.128e− (V + 41)/18
4

1þe− Vþ18ð Þ=5
− −

K n −0:032 Vþ43ð Þ
e− Vþ43ð Þ=5−1

0.5e− (V + 48)/40 5.0 −90.0

M p
p∞ Vð Þ
τ∞ Vð Þ

1−p∞ Vð Þ
τ∞ Vð Þ

0.1 −90.0

Ca q −0:055 Vþ27ð Þ
e− Vþ27ð Þ=3:8−1

0.94e− (V + 75)/17 0.001 120

r 0.000457e− (V + 13)/50
0:0065

1þe− Vþ15ð Þ=28
− −

AHP s 0.01[Ca2 +] 0.02 0.2 −90.0

The ion channel x, the gating variable w, the activation and inactivation functions αw and βw, the maximal conductance gx, and the reversal potential Ex
are summarized. αp and βp are given by the equilibrium value p∞ and the time constant τp(V),
p∞ Vð Þ ¼ 1:0

1þe−
Vþ35
10

; τp Vð Þ ¼ τmax= 3:3e Vþ35ð Þ=20 þ e− Vþ35ð Þ=20� �
The other parameters are Cm= 1.0 [μF/cm2 ], gL= 0.1 [mS/cm

2 ], τmax = 1.0 [s] and EL=− 80 [mV], unless otherwise stated
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2.4 Reduction of a conductance-based neuron model

We have developed a reduction procedure from a detailed
conductance-based model (Koch 1999; Izhikevich 2007) to
an adaptive threshold model. We start from a conductance-
based neuron model described by

Cm
dV

dt
¼ −

X
ion
I ion V ; w!

	 

þ I ex tð Þ; ð9Þ

where Iion is an ionic current and w!¼ w1; ⋯; wdð Þ is a
vector of gating variables. Each gating variablewi is described
by the kinetic equation (2).

The reduction consists of two approximations. First, we
assume that a spike threshold θV(t) is written as:

θV tð Þ ¼ θ∞V þ
X

ion; k:tk< t
hion t−tkð Þ; ð10Þ

where θV
∞ is the spike threshold at the resting state and

hion describes the threshold modulation after a spike by
an ionic current. If the voltage V(t) exceeds the

threshold θV(t), the neuron generates a spike. In addi-
tion, it is assumed that the previous spikes affect the
spike threshold linearly. The validity of the assumption
was tested by the comparison with the spike threshold
of the detailed neuron model (data not shown). The
effect of the spike waveform is incorporated into the
reset rule. If the voltage exceeds the threshold, we shift
the time and the voltage: t→ t + wsp and V→ V + δV,
where wsp is the spike width and δV is the voltage
change during a spike. Specifically, the spike width
wsp is approximately 2 ∼ 4 [ms] and the voltage change
δV is −20 ∼ −10 [mV].

Second, we assumed that the ionic currents Iion are given by
the sum of a spike-triggered ionic current ηion(t) and a leak
current in the subthreshold regime (V < θV):

I ion V ;w
	 


≈
X

k:tk< t
ηion t−tkð Þ þ gion V−Eionð Þ; ð11Þ

where gion, Eion are the average conductance and the reversal
potential of an ionic current, respectively. By substituting Eq.
(11) into (9), we obtain

Cm
dV

dt
¼ −gtot V−Etotð Þ−

X
ion; k

ηion t−tkð Þ þ I ex tð Þ; ð12Þ

where gtot ¼ ∑iongion is the total conductance and Etot ¼
∑iongionEion=gtot is the effective reversal potential. The formal
solution of Eq. (12) can be written as,

V tð Þ ¼ Etot−C−1
m

X
ion; k

Z t−tk

0
ηion t−tk−sð Þe− s

τm ds

þ C−1
m

Z t

0
I ex t−sð Þe− s

τm ds;
ð13Þ

where τm =Cm/gtot is the effective membrane time constant.
The Eq. (13) is a special case of the Spike Response Model
(SRM) (Kistler et al. 1997; Gerstner and Kistler 2002; Jolivet
et al. 2004). Here, the SRM is used to interpret the effect of the
ionic currents on spike generation in the conductance-based
model.

Let us consider a new variable u that follows a linear equa-
tion without resetting after a spike,

du

dt
¼ −

u

τm
þ I ex

Cm
; ð14Þ

As the solution of Eq. (14) is u ¼ C−1
m ∫t0I ex t−sð Þe−s=τmds,

the relationship between the new variable and the voltage is

u ¼ V−Etot þ C−1
m

X
ion; k

Z t−tk

0
ηion t−tk−sð Þe− s

τm ds−
X

k
δVe−

t−tk−wsp
τm ;

ð15Þ
where the last term represents the voltage change during a
spike. The spike threshold for u can be written as

Vo
lta

ge

 t time

 V(t)

θ (t)
 V

In
pu

t c
ur

re
nt

 t time

Fig. 1 Calculation of spike threshold of a model neuron. The spike
threshold θV(t) is defined as the minimal voltage for generating an
action potential (Top). The minimal voltage is obtained by applying an
impulse to the neuron (Bottom)
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θu tð Þ ¼ θ∞u þ
X

k
H t−tkð Þ; ð16Þ

where θu
∞ = θV

∞ − Etot and

H tð Þ ¼ −δVe−
t−wsp
τm þ C−1

m

X
ion

Z t

0
ηion t−sð Þe− s

τm dsþ
X

ion
hion tð Þ:

ð17Þ

The effective threshold kernel H(t) is given by the voltage
change during a spike, the spike-triggered ionic currents, and
the spike threshold variation after a spike.

It should be noted that only the spike-triggered components
of the ionic currents are considered in our framework.
However, some of these currents, in particular IM, can be ac-
tivated at voltages lower than the spike threshold (Prescott and
Sejnowski 2008). Thus, the accuracy of the approximation
may deteriorate if the voltage fluctuations are large.

2.5 Evaluation of the reduced model

We evaluated the reduced model by predicting the spike
train of the detailed model neuron. The predictive per-
formance was evaluated by injecting six fluctuating cur-
rents generated by the Ornstein −Uhlenbeck processes
(Eq. (8)). The two types of input currents, i.e., the mod-
erately noisy (σ = μ) input and the highly noisy (σ = 2μ)
input, were examined. For each current type, three
values of the mean μ were chosen so that the neuron
generated spikes with 5, 10, and 20 [Hz]. The input
parameters were (μ, σ) = (1.98, 1.98), (2.45, 2.45),
(3.24, 3.24), (1.33, 2.66), (1.65, 3.30), and (2.22, 4.44)
for the neuron with IM and (μ, σ) = (1.84, 1.84), (2.15,
2.15), (2.75, 2.75), (1.28, 2.56), (1.58, 3.16), and (2.10,
4.20) for the neuron with IAHP. Two input–output data
sets {I(t), V(t)} were obtained by injecting two indepen-
dent fluctuating currents for 50 [s], which were charac-
terized by the same parameters (μ, σ, τs), into the de-
tailed model.

The performance was evaluated based on the coincidence
factor Γ (Kistler et al. 1997; Jolivet et al. 2004) defined by

Γ ¼ Nc− Nch i
Nd þ Nm

⋅
2

1−2νΔ
; ð18Þ

where Nd and Nm are the number of spikes generated by
the detailed model and by the reduced model, Nc is the
number of coincidences with precision Δ between the
two spike trains, Nc = 2νNdΔ is the expected number of
coincidences using the Poisson process with the same
rate ν with which the reduced model generates spikes.
The coefficient Γ is 1 only if all the spikes coincided
within Δ. A homogeneous Poisson process with the
firing rate of the detailed model would yield Γ = 0,
which is the chance level. The precision Δ was set to

4 [ms] and the spike time of the detailed model is
defined as the time when the voltage crosses 0 [mV].

3 Results

3.1 Typical behavior of the detailed conductance-based
model

We first observed the behavior of a single-compartment
conductance-based model with INa, IKd, IM, ICa, and
IAHP (Section 2.1). A rectangular current was injected
into the three model neurons, i.e., the neuron with no
adaptation (gM = gAHP = 0 [mS/cm2]), the neuron with IM
(gM = 0.1, gAHP = 0 [mS/cm2]), and the neuron with
IAHP (gM = 0, gAHP = 0.2 [mS/cm2]).

The neuron with no adaption did not exhibit spike-
frequency adaptation, i.e., the firing rate does not decrease
during the stimulation (Fig. 2a). By contrast, the neuron with
IM or IAHP exhibited spike-frequency adaptation, i.e., the fir-
ing rate dropped after the onset of the stimulation (Fig. 2b, c).
The firing rate of the neuron with IAHP does not decrease
gradually, because the neuron has the s-gate for IAHP.
Consistent with previous studies (Benda and Herz 2003;
Prescott and Sejnowski 2008), the slow K+ currents induced
spike-frequency adaptation. Due to the complexity and the
nonlinearity of the detailed model, it is not clear how slow
K+ currents regulate spike generation of a neuron. Thus, we
investigated the effects of slow K+ currents by mapping the
detailed neuron model to a simplified model, and derived a
reduced model that clarifies how slow K+ currents modulate
the effective spike threshold.

3.2 Spike triggered ionic current: ηion(t)

A constant current with a pulse (Eq. (7)) was injected into the
neuron with IM and the neuron with IAHP, and the spike-
triggered ionic currents ηion(t) were calculated. Because Na

+,
K+, and Ca2+ currents vanish within a brief period immediate-
ly after the spike (typically 4 [ms] after the spike onset), we
focused on analyzing slow K+ currents, IM and IAHP (Fig. 3a,
b).

First, we examined the spike-triggered current induced by
IM, ηM(t). By replacing an action potential with a rectangular
pulse, similar to the approach of Destexhe (1997), the spike-
triggered current can be approximated by the exponential
function (Appendix A),

ηM tð Þ≈aMe
−t=τp v

	 

; ð19Þ

where τp vð Þ is the p-gate time constant and v is an aver-
age voltage after a spike. The formula (19) is in
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agreement with ηM(t) obtained from the detailed neuron
model for various values of IM parameters (gM, τmax)
and membrane depolarization Vc (Fig. 3c and data not
shown for τmax and Vc). There is a slight discrepancy in
ηM(t) between the detailed model and Eq. (19) for small

t, which may be due to the spike waveform. A more
accurate formula can be obtained by incorporating this
effect (Appendix A).

Second, we examined the spike-triggered current in-
duced by IAHP, ηAHP(t). By replacing the calcium current
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with an impulse, the spike-triggered current can be ap-
proximated by the sum of two exponentials (Appendix A).

ηAHP tð Þ≈aAHP e−t=τCa−e−t=~τ s
� �

; ð20Þ

where τCa is the Ca
2+ time constant, ~τ s ¼ β−1

s is an approxi-
mation of the s-gate time constant, and βs is the inactivation
rate of the s-gate. The formula (20) is also in agreement with
ηAHP(t) obtained from the detailed neuron model for various
values of IAHP parameters (gAHP, βs, and τCa) and the mem-
brane depolarization Vc (Fig. 3c and data not shown for βs, τCa
and Vc).

3.3 Spike threshold variation by an ionic current: hion(t)

A constant current with a pulse (Eq. (7)) was injected
into the detailed model neurons and the instantaneous
spike threshold was calculated (Section 2.3). Again,
three neurons were examined, i.e., the neuron with no
adaptation, the neuron with IM, and the neuron with
IAHP. Whereas the spike threshold decays rapidly after
a spike in the neuron with no adaptation, it decays
slowly in the neuron with IM or IAHP (Fig. 4b). We
can thus conclude that the threshold variation after a
spike is mainly caused by the slow K+ currents.

The spike threshold variation induced by IM was evaluated
by comparing the spike threshold in the neuron with IM to that
with no adaptation. The spike threshold variation is approxi-
mately proportional to the spike triggered current ηM(t)
(Appendix B),

hM tð Þ≈bMe
−t=τp v

	 

; ð21Þ

where the weight bM is proportional to aM in Eq. (19).
Equation (21) can accurately describe hM(t) for various
values of the IM parameters (gM, τmax) and of the mem-
brane depolarization Vc (Fig. 4c and data not shown for
τmax and Vc). Next, the spike threshold variation in-
duced by IAHP was evaluated by comparing the thresh-
old in the neuron with IAHP to that without IAHP. The
spike threshold variation is approximately proportional
to the spike triggered current ηAHP(t) (Appendix B),

hAHP tð Þ≈bAHP e−t=τCa−e−t=~τ s
� �

; ð22Þ

where the weight bAHP is proportional to aAHP in Eq.
(20). Equation (22) can accurately describe hAHP(t) for
various values of the IAHP parameters (gAHP, βs, and
τCa) and the membrane depolarization Vc (Fig. 4c and
data not shown for βs, τCa and Vc).
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3.4 Reduction of the detailed conductance-based neuron
model

The conductance-based neuron model can be reduced to an
adaptive threshold model (Section 2.4),

du

dt
¼ −

u

τm
þ I ex

Cm
; If u tð Þ > θu tð Þ→ Emit a spike at time t;

ð23Þ
where τm is the membrane time constant and θu is the spike
threshold for u (effective spike threshold) written as

θu tð Þ ¼ θ∞u þ
X

k
Hu t−tkð Þ; ð24Þ

tk is the k-th spike time, and Hu(t) is the effective threshold
kernel that describes how the effective spike threshold chang-
es after a spike.

We investigated the effect of the slow K+ current parame-
ters on the effective threshold kernel. The threshold kernel
Hu(t) of the neuron with IM can be described by the sum of
two exponentials,

Hu tð Þ≈α0e
−t=τm þ αMe

−t=τp v

	 

: ð25Þ

The threshold kernel is always a monotonically decreasing
function in the neuron with IM (Fig. 5a). We can derive a
formula that clarifies the relationship between the slowweight
αM and IM parameters (Appendix C),

αM∝gM v−EK

	 

δp=τmax; ð26Þ

where δp is the changes in the p-gate variable during a spike.
As predicted by Eq. (26), the slow weight αM increases as gM
increases, and decreases as τmax increases (Fig. 6a). Numerical
results indicate that IM parameters does not affect on the fast
weight α0 significantly (Fig. 6a).

The threshold kernel Hu(t) of the neuron with IAHP is de-
scribed by the sum of three exponentials,

Hu tð Þ≈α0e
−t=τm þ αAHP e−t=τCa−e−t=~τ s

� �
: ð27Þ

Interestingly, the threshold kernel can be a non-
monotonic function in the neuron with IAHP, and a
hump was observed in Hu(t) (Fig. 5b). We can also
derive a formula that clarifies the relation between the
slow weight αAHP and IAHP parameters (Appendix C),

αAHP∝gAHP v−EK

	 

δCa

τCa~τ s

τCa−~τ s
; ð28Þ

where δCa is the changes in Ca2+ concentration during
a spike. As predicted by Eq. (28), the slow weight αAHP

increases as gAHP increases, and decreases as βs or τCa
increases (Fig. 6b). Numerical results indicate that IAHP
parameters does not affect on the fast weight α0 signif-
icantly (Fig. 6b).
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3.5 Validation of the reduced model

We evaluated the reduced model (Eqs. (23), (24), (25), and
(27)) by predicting spike trains of the detailed neuron model
using the reduced model. Two sets of input–output data {I(t),
V(t)} (training data and test data) were generated by injecting
fluctuating currents (Eq. (8)) to the detailed neuron model for
50 [s]. The reduced model parameters
Cm; θ

∞
u ;α0; τm;αM; τp vð Þ;αAHP; τCa; ~τ s

� �
were tuned from

an input–output data set (training data). The membrane capac-
itance and IAHP time constants were adapted from the detailed
model, i.e., Cm = 1.0 [nF/cm2], τCa = 200 [ms], and
~τ s ¼ 50 ms½ �, and the membrane time constant was inferred
from the leak conductance τm = 10 [ms]. The p-gate time con-
stant was approximated by its average, τp vð Þ≈τp vð Þ, where v
is the average voltage. The threshold parameters {θu

∞, α0, αM}

for the neuron with IM and {θu
∞, α0, αAHP} for the neuron

with IAHP, were determined by maximizing the coincidence
factor Γ (Section 2.5) using the simplex downhill method
(Kobayashi et al. 2009). Then, the predictive performance
was evaluated by calculating the coincidence factor from
the other data set (test data) that was not used for parameter
optimization. We found that the reduced model can accurate-
ly predict spike trains of the detailed model (Fig. 7). The
predictive performance Γ for the input currents was 0.854 ±
0.01 (means ± standard errors, unless stated otherwise) for the
neuron with IM, and 0.903 ± 0.01 for the neuron with IAHP,
and the results are summarized in Table 2. The threshold
parameters were θu

∞ = 30.7 [mV], α0 = 35.5 [mV], and
αM= 4.1 [mV] for the neuron with IM and θu

∞ = 30.7 [mV],
α0 = 32.9 [mV], and αAHP = 2.1 [mV] for the neuron with
IAHP.
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3.6 Coding property of the reduced model

We analyzed the impact of slow K+ currents on the coding
property of a neuron using the reduced model. Here, we fo-
cused on the effect of the input noise on firing irregularity. First,
we considered that the reduced model neuron (Eqs. (23) and
(24)) is stimulated by a constant current, Iex(t) = I0. An asymp-
totic periodic solution with period T is written as

u tð Þ ¼ I0τm ; θu tð Þ ¼ θ∞u þ η∞T t−t f
� �

: ð29Þ

where tf is the most recent spike time, and ηT
∞(t) describes the

threshold variation between the spikes; ηT
∞(t) for the neuron

with IM is

η∞T tð Þ ¼ α0
e−t=τm

1−e−T=τm
þ αM

e
−t=τp v

	 


1−e
−T=τp v

	 
 ; ð30Þ

and ηT
∞(t) for the neuron with IAHP is

η∞T tð Þ ¼ α0
e−t=τm

1−e−T=τm
þ αAHP

e−t=τCa

1−e−T=τCa
−

e−t=~τ s

1−e−T=~τ s

0
@

1
A : ð31Þ

The spike condition at the next spike, t = tf + T, leads to

θu t f þ T
� � ¼ θ∞u þ η∞T Tð Þ ¼ I0τm: ð32Þ

We can analytically evaluate the firing rate f = T− 1 by
solving Eq. (32), and the analytical results are in agree-
ment with f-I curves calculated from simulated spike
trains (Fig. 8a). The f-I curve of the neuron without
adaptation (gM = gAHP = 0) can be explicitly written as

f ¼ τ−1m log−1 1þ α0

I0τm−θ∞u

� �
; ð33Þ

which is similar to the f-I curve of the LIF neuron. Note that
the response of the reduced model with IM to the constant
current (Eqs. (29) and (30)) is equivalent to the response of
the time-dependent threshold model (Tuckwell 1978; Lindner
and Longtin 2005; Tamborrino 2016).

Next, we examined the effect of the input noise on
spiking irregularity. We have not been able to derive a
full analytical result for this effect; however, it is pos-
sible to predict the effect of the input noise with the
following argument. Let us consider a situation in which
a neuron is stimulated by the constant current before the
N-th spike (N ≫ 1) and stimulated by the constant cur-
rent with small noise after the N-th spike. We can eval-
uate how the input noise changes the timing of the
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Fig. 7 The reduced model can predict the spike timing of the detailed
model. Top: Voltage traces of the detailed neuron model with IM (left) and
that with IAHP (right). Bottom: Spike timing prediction by the reduced
model. The coincidence spikes within 4 [ms] were connected by dotted

lines and the predictive score Γwere 0.85 (left) and 0.87 (right). Blue and
red represent the potential u and threshold θu, respectively. The
parameters were gM=0.2 [mS/cm2], μ=2.45 [V/s], and σ=2.45 [mV/√ms]
(left) and gAHP=0.2 [mS/cm

2], μ=2.4 [V/s], and σ=2.4 [mV/√ms] (right)

Table 2 Accuracy of spike prediction using the reduced model

Current Firing rate [Hz] Γ (with IM) Γ (with IAHP)

M 5 0.823 0.884

M 10 0.805 0.916

M 20 0.854 0.907

H 5 0.886 0.919

H 10 0.894 0.901

H 20 0.862 0.892

The performance of spike prediction for the detailed neuron models using
the reduced model is summarized. Each neuron was injected with six
fluctuating input currents. Current BM^ denotes moderately noisy input
(σ=μ) and current BH^ denotes highly noisy input (σ= 2μ)
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subsequent spike. At the (N + 1)-th spike time, the
threshold should cross the potential

θu tN þ T þ δTð Þ ¼ I0τm þ δu; ð34Þ
where tN is the N-th spike time, δT and δu are pertur-
bations due to the small noise. By Taylor-expanding θu
assuming that δT is small, we obtain

δT≈δu=
dη∞T
dt

Tð Þ: ð35Þ

Equation (35) indicates that slow K+ currents improve the
robustness against noise in a different manner (Fig. 8b), i.e.,
IM suppresses the spike interval dispersion δT/T for a broad
firing range, whereas IAHP suppress the dispersion only at a
low firing range (~3 [Hz]). The dispersion δT/T is not identical

to the coefficient of variation (Cv) of interspike intervals
(ISIs), however it has a close relation to Cv. We found that
this differential effect was also observed in Cv of the detailed
model with slow K+ currents (Fig. 8c). Finally, we examined
how the slow K+ currents modulate autocorrelation of a spike
train that was defined as ρ1 = 〈ISIiISIi + 1 − 〈ISIi〉

2〉/〈ISIi
2 −

〈ISIi〉
2〉, where ISIi is the i-th ISI and 〈… 〉 is the averaging

over index i. The autocorrelation quantifies how often a long
ISI is followed by a short ISI and vice versa. The neuron
model with the slow K+ currents can reproduce the negative
ISI correlation, which was commonly observed in sensory
periphery and cortical neurons (Farkhooi et al. 2009). As
shown in Fig. 8d, the effect of IAHP on the autocorrelation is
stronger than that of IM in the low firing rate regime
(<15 [Hz]), whereas the effect of IAHP is similar to that of IM
in the high firing rate regime (>15 [Hz]). A previous work
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(Chacron et al. 2001) showed that the negative ISI correlation
can improve the capacity for encoding time-varying stimulus.
Our result implies that the slow K+ currents improve the
encoding of time-varying stimulus in a different way.

4 Discussion

We have shown that the detailed conductance-based neuron
model with slow K+ currents (IM and IAHP) can be reduced to
an adaptive threshold model. The reduced model is written as
du

dt
¼ −

u

τm
þ Iex

Cm
; If u tð Þ > θu tð Þ→ Emits a spike at time t;

θu tð Þ ¼ θ∞u þ
X

k
Hu t−tkð Þ;

Hu tð Þ ¼ α0e
−t=τm þ αMe

−t=τp v
	 


þ αAHP e−t=τCa−e−t=~τ s
	 


;

ð36Þ
where θu is the spike threshold for u, andHu(t) is the threshold
kernel. We have also derived formulae that describe the rela-
tionship between slow K+ current parameters and reduced
model parameters (Eqs. (26) and (28)), which provide a phys-
iological interpretation of the reduced model. The reduced
model can accurately predict spike trains of the detailed model
(Fig. 7). Our analysis of the reduced model revealed that slow
K+ currents have differential effects on noise tolerance of a
neuron, i.e., IM suppresses firing irregularity regardless of the
firing rate, whereas IAHP suppresses firing irregularity only at
a low firing range (Fig. 8b, c). The slow K+ currents induce
negative interspike interval correlations, and the effect of IAHP
is stronger than that of IM in the low firing regime (Fig. 8d).

4.1 Mapping a detailed conductance-based neuron model
to a simplified model

As noted in the Introduction, one approach of obtaining a
reduced model is to develop a mathematical framework from
detailed neuron models to simplified models. This approach
has clarified the relationship between these models. For ex-
ample, the FitzHugh–Nagumo model was derived from the
Hodgkin–Huxley model by assuming that Na+ activation
(m) is instantaneous and that Na+ inactivation (h) and K+

activation (n) change with a similar time constant (Abbott
and Kepler 1990; Rinzel and Ermentrout 1998). A generalized
integrate-and-fire model can also be derived from the
Hodgkin–Huxley model by linearization (Destexhe 1997;
Koch 1999; Richardson et al. 2003).

In this study, we have extended the linearization approach
by including the spike history effect, which is essential for
describing the effect of slow K+ currents on spike generation.
The linearized model is a simple linear equation with the ef-
fective threshold θu(t) (Eq. (36)) that incorporates the effect of

ionic currents and spike threshold variation on neuronal excit-
ability. We have shown that the effective threshold obtained
from the detailed model with slow K+ current can be approx-
imated by a modified multi-timescale adaptive threshold
(MAT) model (Kobayashi et al. 2009).

4.2 Reduced neuron model

Spike-frequency adaptation can be described by simpli-
fied models with adaptation, which is modeled by adap-
tive current (Liu and Wang 2001; Brette and Gerstner
2005; Izhikevich 2007) or adaptive threshold (Chacron
et al. 2000, 2007; Liu and Wang 2001; Jolivet et al.
2004, 2006, 2008). The adaptive threshold models can
reproduce the interspike interval statistics (Chacron
et al. 2000), f-I curve (Rauch et al. 2003; Kobayashi
2009), and spike timings (Jolivet et al. 2006, 2008) of
a neuron recorded in experiments. On the other hand,
the adaptive threshold model was criticized because, un-
like the adaptive current model, it cannot reproduce the
lateral shift of f-I curves observed in experiments
(Benda et al. 2010). Note that the derived MAT model
(Eq. (36)) incorporates both effects, i.e., the effect of
the adaptive current and threshold. This fact can explain
the success of the MAT model in accurately predicting
spike times (Kobayashi et al. 2009; Yamauchi et al.
2011).

The derived model has two advantages. First, the model is
essentially linear; the linearity makes mathematical analysis
tractable. Indeed, it is possible to examine the effect of noise
on firing irregularity, which can predict a qualitative behavior
of the detailed model (Fig. 8). In addition, the linearity enables
us to efficiently simulate a network of neurons by the exact
sub-threshold integration (Morrison et al. 2007; Yamauchi
et al. 2011). Second, the reduced model offers a clear relation-
ship between the slow K+ parameters and reduced model pa-
rameters (Eqs. (26) and (28)). This relationship is important
because it enables us to analyze the effect of slow K+ currents
using the reduced model.

4.3 Spike threshold variation in experiments

Conventionally, it was considered that a neuron has a
fixed voltage threshold for generating an action poten-
tial. However, experimental studies in vivo have sug-
gested that the spike threshold is not constant but is
highly variable (Azouz and Gray 2000; Henze and
Buzsaki 2001; Chacron et al. 2007). Studies in the ro-
dent hippocampus (Henze and Buzsaki 2001) and fish
(Chacron et al. 2007) have demonstrated that the spike
threshold increases after each action potential, which is
referred to as Bthreshold fatigue.^ We found that the
spike threshold of the detailed neuron model jumps
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and decays exponentially after each spike with a time
constant of ~100 [ms] (Fig. 4), suggesting that slow K+

currents may be the possible cellular mechanism under-
lying threshold fatigue. Other biophysical mechanisms,
particularly Na+ currents, may underlie the threshold
variability. The spike threshold also varies with the volt-
age derivative preceding a spike (Azouz and Gray
2000). Interestingly, it was shown that Na+ inactivation
modulates the spike threshold, which varies with the
membrane voltage with a small time constant (τh(v) ≈
2 ~ 10 [ms]) (Platkiewicz and Brette 2010; Fontaine et
al. 2014) and Na+ inactivation can explain the voltage-
dependence of the spike threshold observed in experi-
ments (Platkiewicz and Brette 2011). The modulation of
the spike threshold differs depending on its factor, in
other words, the threshold modulation by slow K+ cur-
rents is slow and accumulative, whereas that by Na+

inactivation is rapid.
The instantaneous spike threshold of layer-5 pyramidal

neurons has been estimated from the membrane potential re-
corded in vitro (Badel et al. 2008). The results suggest that the
threshold modulation after a spike is described by the sum of

two exponentials, θV tð Þ≈θ∞V þ A1e
− t−t fð Þ=τ1 þ A2e

− t−t fð Þ=τ2 ,
where θV(t) is the spike threshold and tf is the most recent spike
time. The fast components were A1 ≈ 10 [mV] and τ1 ≈ 20
[ms], whereas the slow components were A2 ≈ 1 [mV] and
τ2 ≈ 100 [ms]. The detailed model used here reproduces the
slow component in the threshold modulation; however, it does
not reproduce the fast component. This is presumably due to
the difference in Na+ current kinetics that describes the shape
of an action potential. Indeed, it was reported that the spike
waveform recorded from experiments is much shaper than
that of Hodgkin–Huxley models (Badel et al. 2008).

4.4 Functional implications of the slow K+ currents

It is well known that slow K+ currents induce the spike-
frequency adaptation, which acts as a spike-triggered
self-inhibition (Fig. 2; Benda and Herz 2003; Prescott
and Sejnowski 2008). Several studies have proposed
functional consequences of spike-frequency adaptation.
For instance, the adaptation generates the Bforward
masking^ effect, which suppresses the neuronal response
under a prolonged stimulus (Liu and Wang 2001), im-
prove signal transmission for low frequency stimulus
(Chacron et al. 2007), and contributes to sparse and
reliable coding (Farkhooi et al. 2013). Here, we have
derived a simplified model that can reproduce the dif-
ferential effects of slow K+ currents. The reduced model
can accurately predict spike trains of the detailed neuron
model (Fig. 7) and reproduce the f-I curve and spike
train power spectrum (Data not shown).

Previous studies have suggested that slow K+ currents
have differential effects on the coding property of a
single neuron. For instance, IM facilitates spike-timing
coding because it improves the robustness of spike pat-
tern against the input noise. In contrast, IAHP enhances
spike-rate coding, because it regularizes the spike train
elicited by slow inputs (Prescott and Sejnowski 2008).
It has also been suggested that IM increases, whereas
IAHP decreases, the response to low-frequency input sig-
nals (Deemyad et al. 2012). Our analysis revealed a
new differential effect underlying slow K+ currents
(Fig. 8b, c), i.e., IM suppresses firing irregularity regard-
less of the firing rate, whereas IAHP suppresses the ir-
regularity only at a low firing range (~3 [Hz]). This
result suggests that neurons with IAHP can contribute
to the generation of rhythmical activity at a low firing
rate. We hope that the reduced model will be useful for
analyzing how the slow K+ currents impact on the cod-
ing properties of single neurons and neural populations.
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Appendix A: Approximate formulae for spike
triggered ionic currents: ηM, ηAHP We derive approximate
formulae for the spike-triggered current induced by slow K+ currents. For
simplicity, we consider a situation in which the neuron generates a spike
at t = 0 [ms], and the input current is constant.

A.1. M current We replace a spike with a rectangular pulse with a
peak voltage v1 and a width wsp (Destexhe 1997). The differential equa-
tion for the p (Table 1) can be simplified to

d~p

dt
¼

−
~p−p∞ v1ð Þ
τp v1ð Þ Spike : 0 < t < wsp

� �

−
~p−p∞ v

	 

τp v
	 
 Otherwise : wsp < t

� �
;

8>>>>><
>>>>>:

ð37Þ

where ~p is an approximation of p and v is an equilibrium
voltage after a spike. The solution of Eq. (37) is

~p tð Þ ¼
p∞ v1ð Þ þ ~p 0ð Þ−p∞ v1ð Þ

	 

e−t=τp v1ð Þ 0 < t < wsp

� �
p∞ v

	 

þ ~p wsp

� �
−p∞ v

	 
	 

e
− t−wspð Þ=τp v

	 

wsp < t
� �

:

8><
>:

ð38Þ
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Based on Eq. (38), the equilibrium conductance is given by gM
¼ gM p∞ vð Þ: The spike-triggered current after the spike is
written as

ηM tð Þ≈gM ~p tð Þ−p∞ v
	 
	 


v tð Þ−EKð Þ; ð39Þ

where v(t) is the membrane voltage. By substituting Eq. (38)
into (39), we obtain

ηM tð Þ≈aMe
−t=τp v

	 

; ð40Þ

where aM ¼ gM v−EKð Þ ~p wsp

� �
−p∞ vð Þ� �

ewsp=τp vð Þ. A more
accurate formula can be obtained by incorporating the spike
waveform. Voltage after a spike can be approximated by an
exponential function v tð Þ≈δve−t=τm þ v,

ηM tð Þ≈a1Me−t=τm þ a2Me
−t=τp v

	 

; ð41Þ

where τm is the membrane time constant and

a1M ¼ gMδv ~p wsp

� �
−~p∞ �vð Þ

	 

ewsp=τp �vð Þ; a2M ¼ aM:

We assumed that the membrane time constant is much smaller than the
time constants of p-gate: τm≪τp vð Þ. Equation (41) is more accurate
than Eq. (40) in the short period (t < 30 [ms]) after a spike. In
this study, we adopted the simpler formula (40) for simplicity.

A.2. AHP current Because the Ca2+ current is fast (Fig. 3a) com-
pared to the time constant of Ca2+ outflux (: τCa ≈ 200 [ms]), we can
approximate the calcium current with a short pulse, ICa ≈ qCaδ(t). The
Ca2+ concentration after a spike at time t is

Ca2þ
� �

≈δCa e−t=τCa þ Ca2þ
� �

∞; ð42Þ

where δCa = − 5.0 × 104 × qCa/F represents Ca
2+ influx during

a spike. Because the Ca2+ concentration is very small, s-gate
time constant can be approximated as
τ s ¼ αs þ βsð Þ−1≈β−1

s ¼: ~τ s. Hence, we obtain

d~s

dt
¼ −~s=~τ s þ 0:01 Ca2þ

� �
tð Þ; ð43Þ

where ~s is an approximation of the s-gate variable s. By
substituting Eq. (42) into (43), we can solve the differential
equation analytically as,

~s tð Þ ¼ as e−t=τCa−e−t=~τ s
� �

þ s∞; ð44Þ

where as ¼ 0:01τCa~τ s
τCa−~τ s δCa, s∞ ¼ 0:01 Ca2þ

� �
∞~τ s. As with the

case of IM, the equilibrium conductance is given by
gAHP ¼ gAHPs∞. The spike-triggered current is

ηAHP tð Þ≈gAHP ~s tð Þ−s∞
	 


v tð Þ−EKð Þ; ð45Þ

By substituting Eq. (44) into (45) and replacing the voltage with its
equilibrium value v, we obtain

ηAHP tð Þ≈aAHP e−t=τCa−e−t=~τ s
� �

; ð46Þ

where aAHP ¼ gAHP v−EKð Þas:

Appendix B: Approximate formula for spike
threshold: hM(t), hAHP(t) We derive an approximate formula
that describes how the slow K+ currents modulates spike threshold. Close
to spike threshold, the membrane voltage of a neuron can be described by
the exponential integrate and fire model (Fourcaud-Trocmé et al. 2003;
Platkiewicz and Brette 2010),

Cm
dV

dt
¼ F Vð Þ ¼ −gtot V−Etotð Þ þ gtotΔTe

V−VTð Þ=ΔT−I adp tð Þ;
ð47Þ

where I adp tð Þ ¼ ∑k: tk< tηion t−tkð Þ is the spike-triggered cur-
rent induced by the slow K+ currents. The spike threshold θV
defined by a critical voltage above which the neuron emits a
spike, F(θV) = 0, is given by

θV≈VT þΔT log
VT−Etot þ RI adp

ΔT

� �
; ð48Þ

where R = gtot
− 1 is the membrane resistance. If RIadp is small

compared to VT − Etot, Eq. (48) can be simplified further,

θV≈VT þΔT log
VT−Etot

ΔT

� �
þ RΔT

VT−Etot
I adp: ð49Þ

The variation of spike threshold by an ionic current can be given by

hion≈
RΔT

VT−Etot
ηion: ð50Þ

We can see from Eq. (50) that the threshold variation hion is approx-
imately proportional to the spike-triggered current ηion.

Appendix C: Relating the reducedmodel to theMAT
model By substituting Eqs. (19) − (22) into (17), the effective spike
threshold modulated by a spike can be written as

H tð Þ ¼ −δVe− t−wspð Þ=τm þ aM
Cm

f De τp v
	 


; τm
	 


þ aAHP
Cm

f De τCa; τmð Þ− f De ~τ s; τm
	 
n o

þ bMe
−t=τp v

	 

þ bAHP e−t=τCa−e−t=~τ s

� �
;

ð51Þ

where f De τ1; τ2ð Þ :¼ e−t=τ1−e−t=τ2
� �

= τ−12 −τ−11
� �

and the time
constants are given in Eqs. (19) and (20). If we assume that the
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membrane time constant is much smaller than the slow K+

time constants: τm≪τp vð Þ; τCa; ~τ s, the formula can be sim-
plified further,

H tð Þ≈α0e
−t=τm þ αMe

−t=τp v

	 

þ αAHP e−t=τCa−e−t=~τ s

� �
; ð52Þ

where the weights are α0 ¼ −δVewsp=τm−aM=gtot, αM = aM/
gtot + bM, αAHP = aAHP/gtot + bAHP. The slow weights can be
related to the slow K+ parameters by using Eqs. (40), (46),
(50),

αM∝aM∝ gM v−EK

	 

δp; αAHP∝aAHP∝ gAHP v−EK

	 

δCa ;

ð53Þ

where δp :¼ ~p wsp

� �
−p∞ vð Þ and δCa are the changes in p and

[Ca2+] during a spike.
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References

Abbott, L., & Kepler, T. (1990). Model neurons: from Hodgkin −Huxley
to Hopfield. In L. Garrido (Ed.), Statistical Mechanics of Neural
Networks. Berlin: Springer.

Adams, P. R., Brown, D. A., & Constanti, A. (1982). Pharmacological
inhibition of the M-current. The Journal of Physiology, 332, 223–
262.

Azouz, R., & Gray, C. M. (2000). Dynamic spike threshold reveals a
mechanism for synaptic coincidence detection in cortical neurons
in vivo. Proceedings of the National Academy of Sciences of the
United States of America, 97, 8110–8115.

Badel, L., Lefort, S., Brette, R., Petersen, C. C., Gerstner, W., &
Richardson, M. J. (2008). Dynamic IV curves are reliable predictors
of naturalistic pyramidal-neuron voltage traces. Journal of
Neurophysiology, 99, 656–666.

Benda, J., & Herz, A. V. M. (2003). A universal model for spike-
frequency adaptation. Neural Computation, 15, 2523–2564.

Benda, J., Maler, L., & Longtin, A. (2010). Linear versus nonlinear signal
transmission in neuron models with adaptation currents or dynamic
thresholds. Journal of Neurophysiology, 104, 2806–2820.

Brette, R., &Gerstner,W. (2005). Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity. Journal of
Neurophysiology, 94, 3637–3642.

Brown, D. A., & Adams, P. R. (1980). Muscarinic suppression of a novel
voltage-sensitive K+ current in a vertebrate neurone. Nature, 283,
673–676.

Brown, D. A., & Griffith, W. H. (1983). Calcium-activated outward cur-
rent in voltage-clamped hippocampal neurones of the guinea-pig.
The Journal of Physiology, 337, 287–301.

Chacron, M. J., Longtin, A., St-Hilaire, M., & Maler, L. (2000).
Suprathreshold stochastic firing dynamics with memory in P-type
electroreceptors. Physical Review Letters, 85, 1576–1579.

Chacron, M. J., Longtin, A., & Maler, L. (2001). Negative interspike
interval correlations increase the neuronal capacity for encoding
time-dependent stimuli. Journal of Neuroscience, 21, 5328–5343.

Chacron, M. J., Lindner, B., & Longtin, A. (2007). Threshold fatigue and
information transfer. Journal of Computational Neuroscience, 23,
301–311.

Deemyad, T., Kroeger, J., & Chacron, M. J. (2012). Sub- and
suprathreshold adaptation currents have opposite effects on frequen-
cy tuning. The Journal of Physiology, 590, 4839–4858.

Destexhe, A. (1997). Conductance-based integrate-and-fire models.
Neural Computation, 9, 503–514.

Ermentrout, B., & Kopell, N. (1986). Parabolic bursting in an excitable
system coupled with a slow oscillation. SIAM Journal on Applied
Mathematics, 46, 233–253.

Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike
frequency adaptation and negative feedback on the synchronization
of neural oscillators. Neural Computation, 13, 1285–1310.

Farkhooi, F., Strube-Bloss, M. F., & Nawrot, M. P. (2009). Serial corre-
lation in neural spike trains: experimental evidence, stochastic
modeling, and single neuron variability. Physical Review E, 79,
021905.

Farkhooi, F., Froese, A., Muller, E., Menzel, R., & Nawrot, M. P. (2013).
Cellular adaptation facilitates sparse and reliable coding in sensory
pathways. PLoS Computational Biology, 9, e1003251.

Fleidervish, I. A., Friedman, A., & Gutnick, M. J. (1996). Slow inactiva-
tion of Na+ current and slow cumulative spike adaptation in mouse
and guinea-pig neocortical neurones in slices. The Journal of
Physiology, 4931, 83–97.

Fontaine, B., Pena, J. L., & Brette, R. (2014). Spike-Threshold
Adaptation Predicted by Membrane Potential Dynamics. PLoS
Computational Biology, 10, e1003560.

Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C., & Brunel, N.
(2003). How spike generation mechanisms determine the neuronal
response to fluctuating inputs. Journal of Neuroscience, 23, 11628–
11640.

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single
neurons, populations, plasticity. Cambridge: Cambridge University
Press.

Henze, D. A., & Buzsaki, G. (2001). Action potential threshold of hip-
pocampal pyramidal cells in vivo is increased by recent spiking
activity. Neuroscience, 105, 121–130.

Izhikevich, E. M. (2007). Dynamical systems in neuroscience: the geom-
etry of excitability and bursting. Cambridge: MIT Press.

Jolivet, R., Lewis, T. J., & Gerstner, W. (2004). Generalized integrate-
and-fire models of neuronal activity approximate spike trains of a
detailed model to a high degree of accuracy. Journal of
Neurophysiology, 92, 959–976.

Jolivet, R., Rauch, A., Lüscher, H.-R., & Gerstner, W. (2006). Predicting
spike timing of neocortical pyramidal neu- rons by simple threshold
models. Journal of Computational Neuroscience, 21, 35–49.

Jolivet, R., Kobayashi, R., Rauch, A., Naud, R., Shinomoto, S., &
Gerstner, W. (2008). A benchmark test for a quantitative assessment
of simple neuron models. Journal of Neuroscience Methods, 169,
417–424.

Kim, K. J., & Rieke, F. (2003). Slow Na+ inactivation and variance
adaptation in salamander retinal ganglion cells. Journal of
Neuroscience, 23, 1506–1516.

Kistler, W., Gerstner, W., & van Hemmen, J. L. (1997). Reduction of the
Hodgkin-Huxley equations to a single-variable threshold model.
Neural Computation, 9, 1015–1045.

Kobayashi, R. (2009) The influence of firing mechanisms on gain mod-
ulation. Journal of Statistical Mechanics P01017.

J Comput Neurosci (2016) 40:347–362 361



Kobayashi, R., & Shinomoto, S. (2007). State space method for
predicting the spike times of a neuron. Physical Review E, 75,
011925.

Kobayashi, R., Tsubo, Y., & Shinomoto, S. (2009). Made-to-order spik-
ing neuron model equipped with a multi-timescale adaptive thresh-
old. Frontiers in Computational Neuroscience, 3, 9.

Kobayashi, R., Shinomoto, S., & Lansky, P. (2011). Estimation of time-
dependent input from neuronal membrane potential. Neural
Computation, 23, 3070–3093.

Koch, C. (1999). Biophysics of computation. Oxford: Oxford University
Press.

Lindner, B., & Longtin, A. (2005). Effect of an exponentially decaying
threshold on the firing statistics of a stochastic integrate-and-fire
neuron. Journal of Theoretical Biology, 232, 505–521.

Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a gen-
eralized leaky integrate-and-fire model neuron. Journal of
Computational Neuroscience, 10, 25–45.

Madison, D. V., & Nicoll, R. A. (1984). Control of the repetitive dis-
charge of rat CA1 pyramidal neurones in vitro. The Journal of
Physiology, 354, 319–331.

Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure
on firing pattern in model neocortical neurons. Nature, 382, 363–
366.

Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact
subthreshold integration with continuous spike times in discrete-
time neural network simulations. Neural Computation, 19, 47–79.

Platkiewicz, J., & Brette, R. (2010). A threshold equation for action
potential initiation. PLoS Computational Biology, 6, e1000850.

Platkiewicz, J., & Brette, R. (2011). Impact of fast sodium channel inac-
tivation on spike threshold dynamics and synaptic integration. PLoS
Computational Biology, 7, e1001129.

Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal,
T., Fregnac, Y., Markram, H., & Destexhe, A. (2008). Minimal

Hodgkin −Huxley type models for different classes of cortical and
thalamic neurons. Biological Cybernetics, 99, 427–441.

Prescott, S. A., & Sejnowski, T. J. (2008). Spike-rate coding and spike-
time coding are affected oppositely by different adaptation mecha-
nisms. Journal of Neuroscience, 28, 13649–13661.

Press, W. H., Teukolsky, S. A., Vetterling,W. T., & Flannery, B. P. (2007).
Numerical recipes: The art of scientific computing (3rd ed.).
Cambridge: Cambridge University Press.

Rauch, A., La Camera, G., Lüscher, H.-R., Senn, W., & Fusi, S. (2003).
Neocortical pyramidal cells respond as integrate-and-fire neurons to
in-vivo-like input currents. J Neurophysiol, 90, 1598–1612.

Richardson, M. J., Brunel, N., & Hakim, V. (2003). From subthreshold to
firing-rate resonance. Journal of Neurophysiology, 89, 2538–2554.

Rinzel, J., Ermentrout, G. B. (1998) In C. Koch, I. Segev (eds.)Methods
in neuronal modeling 2nd Edition (pp. 251–291). Cambridge: MIT.

Schwindt, P. C., Spain, W. J., & Crill, W. E. (1989). Long-lasting reduc-
tion of excitability by a sodium-dependent potassium current in cat
neocortical neurons. Journal of Neurophysiology, 61, 233–244.

Tamborrino, M. (2016). Approximation of the first passage time density
of a Brownian motion to an exponentially decaying threshold by
two-piecewise linear threshold. Application to neuronal spiking ac-
tivity. Mathematical Biosciences and Engineering, 13, 613–629.

Tsubo, Y., Kaneko, T., & Shinomoto, S. (2004). Predicting spike timings
of current-injected neurons. Neural Networks, 17, 165–173.

Tuckwell, H. C. (1978). Recurrent inhibition and afterhyperpolarization:
effects on neuronal discharge. Biological Cybernetics, 30, 115–123.

Tuckwell, H. C. (1988). Introduction to Theoretical Neurobiology, vol. 2:
Nonlinear and stochastic theories. Cambridge: Cambridge Univ.
Press.

Yamauchi, S., Kim, H., & Shinomoto, S. (2011). Elemental spiking
neuron model for reproducing diverse firing patterns and
predicting precise firing times. Frontiers in Computational
Neuroscience, 5, 42.

362 J Comput Neurosci (2016) 40:347–362


	Impact of slow K+ currents on spike generation can be described by an adaptive threshold model
	Abstract
	Introduction
	Materials and methods
	Single neuron models
	Conductance-based model
	Adaptive threshold models

	Input currents
	Calculation of the spike threshold
	Reduction of a conductance-based neuron model
	Evaluation of the reduced model

	Results
	Typical behavior of the detailed conductance-based model
	Spike triggered ionic current: ηion(t)
	Spike threshold variation by an ionic current: hion(t)
	Reduction of the detailed conductance-based neuron model
	Validation of the reduced model
	Coding property of the reduced model

	Discussion
	Mapping a detailed conductance-based neuron model to a simplified model
	Reduced neuron model
	Spike threshold variation in experiments
	Functional implications of the slow K+ currents

	Appendix A: Approximate formulae for spike triggered ionic currents: ηM, ηAHP
	A.1. M current
	A.2. AHP current

	Appendix B: Approximate formula for spike threshold: hM(t), hAHP(t)
	Appendix C: Relating the reduced model to the MAT model
	References


