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Cardiovascular protection by SGLT2 inhibitors e
Do anti-inflammatory mechanisms play a role?
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ABSTRACT

Background: Metabolic syndrome and related metabolic disturbances represent a state of low-grade inflammation, which accelerates insulin
resistance, type 2 diabetes (T2D) and cardiovascular disease (CVD) progression. Among antidiabetic medications, sodium glucose co-transporter
(SGLT) 2 inhibitors are the only agents which showed remarkable reductions in heart failure (HF) hospitalizations and major cardiovascular
endpoints (MACE) as well as renal endpoints regardless of diabetes status in large randomized clinical outcome trials (RCTs). Although the exact
mechanisms underlying these benefits are yet to be established, growing evidence suggests that modulating inflammation by SGLT2 inhibitors
may play a key role.
Scope of review: In this manuscript, we summarize the current knowledge on anti-inflammatory effects of SGLT2 inhibitors as one of the
mechanisms potentially mediating their cardiovascular (CV) benefits. We introduce the different metabolic and systemic actions mediated by
these agents which could mitigate inflammation, and further present the signalling pathways potentially responsible for their proposed direct anti-
inflammatory effects. We also discuss controversies surrounding some of these mechanisms.
Major conclusions: SGLT2 inhibitors are promising anti-inflammatory agents by acting either indirectly via improving metabolism and reducing
stress conditions or via direct modulation of inflammatory signalling pathways. These effects were achieved, to a great extent, in a glucose-
independent manner which established their clinical use in HF patients with and without diabetes.
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1. INTRODUCTION

Obesity and related metabolic disorders are leading global burdens
which are rapidly increasing owing to the rise in sedentary lifestyle and
high caloric diet [1]. Since obesity is a strong risk factor for T2D, a
parallel increase in the numbers of diabetic patients have been
observed which is expected to reach 366 million in 2030 [2]. Both, T2D
and obesity play a major role in the development of CVD [3], which is
considered the major cause of death worldwide [4].
HF is one of the most common and serious CV complications in dia-
betes, which is associated with a poor prognosis [5,6]. Development of
HF in diabetic patients is in fact twice as frequent as in non-diabetics
[7]. Even though the incidence of HF correlates to the level of hae-
moglobin A1c (HbA1c) [8], lowering blood glucose by conventional
anti-hyperglycaemic agents failed to show convincing evidence in
reducing HF risk. In fact, all glucagon-like peptide-1 receptor agonists
(GLP-1 RA) have shown at least non-inferiority and some showed
significant reductions in 3-point MACE (composite of CV death,
nonfatal myocardial infarction, or nonfatal stroke) in patients with T2D
and high CV risk in several large RCTs [9]. Several mechanisms have
been postulated to explain these CV benefits including possible direct
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and indirect anti-inflammatory actions [10]. However, despite these
potential mechanisms, GLP-1 RA only caused modest and inconsistent
reductions in HF hospitalization rate [11]. To date, SGLT2 inhibitors are
the only glucose lowering agents that reduce HF risk based on the
outcomes of large RCTs, despite the fact that SGLT2 expression in the
heart is quite unlikely [12].
SGLT2 inhibitors are a novel class of antidiabetic drugs which cause
insulin-independent glucose lowering by reducing renal glucose
reabsorption and thus enhancing glycosuria [13]. The EMPA-REG
outcome trial was the first RCT to show HF and other CV outcome
benefits among SGLT2 inhibitors [14]. In this trial, patients with T2D
and established CVD showed reduced risk of 3-point MACE by 14%
driven by a significant reduction of death from CV causes, CV death by
38%, all-cause mortality by 32%, and HF hospitalization by 35% within
the first few weeks of treatment. Similar reductions in HF risk were
observed with subsequent trials i.e. CANVAS for canagliflozin,
DECLARE-TIMI 58 for dapagliflozin and VERTIS CV for ertugliflozin,
showing ca. 30% reduction of HF hospitalization compared to placebo
which confirm the role of SGLT2 inhibitors in preventing or delaying HF
onset [15e17]. SOLOIST-WHF was the first trial to suggest that the
potential of SGLT2 inhibitors lies beyond HF prevention [18].
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List of abbreviations

ACEI angiotensin-converting enzyme inhibitors
ADP adenosine diphosphate
AGE advanced glycation end-products
AngII angiotensin II
AMP adenosine monophosphate
AMPK 50 adenosine monophosphate-activated protein kinase
AP activator protein
ARB angiotensin II receptor blockers
ASC apoptosis-associated speck-like protein
ATM adipose tissue macrophages
ATP adenosine triphosphate
CAD coronary artery disease
Cana canagliflozin
cGMP cyclic guanosine monophosphate
COX cyclooxygenase
CV cardiovascular
CVD cardiovascular disease
DAMP damage associated molecular patterns
Dapa dapagliflozin
EAT epicardial adipose tissue
EMA European Medicines Agency
Empa empagliflozin
Ertu ertugliflozin
eNOS endothelial nitric oxide synthase
FDA Food and Drug Administration
FFA Free fatty acids
FOXO3a forkhead box O3a
FOXP3 forkhead box P3
GLP-1 RA glucagon-like peptide 1 receptor agonists
GSK3b glycogen synthase kinase 3b
HbA1c haemoglobin A1c
HDAC histone deacetylase
HF heart failure
HFpEF HF with preserved ejection fraction
HFrEF HF with reduced ejection fraction
Hk human kidney
Hs-CRP high sensitivity C- reactive protein
HUVEC human umbilical vein endothelial cells
ICAM intracellular adhesion molecule
IFN Interferon
IGF insulin-like growth factor
IKK IkB kinase
IL interleukin
iNOS inducible NOS
Ipra ipragliflozin
IRF interferon regulatory factor

IRS insulin receptor substrate
JAK Janus kinase
JNK c-Jun N-terminal kinases
LPS lipopolysaccharide
Luseo luseogliflozin
LV left ventricular
MACE major cardiovascular endpoints
MAPK mitogen-activated protein kinase
MCP monocyte chemoattractant protein
MMP matrix metalloproteinases
MRI magnetic resonance imaging
MT melatonin membrane receptor
mTOR mammalian target of rapamycin
NADD nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
NF-kB nuclear factor-kB
NLRP3 nucleotide-binding domain, leucine-rich-containing family, pyrin

domain-containing-3
NO nitric oxide
PAI plasminogen activator inhibitor
PAMP pathogen associated molecular patterns
PGC peroxisome proliferator-activated receptor gamma coactivator
PI3K phosphatidylinositide 3-kinase
PKG protein kinase G
PKR protein kinase R
PTEN phosphorylated phosphatase and tension homologue
PVAT perivascular adipose tissue
RAS renin-angiotensin system
RCTs randomized clinical outcome trials
ROS reactive oxygen species
SGLT sodium glucose co-transporter
SIRT sirtuin
SOD superoxide dismutase
Sota sotagliflozin
STAT signal transducer and activator of transcription
STZ streptozotocin
T2D type 2 diabetes
TCA tricarboxylic acid
TGF tumour growth factor
TLR toll-like receptors
TNF tumour necrosis factor
Tofo tofogliflozin
UCP uncoupling protein
VCAM vascular cell adhesion molecule
WAT white adipose tissue
XO xanthine oxidase
ZDF Zucker diabetic fatty
bOH b-hydroxybutyrate

Review
Sotagliflozin reduced CV death, HF hospitalization and urgent HF visits
(HR, 0.67; 95% CI, 0.52 to 0.85) in diabetic patients with recent
worsening HF. Recently, this therapeutic role of SGLT2 inhibitors was
further supported in DAPA-HF and EMPEROR- Reduced, where
dapagliflozin and empagliflozin reduced the composite of worsening
HF (i.e. hospitalisation or urgent visit for HF) and CV mortality
regardless of diabetes status of HF with reduced ejection fraction
(HFrEF) patients [19,20]. These benefits were driven by 30% re-
ductions in the first or recurrent HF hospitalizations [21]. Accordingly,
SGLT2 inhibitors are now established as first line agents for HFrEF
management in recent guidelines [22]. In 2021, EMPEROR-Preserved
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has established, for the first time, the CV benefits of SGLT2 inhibitors in
HF with preserved ejection fraction (HFpEF) patients with or without
diabetes with similar reductions in the primary endpoint as shown in
EMPEROR-Reduced [23]. The ongoing large trial; DELIVER, is expected
to provide further therapeutic implications in this patient population
[24]. In a press release, however, it was announced that top-line re-
sults from the study showed reductions in the primary end point [25].
Apart from their diuretic and natriuretic effects [26], several novel
hypotheses have been proposed to explain the early remarkable CV
benefits of SGLT2 inhibitors. These include increased erythropoiesis
[27], improved cardiac remodelling [28], improved ion balance and
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mitochondrial energetics [12] and inhibition of sympathetic stimulation
[29]. While the exact mechanisms are still under debate, the anti-
inflammatory effects of SGLT2 inhibitors have come more into focus
based on recent findings obtained mostly from animal and cell culture
studies, as discussed in the next sections.

2. INFLAMMATION LINKS OBESITY, DIABETES AND HEART
FAILURE

Obesity and related metabolic disturbances are currently considered as
conditions of chronic low-grade inflammation, which contributes to the
incidence and progression of insulin resistance [30]. The expanded
visceral white adipose tissue (WAT) in obesity represents not only a
massive lipid storage depot, but also a major source of proin-
flammatory cytokines (adipokines) [31e34]. Supportive evidence of
the role of inflammation in obesity-associated metabolic disorders
arises from the promising results of salicylates, anakinra and infliximab
in ameliorating hyperglycaemia [35e39]. Free fatty acids (FFA)
released from adipose tissues into the systemic circulation bind to toll-
like receptors (TLR) e 2 and 4 in metabolic cells such as adipose
tissue, liver and muscles, activating downstream kinases; c-Jun N-
terminal kinases (JNK), IkB kinase (IKK) and protein kinase R (PKR)
[40]. These kinases mediate serine phosphorylation of insulin receptor
substrate (IRS)-1 resulting in insulin resistance. Ultimately, these ki-
nases activate inflammatory transcription factors; nuclear factor-kB
(NF-kB), activator protein (AP)-1 and interferon regulatory factor (IRF)
contributing to inflammation. The activation of nucleotide-binding
domain, leucine-rich-containing family, pyrin domain-containing
(NLRP) 3 inflammasome can further contribute to the inflammatory
status [41], which may be explained by the reduced 50 adenosine
monophosphate-activated protein kinase (AMPK) signalling by elevated
FFA levels [42]. Moreover, hypoxia resulting from the rapid expanding
adipose tissue is associated with increased macrophage infiltration
with a phenotypic conversion from the M2 type expressing anti-
inflammatory cytokines to the proinflammatory M1 [43,44].
The increased proinflammatory cytokines from these pathways
together with FFA further promote insulin resistance by establishing a
positive feedback loop of inflammation [30]. Normally, pancreatic b-
cells can adapt initially to the reduced insulin response by increasing
their proliferation and insulin secretion, a mechanism which is
compromised in later stages owing to increased b cell apoptosis
leading to overt T2D [45]. The resulting hyperglycaemia plays a major
role in inflammation and diabetic vascular complications which were
shown to be also mediated by oxidative stress [46,47]. This state of
chronic low-grade inflammation contributes to the progression of CVD
by inducing endothelial dysfunction and atherosclerosis or by causing
direct myocardial damage in the absence of CVD (or diabetic cardio-
myopathy) [48,49].
In this regard, SGLT2 inhibitors were able to ameliorate markers of
inflammation in clinical and in vivo studies, which may possibly
contribute to their CV benefits. Studies demonstrated reductions of a
large set of pro-inflammatory cytokines with empagliflozin including
interleukin (IL)-6, tumour necrosis factor (TNF), monocyte chemo-
attractant protein (MCP)-1, Interferon (IFN)- g, P-selectin and inter-
cellular adhesion molecule (ICAM)-1 in the hearts of Zucker diabetic
fatty (ZDF) rats [50,51]. In T2D patients, treatment with canagliflozin
was associated with lower serum levels of leptin and IL-6 with higher
adiponectin levels compared to glimepiride [52], while reductions in
high sensitivity C- reactive protein (hs-CRP) and myeloperoxidase with
concomitant increase in anti-inflammatory IL-10 were observed with
empagliflozin [53].
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These anti-inflammatory properties of SGLT2 inhibitors could be a
result of general effects on metabolism, oxidative stress and renin-
angiotensin system (RAS) signalling or from its direct action on in-
flammatory signalling pathways.

3. GENERAL EFFECTS OF SGLT2 INHIBITORS

3.1. Reduction of oxidative stress
Reactive oxygen species (ROS) are formed from redox reactions or
electron excitation [54]. In physiological levels, they play an important
role in the regulation of cell signalling, autophagy, immunity and
cellular differentiation [55]. However, when the production of ROS
exceeds the detoxification ability of the antioxidant defence mecha-
nism, detrimental effects on lipids, proteins, lipoproteins and DNA can
occur contributing to the loss of important cellular functions, cell
damage and apoptosis, in a phenomenon defined as oxidative stress
[56]. In the heart, ROS overproduction occurs primarily due to altered
mitochondrial functions, enhanced nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase and xanthine oxidase (XO) activities or due
to uncoupling of endothelial nitric oxide synthase (eNOS) [57]. On the
other hand, depletion of antioxidants such as superoxide dismutase
(SOD), catalase, glutathione peroxidase, nicotinamide adenine dinu-
cleotide (NADþ) and glutathione have also contributed to CVD and HF.
There is a direct link between ROS accumulation and stimulation of
inflammatory pathways. ROS can mediate endothelial dysfunction and
atherosclerotic plaque formation by activating NF-kB mediated
expression of several cytokines including endothelin-1 [58], vascular
cell adhesion molecule (VCAM)-1 and ICAM-1 which promote
macrophage infiltration and vascular inflammation [59]. Owing to
eNOS uncoupling, oxidative stress enhances inducible NOS (iNOS)
production to compensate for the decreased nitric oxide (NO) pro-
duction [60], a potent vasodilator which is necessary to maintain
endothelial functions, prevent leucocyte adhesion and atherosclerosis
[61], while maintaining normal cardiac contractions [62]. However,
excess NO binds to superoxide (O2 ��) to form peroxynitrite (ONOO��),
which could be further involved in lipid peroxidation [63], foam cell
formation and atherosclerosis [64]. In the myocardium of HFrEF, ROS
stimulate mitogen-activated protein kinase (MAPK) mediated NF-kB
and AP-1 transcription factors which promotes release of inflammatory
cytokines, cellular apoptosis and activation of matrix metal-
loproteinases (MMP), which contribute to collagen degradation and left
ventricular (LV) dilatation [65]. In HFpEF, on the other hand, ROS
mediated eNOS inactivation reduces nitric oxide-cyclic guanosine
monophosphate-protein kinase G (NO-cGMP-PKG) signalling and thus
leads to titin hypophosphorylation, predisposing to myocardial stiffness
and diastolic dysfunction [66].
Several studies have reported the ability of SGLT2 inhibitors in miti-
gating oxidative stress either by inducing metabolic changes (as will be
mentioned in the next sections) or by acting as an antioxidant per se.
Dapagliflozin reduced the levels of the antioxidant DJ-1 and Nrf2 that
was elevated as a compensatory mechanism to neutralize the
excessive lipid peroxides produced in a Parkinson’s disease rat model
[67], while it reduced ROS and its associated apoptosis and NF-kB
activation. In postinfarcted rats, dapagliflozin reduced myocardial su-
peroxide and nitrotyrosine levels which resulted in activation of the
signal transducer and activator of transcription (STAT) 3 signalling
pathway [68]. STAT3 is a key regulator of macrophage polarization,
which upon activation by dapagliflozin enhanced anti-inflammatory M2
macrophage expression and IL-10 release, whereas cardiac fibrosis
was attenuated.
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Furthermore, SGLT2 inhibitors act on the main sources of ROS in the
heart. Empagliflozin improved mitochondrial function in rats with LV
dysfunction by enhancing the expression of peroxisome proliferator-
activated receptor gamma coactivator (PGC) 1-a, an important medi-
ator of mitochondrial bioenergetics [69]. On the other hand, SGLT2
inhibitors downregulated NADPH oxidase expression in-vitro and in-
vivo [69,70] with subsequent reduction of H2O2 and superoxide levels
[70], while it restored oxidant-antioxidant balance by attenuating
overexpressed SOD. In LV tissue samples of HFpEF patients, empa-
gliflozin increased NO-cGMP-PKG signalling leading to enhanced titin
phosphorylation with subsequent reduction in cardiac stiffness and LV
dysfunction [71e73]. At the same time, empagliflozin enhanced
endothelial relaxation and function by downregulating ICAM-1, VCAM-
1, TNF, and IL-6 levels [71,72]. These effects have been attributed to
the inhibition of eNOS uncoupling and its associated oxidative stress,
which could be related to the direct activation of SOD [73].

3.2. Reduction of glucotoxicity
Large prospective cohort studies have repeatedly shown the strong
association between the indices of glycemia and risk of CVD and
mortality in diabetic patients [74e76], which was supported by evi-
dence indicating the role of hyperglycaemia in promoting endothelial
dysfunction [77e79] and atherosclerosis in-vivo [80]. Oxidative stress
has been proposed as the link between hyperglycaemia and its
vascular damage [81,82].
Glucose is normally metabolized by tricarboxylic acid (TCA) cycle to
produce adenosine triphosphate (ATP) molecules required for various
cellular functions [82]. The electrons generated from the mitochondrial
electron transport chain are then transferred to oxygen to be reduced
to water. However, in hyperglycaemia, more glucose enters the TCA
cycle causing the excess electrons to be captured by coenzyme Q and
finally generating superoxide. Increasing superoxide levels by hyper-
glycaemia stimulates mechanisms of glucotoxicity [83], all of which
activate NADPH oxidase and further enhance ROS production. Thus,
contributing to induced inflammation and potential risk of CVD.
Whether the anti-inflammatory effects of SGLT2 inhibitors could be
partly explained by reduction of hyperglycaemia has been the subject
of a considerable debate.
In ZDF rats, empagliflozin improved endothelial function by amelio-
rating the activation of advanced glycation end-products (AGE) to their
receptors and the associated oxidative stress and inflammation in
whole blood and aortic tissues [50]. This has been attributed to the
glucose lowering effects and improved glucose utilization by empa-
gliflozin. Similar results were reported in the aortic tissues and blood of
streptozotocin (STZ) treated rats [84] as well as aortic rings and per-
ivascular adipose tissue (PVAT) of STZ treated ApoE�/� mice [85].
Glucose normalization by empagliflozin in STZ-treated mice mediated
atherosclerosis regression in aortic roots [86], while it significantly
reduced cardiac and coronary arterial fibrosis and improved aortic
endothelial function in db/db mice [87], which have been explained by
the alleviation of hyperglycaemia and associated oxidative stress.
Similarly, tofogliflozin attenuated tubulointerstitial inflammation in
diabetic mice via normalization of blood glucose levels [88].
On the other hand, several studies have excluded glycaemic control as
the sole mechanism behind SGLT2 inhibitors benefits. First, some of
these studies have utilized non-diabetic models of CVD which were
generated using lipopolysaccharide (LPS) [89e91] or angiotensin II
(AngII) [92,93] as inflammatory stimulants or arterial ligation to induce
ischemia [68,69,94] without altering blood glucose levels. In this view,
recent RCTs such as DAPA-HF, EMPEROR-Reduced and EMPEROR-
Preserved showed CV benefits in HF patients without diabetes which
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support the glucose-independent mechanisms of SGLT2 inhibitors
[19,20,23]. Second, in-vitro experiments which were carried out on
myocardial cells [70] - currently known as non-expressors of SGLT2-
ensure that glucose transport into the cells is not affected by SGLT2
inhibition. Third, superior anti-inflammatory effects have been reported
with SGLT2 inhibitors compared with other anti-diabetic agents with
similar glucose lowering effects [95,96].
In fact, lowering glucose levels has substantially reduced the risk of
microvascular complications in diabetic patients [97,98], while the
benefits regarding macrovascular complications are still uncertain.
In a meta-analysis, intensive glycaemic control reduced risk of non-
fatal myocardial infarction and coronary heart disease by about 15%
without affecting rate of stroke, HF and all-cause mortality [99]. In
agreement with that, another meta-analysis comprised of four large
RCTs; VADT, UKPDS, ACCORD and ADVANCE reported glucose-
lowering associated reduction in MACE without affecting all-cause
mortality [100]. In fact, the ACCORD trial showed an increased
mortality rate with intensive therapy in diabetic patients [101], while
UKPDS was the only trial among the four to show a 13% reduction
in death from any cause which was manifested over 10 years of
follow-up [102]. This could be related to the healthier patient
population, less intensive glycaemic control and longer follow-up
period utilized in this trial as compared to others [103]. On the
other hand, the benefits observed by SGLT2 inhibitors in the recent
RCTs diverge in the first few weeks of treatment which contradicts
the long-term period required for glycaemic control to manifest
improved CV outcomes as observed with other antidiabetic agents in
the UKPDS trial.

3.3. Reduction of hyperuricemia
Uric acid is the end product of endogenous and dietary purine meta-
bolism which is disposed mainly through the kidneys [104]. Elevation
of serum uric acid could be attributed to the imbalance between uric
acid production and excretion, which are regulated by several enzymes
such as the xanthine oxidase (XO). In the context of HF and CVD, the
incidence of hyperuricemia is common owing to the reduction of uric
acid excretion and increasing its production in HF [105,106], the
increased use of diuretics and low dose aspirin which stimulate uric
acid tubular reabsorption [107], and the association of hyperuricemia
to common CV risk factors e.g. diabetes, hypertension and insulin
resistance [108e110].
Elevated serum uric acid was shown to be correlated to inflammatory
markers in several clinical studies [111e113]. Activated inflammatory
pathways could be a result of the underlying elevated oxidative stress
caused by uric acid stimulation of NADPH oxidase [114e116], which is
believed to be mediated by uric acid activation of RAS in some in-vitro
studies [117,118]. In mice with unilateral ureteral obstruction, high
uric acid levels enhanced fibrosis through activation of ROS/NLRP3/IL-
1B signalling which was reversed by allopurinol (XO inhibitor)
administration [119]. Similarly, allopurinol reversed ROS mediated uric
acid activation of NLRP3 inflammasome that was responsible for
endothelial injury in a chronic kidney disease rat model [120]. More-
over, elevated uric acid levels directly stimulated NF-kB mediated pro-
inflammatory cytokine release in mouse kidneys and in-vitro, which
was blocked by inhibiting tubular uric acid transporters [121]. The
same effect of uric acid on NF-kB was associated with increased
incidence of dyslipidaemia and hyperglycaemia in rats [122] and was
responsible for reduced NO levels and endothelial dysfunction in hu-
man umbilical vein endothelial cells (HUVEC) [123]. Exposure to uric
acid increased CRP-mediated human vascular smooth muscle cell
migration and reduction of NO from HUVEC, which could be partially
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explained by MAPK activation [124]. Incubation of the cells with pro-
benecid, an inhibitor of uric acid cellular entry, reversed these effects.
On this background, elevated uric acid levels have been associated
with increased CV risk, mortality and incidence of HF in several large
cohort studies [125e127]. Thus, it is not surprising to find that several
studies have attributed the improved CV and HF outcomes to lowering
uric acid levels after administration of XO inhibitors in patients with
high CV risk [128,129].
SGLT2 inhibitors have been shown to reduce the levels of circulating
uric acid regardless of diabetic status [130,131] and in patients with
CV risk [27,132]. Since these agents reduce glucose transport through
SGLT2, the resulting high glucose concentration in proximal tubules
facilitates glucose exchange with intracellular uric acid through GLUT9,
thus increasing uric acid elimination [133]. In this view, attenuation of
hyperuricemia by SGLT2 inhibitors has been proposed as a potential
mechanism of their CV benefits via reducing oxidative stress, inflam-
mation, endothelial dysfunction and fibrosis [134].
Conversely, other studies have failed to show any improvement in CV
or HF outcomes upon treatment with XO inhibitors [135e137]. In fact,
patients treated with these agents might even show a trend of
increasing CV mortality and hospitalization [135,138]. This evidence
supports the fact that elevated uric acid is just a biomarker of oxidative
stress and does not stimulate ROS or inflammatory cytokine release
per se which precipitate myocardial injury [139]. In pro-oxidant con-
ditions like in CVD, eNOS is uncoupled and becomes unable to produce
NO, which beside its vasculoprotective effects plays an important role
in ROS quenching [140]. Instead, XO level is upregulated to act as an
alternative source of NO production together with a parallel increase in
uric acid levels [141]. Thus, inhibition of XO deprives the body from an
important antioxidant and NO source which could contribute to
increased CV risk.
SGLT2 inhibitors, on the other hand, elicit a fasting-like state probably
due to glycosuria, which in turn activates sirtuin (SIRT)1, an enzyme
which plays an important role in the protection against oxidative stress
and inflammation [142]. SIRT1 restores eNOS ability to produce NO
[143] and consequently lowers XO and its associated uric acid levels
[144]. Therefore, it can be hypothesized that the CV benefits of SGLT2
inhibitors are mainly mediated by the indirect activation of SIRT1
antioxidant and anti-inflammatory pathways, rather than by lowering
serum uric acid.

3.4. Enhancing ketonemia
In diabetic failing hearts, there is an increased reliance on FFA
oxidation for energy production owing to reduced glucose utilization on
the basis of insulin resistance [145]. Although FFA produce more ATP
than glucose, this comes with the price of increased oxygen con-
sumption and ROS generation which can further exacerbate HF [146].
Against this background, enhancing ketogenesis by SGLT2 inhibitors
may in part explain their cardioprotective effect, since ketone bodies
are more energy efficient than FFA; yielding more ATP molecules per
molecule of oxygen utilized [147]. Ferannini et al. have proposed that
empagliflozin-associated glycosuria is responsible for the reduction of
the insulin/glucagon ratio, which enhances hepatic FFA oxidation and
subsequent elevation of circulating b-hydroxybutyrate (bOHB) [148] to
be eventually utilized by the failing heart as a metabolic stress defence
[149]. This hypothesis was experimentally proved in non-diabetic
animal models of HFrEF, where enhanced myocardial utilization of
ketone bodies by empagliflozin was associated with attenuation of
adverse cardiac remodelling [69,150] and diastolic dysfunction [73]. In
that light, bOHB also improved cardiac output, ejection fraction and
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reduced systemic vascular resistance in HFrEF patients [151]. Inter-
estingly, Lopaschuk and Verma have proposed a counterargument,
stating that increased bOHB by empagliflozin is probably due to
reduced myocardial ketone body utilization, a process which could be
maladaptive on long term [152].
Regardless of the mechanism of increase, it was suggested that
elevated cardiac bOHB increased histone acetylation and expression of
oxidative stress resistant factors; melatonin membrane receptor (MT)2
and forkhead box O3a (FOXO3a) by inhibiting histone deacetylase
(HDAC) [153]. Beside its antioxidant effect, HDAC inhibition by bOHB
can also mitigate cardiac and extra cardiac inflammation. Rats treated
with valproic acid, an HDAC inhibitor, showed reduced ventricular
levels of NF-kB, TNF, IL-1b and ROS which attenuated cardiac hy-
pertrophy and fibrosis [154]. Another HDAC inhibitor, suberoylanilide
hydroxamic acid, reduced a diverse range of inflammatory cytokines,
which diminished cardiovascular fibrosis and stiffness in hypertensive
rats [155]. Acetylation of the MAPK phosphatase-1 by HDAC inhibitors
attenuated MAPK signalling in-vitro, which was associated with
reduced inflammation and mortality in LPS-treated mice [156].
Furthermore, HDAC inhibitors enhanced production of anti-
inflammatory regulatory T cells through the acetylation of forkhead
box P3 (FOXP3), a key transcription factor for regulatory T cells
development [157]. These inhibitors also enhanced macrophage po-
larization to the anti-inflammatory M2 phenotype [158] through
modulation of the glycogen synthase kinase 3b/phosphorylated
phosphatase and tension homologue/phosphatidylinositide 3-kinase or
GSK3b/PTEN/PI3K signalling pathway [159].
Enhanced adiponectin expression by bOHB was associated with
reduced pro-inflammatory cytokines in 3T3-L1 adipocytes, mediated
by the direct epigenetic modification of bOHB on histone H3K9 of the
adiponectin gene [160].
Furthermore, modulation of the NLRP3 inflammasome by bOHB has
been reported in several studies [161e163]. Youm et al. was the first
to show the impact of bOHB on the NLRP3- inflammasome and its
mediated secretion of IL-1b in human macrophages and mice [164].
Later, Byrne et al. showed the important role of high bOHB in inhibition
of NLRP3 inflammasome activation with subsequent reduction in pro-
inflammatory cytokine levels and macrophage infiltration into cardiac
tissues of HF mice [165]. In this study, elevated bOHB was associated
with reduced cardiac remodelling and improved diastolic filling
parameters.
Thus, inhibiting HDAC and NLRP3 inflammasome or enhancing adi-
ponectin expression by elevated bOHB could contribute to the anti-
inflammatory effect of SGLT2 inhibitors. However, only limited
studies have shown the impact of SGLT2 inhibitor-induced ketonemia
on inflammation and associated CV risk.
Recently, Kim et al. showed that empagliflozin attenuated NLRP3
inflammasome activation and the secretion of IL-1b which could be
attributed to the elevated levels of bOHB in macrophages of diabetic
patients with CVD [166]. In a HFpEF mouse model, elevated bOHB by
empagliflozin inhibited mitochondrial protein hyperacetylation resulting
in reduced NLRP3 inflammasome assembly and subsequent cytokine
release [167]. These effects were associated with reduced BNP levels,
cardiac fibrosis and stiffness, while they improved exercise tolerance.
In diabetic patients with history of CVD, elevated bOHB resulted in
improved left ventricular diastolic functions which was reflected by
reduced E/e’ in echocardiography after treatment with tofogliflozin
[168]. The anti-inflammatory and antioxidant effects of increased
bOHB might explain, at least partially, the improvement in cardiac
function in these patients and potential reduction of their HF risk.
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3.5. Reduction of adipose tissue mass and associated pro-
inflammatory cytokine release
Obese patients with metabolic syndrome are characterized by WAT
hypertrophy in the face of increased demand of energy storage
together with impaired angiogenesis, hypoxia and adipocyte apoptosis
leading to macrophage infiltration and inflammation [169]. Subse-
quently, adipose tissue differentiation is impaired which predisposes to
ectopic fat accumulation in tissues such as the heart and blood ves-
sels. Therefore, obesity-induced inflammation can promote CVD pro-
gression through the secretion of pro-inflammatory cytokine into the
circulation from distant adipose tissue depots in an endocrine manner
or from the adjacent PVAT and epicardial adipose tissue (EAT) through
paracrine release [170].
PVAT surrounds large arteries and veins as well as small resistant
vessels, while it is completely absent from the cerebral circulation
[171]. These adipose tissues regulate vascular tone in healthy con-
ditions by releasing several relaxing factors such as adiponectin, NO
and hydrogen sulphide. In obesity, however, PVAT loses its anti-
contractile functions which can predispose to endothelial dysfunction
and atherogenesis. In PVAT dysfunction, NO production is reduced
owing to enhanced eNOS uncoupling which subsequently contributes
to ultimate generation of superoxide [172,173] promoting vasocon-
striction and vascular remodelling [174]. Proinflammatory adipokines
such as leptin and resistin can further exacerbate oxidative stress in
the vascular endothelium by activating NADPH oxidase [175].
Furthermore, PVAT release of visfatin and resistin was associated with
enhanced ICAM-1 and VCAM-1 expression which can mediate leu-
cocyte infiltration of vascular endothelial cells and atherosclerosis
[176,177]. In clinical studies, PVAT inflammation predisposed to cor-
onary artery vasospasm and increased atherosclerotic burden in pa-
tients with vasospastic angina and coronary artery disease (CAD),
respectively [178,179].
EAT lies in close proximity to the heart i.e. between the myocardium
and the pericardial visceral layer [180] acting as an energy source to
the underlying myocytes by providing FFA, while it exerts antioxidant
effect by the released adiponectin [181]. Like PVAT, the accumulated
EAT in obesity releases various proinflammatory mediators such as
leptin, resistin and other adipokines with reduced adiponectin pro-
duction [182]. These changes were associated with increased
myocardial inflammation promoting cardiac fibrosis and remodelling,
which can contribute to impaired myocardial contractility [183]. In a
similar manner, EAT can influence the underlying coronary vasculature
promoting atherogenesis and microvascular rarefaction [184,185]. In
this regard, EAT contributed to increased left ventricular mass and
worse diastolic functions in HF patients [186e188].
SGLT2 inhibitors have shown consistent reductions in body weight of
1e3 kg in the first weeks of treatment [189] even in obese patients
without T2D [190], which could be maintained up to 4 years [191].
Although the impact of weight loss on HF outcomes has been so far
seen sceptically [192], the reduction of visceral fat content associated
with dapagliflozin and ipragliflozin reduced LV mass compared to
placebo and metformin, respectively, which highlights the impact of
VAT inflammation on CV remodelling [28,193].
On the same note, T2D patients treated with SGLT2 inhibitors exhibited
reduced EAT mass [194e196], which was assumed to be independent
of glycaemic control in some studies [197,198]. This was confirmed by
the positive findings observed even in non-obese, non-diabetic HFrEF
patients using cardiac magnetic resonance imaging (MRI) [199]. The
observed EAT reductions were much greater than the changes (if any)
in body weight, VAT and subcutaneous fat. This was attributed to the
high turn-over rate of FFA in EAT which could explain their higher
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sensitivity to SGLT2 inhibitors. Loss of EAT by SGLT2 inhibitors showed
parallel reductions in pro-inflammatory cytokines [195,196], which
might explain the observed reductions of interstitial myocardial fibrosis
and aortic stiffness by empagliflozin in nondiabetic patients with HFrEF
[200]. These findings contributed to improved diastolic functions,
pulsatile load and ventricular pressure. Conversely, Gaborit et al.
showed no change in EAT volume after treatment with empagliflozin in
T2D patients [201], which could be attributed to the different cardiac
imaging modalities used as compared to the previously mentioned
studies [202]. This emphasizes the importance of utilizing more sen-
sitive multi-slice volumetric approaches for EAT measurement using
cardiac MRI instead of the single-slice methods such as computed
tomography [203]. However, Gaborit et al. did not exclude the possi-
bility of improved EAT phenotype by empagliflozin that could positively
influence cardiac functions [201]. In this regard, dapagliflozin
improved EAT stromal cell differentiation, reduced pro-inflammatory
cytokines and enhanced EAT secretome contributing to the healing
of endothelial cells in patients undergoing cardiac surgery without
affecting EAT mass [204].
On the other hand, few studies showed paradoxical effects of SGLT2
inhibitors on PVAT in vivo. Luseogliflozin attenuated neointimal hy-
perplasia after wire injury in mice receiving high fat diet by reducing
adipocyte size of PVAT which was associated with increased adipo-
nectin levels and reduced macrophage infiltration [205]. Mori et al. also
showed that ipragliflozin reduced inflammation, adipocyte apoptosis
and macrophage accumulation in abdominal PVAT of obese diabetic
mice resulting in suppression of adverse vascular remodelling [206].
Surprisingly, ipragliflozin in this study increased adipocyte size and
lipid storage capacity owing to increased insulin sensitivity which was
designated as “healthy adipose tissue expansion”. Another study,
however, questioned this cardioprotective effect of SGLT2 inhibitors in
a rat model of metabolic syndrome [207], since tofogliflozin failed to
enhance PVAT-mediated vasorelaxation with no associated improve-
ment in cardiac function and heart weight.
The mechanisms behind adipose tissue loss with SGLT2 inhibitors
cannot be simply explained by caloric loss due to glycosuria [208].
Alternatively, the low insulin/glucagon ratio mediated by the reduced
plasma glucose levels with SGLT2 inhibitors shifts energy metabolism
towards fat utilization, fatty acid oxidation and ketogenesis in T2D
patients [209], which could be AMPK dependent [210]. In obese mice,
empagliflozin was associated with enhanced WAT browning by
increasing the expression of uncoupling protein (UCP)-1 [208], a
protein responsible for energy dissipation and thermogenesis in brown
adipose tissue [211]. Together with increased adiponectin levels,
enhanced M2-macrophage polarization and its associated sympathetic
stimulation could be the mechanisms behind empagliflozin-mediated
UCP-1 expression [208]. Sawada et al. showed that in high fat fed
mice, tofogliflozin promoted glycogen depletion which subsequently
mediated, at least partly, sympathetic stimulation via liver-brain-
adipose-neural axis [212]. The activation of this neurological
pathway was associated with enhanced lipolysis in WAT and eventually
weight loss.

3.6. Attenuation of RAS signalling
RAS plays a key role in the development of hypertension and CVD
which is mediated, to a great extent, by the pro-inflammatory effects of
AngII signalling pathway [213]. Initially, AngII sets the stage for the
inflammatory process by enhancing vascular permeability through
increasing BP or by releasing prostaglandins and vascular endothelial
growth factors [214]. Subsequently, the role of AngII in leucocyte
recruitment to the vascular wall comes into play. AngII increases
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proinflammatory cytokine and chemokine release together with the
expression of adhesion molecules such as E-selectin, ICAM-1 and
VCAM-1 thus enhancing leucocyte endothelial interaction. Thus, AngII
can contribute to endothelial dysfunction and progression of athero-
sclerosis [215,216]. Furthermore, AngII is involved in the production of
growth and fibrotic mediators which can augment thrombus formation
such as plasminogen activator inhibitor (PAI)-1 [217], or mediate
vascular remodelling and hypertension by promoting tumour growth
factor (TGF)-b/Smad signalling [218]. The underlying mechanism of
the inflammatory effects of AngII is primarily attributed to enhanced
ROS production through AngII mediated activation of NADPH oxidase
[219] and XO [220] or its associated mitochondrial dysfunction [221].
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Further, AngII enhances NF-kB activity by promoting its DNA binding or
by inducing its nuclear translocation through the degradation of its
inhibitor IkB [222]. Against this background, inhibition of AngII sig-
nalling by angiotensin-converting enzyme inhibitors (ACEI) or angio-
tensin II receptor blockers (ARB) blunted the expression of pro-
inflammatory cytokines in patients with CAD [223], hypertension
[224] and HF [225] which could explain the decreased mortality and CV
benefits of these agents in high risk patients [226,227].
Similarly, the deleterious effects of RAS activation were attenuated by
the administration of SGLT2 inhibitors in diabetic and non-diabetic
models. Empagliflozin blocked in-vivo AngII mediated inflammation
by inhibiting NF-kB and MAPK activation, which consequently
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attenuated macrophage infiltration, neovascularization and endothelial
dysfunction in the suprarenal aorta [92]. In kidney tissue of diabetic
mice, treatment with dapagliflozin was associated with reduced uri-
nary AngII levels, corresponding decrease in ROS and enhanced
antioxidant expression compared to voglibose, the comparator anti-
diabetic agent [96]. These effects contributed to reduced inflammatory
cell infiltration, tubulointerstitial fibrosis and collagen accumulation.
Since both antidiabetic agents had similar glucose lowering effects, the
superior antioxidant and anti-inflammatory benefits of dapagliflozin
were mainly related to a glucose-independent mechanism. Similar
renal protective effects have been demonstrated by canagliflozin in
AngII treated mice [228]. In this study, however, RAS activation was
associated with enhanced SGLT2 expression in kidney cells in-vitro
and in-vivo, which was oxidative stress mediated. Thus, the protective
effects of canagliflozin in this study are assumed to be a consequence
of direct inhibition of SGLT2 rather than an off-target effect.
Although the expression of SGLT2 in endothelial cells is controversial,
Park et al. interestingly showed that AngII enhanced NADPH oxidase
activity via its action on type 1 angiotensin receptor which ultimately
increased the expression of SGLT1 and SGLT2 in rat endothelial cells
[229]. This signalling pathway was associated with endothelial
dysfunction resulting from reduction in eNOS levels and subsequent
NO release together with enhanced expression of VCAM-1, MCP-1 and
tissue factor. Sotagliflozin and empagliflozin reversed these effects,
highlighting the possible contribution of SGLT2 in mediating RAS
outcomes. Attenuation of inflammation by SGLT2 inhibitors might be
responsible for the inhibition of AngII stimulated TGF-b/Smad signal-
ling in rats, thus ameliorating cardiac fibrosis, remodelling and dia-
stolic dysfunction [93].
Inhibition of RAS by SGLT2 inhibitor, however, has been challenged by
some studies. In patients with T2D, SGLT2 inhibitors contributed to
enhanced RAS activity after 30 days, possibly as a compensatory
mechanism to their natriuretic and osmotic diuretic effects [230].
Similar results were reported in diabetic patients with canagliflozin and
dapagliflozin [231,232], while renin and aldosterone levels were not
changed by dapagliflozin in another study of T2D [233].
Figure 1 summarizes the possible metabolic and systemic alterations
which could be related to the indirect anti-inflammatory effects of
SGLT2 inhibitors.

4. EFFECTS OF SGLT2 INHIBITORS ON INFLAMMATORY
SIGNALLING PATHWAYS

4.1. AMPK activation
AMPK is the fuel gauge of the cell, which under stress conditions,
reduces energy consumption and enhances compensatory production
of ATP resulting in increased ATP/adenosine diphosphate (ADP) ratio
[234]. Therefore, AMPK can regulate major metabolic pathways of
glucose, lipids and proteins and is considered as a key player in
autophagy. The anti-inflammatory role of AMPK has been demon-
strated in diabetic patients treated with metformin which showed
AMPK mediated inhibition of NLRP3 inflammasome and IL-1b release
[235]. In obese mice, AMPK deficiency enhanced macrophage polar-
ization to the pro-inflammatory M1 type [236]. With respect to vascular
cells, AMPK activation reduced TNF-stimulated NF-kB activity [237]
and the subsequent expression of adhesion molecules [238,239] in
cultured endothelial cells. Again with metformin, the activation of
AMPK contributed to reduced NF-kB, iNOS and cyclooxygenase (COX)-
2 expressions in vascular smooth muscle cells [240]. Furthermore,
incubating fibroblasts and endothelial cells with IL-6 stimulated Janus
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kinase (JAK)eSTAT pathway mediated inflammation, which was
inhibited upon activation of AMPK by salicylate and metformin [241].
Thus, enhancing the AMPK pathway is associated with inhibition of
vascular inflammation and endothelial dysfunction, which could
contribute, at least partly, to less cardiac remodelling and myocardial
dysfunction [242e245].
SGLT2 inhibitors have been shown to act as AMPK activators through
inhibition of complex I of the mitochondrial respiratory chain, which
subsequently increases adenosine monophosphate (AMP) and ADP
content [210]. Elevated AMP/ADP bind to the g subunit of AMPK which
then activates its phosphorylation at threonine 172.
In diabetic models, SGLT2 inhibitors showed anti-inflammatory effects
through activation of AMPK signalling. Dapagliflozin reduced NF-kB
nuclear translocation in renal tubular human kidney (HK)-2 cells [246],
while it reduced NLRP3 inflammasome activation and progression of
diabetic nephropathy in mice [247], which were AMPK mediated.
Through the same pathway, empagliflozin reduced the expression of
IL-6, TNF and MCP-1 in the hearts of diabetic rats [51], while in
cultured human cells canagliflozin reduced IL-1b stimulated IL-6 and
MCP-1 secretion probably through the inhibition of facilitative glucose
uptake [248].
However, other in-vitro and in-vivo studies showed that reduced
glucose levels by SGLT2 inhibitors cannot be the only mechanism
explaining the AMPK-mediated anti-inflammatory effects. Inflamma-
tory cytokine levels were attenuated [91,249] and the expression of M2
macrophages was enhanced [249] upon treatment with SGLT2 in-
hibitors in an AMPK- dependent manner in LPS- stimulated in-vitro and
in-vivo models. Furthermore, the reduction of NLRP3 inflammasome
by dapagliflozin through AMPK activation in the hearts of diabetic mice
has been successfully replicated in cardiomyocytes in-vitro [90]. These
AMPK- anti-inflammatory effects possibly contributed to inhibition of
pro-fibrotic TGF-b/Smad signalling [250], reduced ventricular
remodelling and improved cardiac function [90,250].
Autophagy is an important process for cellular homeostasis, by which
misfolded proteins, damaged organelles and pathogens are captured
by autophagosomes to be degraded by lysosomal proteases [251].
Accordingly, dysregulation of this process can predispose to inflam-
mation [252,253] and can contribute to CVD [254e256]. Autophagy is
regulated, among others, by AMPK/the mammalian target of rapa-
mycin (mTOR) signalling [257]. Thus, modulation of this pathway re-
stores autophagy and can contribute to the anti-inflammatory effects of
AMPK activators [258,259]. Likewise, empagliflozin enhanced auto-
phagy by stimulating AMPK and inhibiting mTOR in a mouse model of
liver disease [260,261], accompanied by a concomitant reduction of
IL-17/IL-23 release [261]. Moreover, the improvement of cardiac
function by empagliflozin in-vivo was attributed to autophagosome
accumulation and enhanced autophagic flux mediated by AMPK/mTOR
pathway [262].

4.2. Inhibition of NLRP3 inflammasome activation
The NLRP3 inflammasome is a macromolecular protein complex which
is comprised of 3 main components: NLRP3, apoptosis-associated
speck-like protein (ASC) and pro-caspase-1 [263]. In response to
danger signals, the inflammasome triggers pro-inflammatory cytokine
secretion in two steps [264]. Priming is the first step of the inflam-
masome activation, where cellular debris and pathogens, also known
as damage- or pathogen associated molecular patterns (DAMP or
PAMP), bind to TLR and induce downstream NF-kB mediated
expression of NLRP3 and pro-IL-1b. The second signal of DAMP or
PAMP trigger several possible pathways such as enhanced Kþ efflux
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and lysosomal degradation, which finally leads to inflammasome as-
sembly and conversion of pro-caspase-1 into its active form. The
cleavage of pro-IL-1b and pro-IL-18 by active caspase-1 to IL-1b and
IL-18 prompts the start of the inflammatory cascade.
Accumulated lipids in blood vessels can lead to NLRP3 activation which
predisposes to atherosclerosis by impairing endothelial dysfunction
and promoting coagulation [265]. The cell debris released from
ischemic cardiac injury afterwards act as DAMP which trigger NLRP3/
IL-1b signalling and acute inflammation leading to leucocytes infil-
tration to the myocardium and triggering further myocardial damage
[266]. Tissue healing is initiated when the inflammasome stimulates
IL-1b release in myofibroblasts, promoting collagen accumulation,
cardiac fibrosis and remodelling. Moreover, IL-1 b has been consid-
ered as cardio-depressant; impairing contractility and inducing LV
systolic dysfunction which further worsens HF [267]. It is worth
mentioning that the role of NLRP3 inflammasome activation in car-
diotoxicity and non-ischemic injuries has also been discussed
[268,269]. Thus, it is no surprise that mice deficient of inflammasome
components were more resistant to developing atherosclerosis [270],
while inflammasome inhibitors contributed to reducing infarct size and
improving cardiac function in different in-vivo models [271]. Further-
more, deficiency of NLRP3 in mice resulted in lower LV dilation and
fibrosis, while it showed better survival compared to wild type [272]. In
HF patients, administration of anakinra (IL-1 b inhibitor) improved peak
oxygen consumption and exercise capacity [267,273].
Direct effects of SGLT2 inhibitors on NLRP3 inflammasome activation
have been established in non-diabetic mice via modulation of intra-
cellular Ca2þ levels. Although not commonly mentioned, Ca2þ mobi-
lization was considered an important activator of NLRP3
inflammasome starting from the assembly step until IL-1 b release
[274]. Recently, it has been shown that extracellular Ca2þ can activate
the inflammasome and IL-1b release through the induction of calcium
sensing receptor signalling [275]. On this account, empagliflozin
improved systolic and diastolic functions in HFrEF mice, while it
reduced cardiac fibrosis, mass and remodelling as well as diastolic
dysfunction in HFpEF rats [94]. This was attributed to the inhibitory
effect of empagliflozin on the priming and activation of the inflam-
masome and the resulting expression of inflammatory cytokines in-
vivo, ex-vivo and in-vitro, mediated by lowering intracellular Ca2þ

levels. Since the intracellular levels of both Naþ and Ca2þ are inter-
related [276], empagliflozin was able to reduce Ca2þlevels in car-
diomyocytes of HF mice by the attenuation of late Na þ current and its
intracellular accumulation [277]. This caused inhibition of NLRP3
inflammasome activation and improved functional recovery. Similar
reduction in NLRP3 mediated inflammation was observed with
empagliflozin in cardiomyocytes treated with doxorubicin (a dose-
dependent cardiotoxic agent), which might be explained, although
not explicitly stated, by lowering Ca2þ content [278].

4.3. Promoting M2 macrophage polarization
Following tissue injury, innate immune response is initiated where
macrophages release inflammatory cytokines that stimulate differen-
tiation and activation of fibroblasts and other cells necessary for tissue
repair and wound healing [279]. Macrophages then take another form
which supresses inflammation and ensures normal tissue function and
structure. Thus, macrophages have two distinct phenotypes, M1 and
M2 [280], where the abundant subtype can be decided by the nature of
the surrounding microenvironment [281]. The M1 proinflammatory
subtype releases TNF, IL-6 and IL-1b, while M2 releases anti-
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inflammatory cytokines and growth factors such as IL-10, TGF-b
and insulin-like growth factor (IGF)-1 [282]. In the heart, aberrant in-
flammatory response can hinder post myocardial injury repair mech-
anism and can predispose to cardiac remodelling [283]. Therefore,
targeting the direction of macrophage polarization towards the anti-
inflammatory type or reducing the levels of pro-inflammatory M1
can be considered as therapeutic strategies to improve healing process
and reduce fibrosis, remodelling and risk of HF [284,285].
SGLT2 inhibitors have been shown to enhance macrophage polariza-
tion from M1 to M2 in several studies. However, further research is
needed to examine this mechanism in the context of CVD and
myocardial injury.
LPS- stimulated human and murine macrophages showed increased
numbers of M1 subtype and M1/M2 ratio, the effect which was
completely reversed upon dapagliflozin treatment in a glucose-
independent manner [89,286]. The same results were replicated by
canagliflozin in LPS induced mice and macrophages [287]. The
reduction of M1 phenotype was associated with attenuation of TNF, IL-
6 and IL-1b release which alleviated lung injury. Against this back-
ground, the enhanced M1 to M2 polarization reported in T2D patients
might be explained by a direct effect of empagliflozin rather than by its
glucose lowering alone [288].
Adipose tissue macrophages (ATM) play a critical role in aggravating
inflammation and insulin resistance [289], that could be extended to
ectopic fat tissues around blood vessels and heart promoting CVD, as
previously discussed. Strategies to promote the anti-inflammatory ATM
phenotype have been utilized to improve insulin sensitivity and reduce
inflammation in obesity [290e292]. In high fat-fed mice empagliflozin
enhanced M2 ATM levels in WAT, while it reduced M1-mediated in-
flammatory cytokines release together with reduced phosphorylation of
JNK and extracellular signal-regulated kinase (ERK)1/2 [208], p38
MAPK and NF-kB [293]. Additionally, empagliflozin inhibited infiltration
of CD3þ, CD4þ and CD8þ T cells in WAT, which is considered a
critical step in M1 ATM recruitment. Interestingly, modulation of ATM
polarization by ipragliflozin contributed to healthy adipose tissue
expansion which was attributed to enhanced insulin signalling [294].
Potential inflammatory pathways that could be altered by SGLT2 in-
hibitors are presented in Figure 2.
Table 1. summarizes the different SGLT2 inhibitors available in the
market and the respective evidence, if any, which supports the anti-
inflammatory effects of each member.

5. SUMMARY

Growing evidence has shown the importance of SGLT2 inhibitors in
attenuating inflammation in several in-vitro and in-vivo studies, which
could possibly explain in part the reduced risk of plaque formation,
endothelial dysfunction, cardiac fibrosis and ventricular remodelling.
However, further clinical trials are needed to determine whether these
anti-inflammatory effects are associated with the reduction of HF
hospitalization and CV mortality observed with SGLT2 inhibitors in
recent RCTs.
In fact, most of the evidence available relates these anti-inflammatory
effects to the systemic and metabolic improvements of SGLT2 in-
hibitors, which were, to a great extent, dependent on their glucosuric
effects. Although SGLT2 inhibitors are mainly investigated in the
setting of T2D, it is becoming increasingly evident that the CV benefits
observed are not exclusively related to the associated glycaemic
control and reduced glucotoxicity. Furthermore, lowering of uric acid by
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Table 1 e A summary of the currently available SGLT2 inhibitors and the respective evidence, if any, of their anti-inflammatory mechanism.

Member Empa [295]
C23H27ClO7

Dapa [296]
C21H25ClO6

Cana [297]
C24H25FO5S

Ertu [298]
C22H25ClO7

Sota [299]
C21H25ClO5S

Ipra [300]
C21H21FO5S

Luseo [301]
C23H30O6S

Tofo [302]
C22H26O6

Approval FDA [303]
EMA [304]

FDA [305]
EMA [306]

FDA [307]
EMA [308]

FDA [309]
EMA [310]

EMA for type 1
diabetes [311]

Only in Japan,
South Korea and
Russia [312]

Only in Japan
[313]

Only in Japan
[314]

Dosing regimen 10/25 mg
once daily

5/10 mg
once daily

100/300 mg
once daily

5/15 mg
once daily

200 mg
once or twice daily

50/100 mg dose
once daily

2.5/5 mg
once daily

20 mg
once daily

Anti-inflammatory mechanism
Reduce ROS and hyperglycaemia
mediated inflammation

Reduce adipose tissue volume and
associated adipokines

Reduce AngII mediated
inflammatory mediators/
macrophage infiltration/fibrosis

Enhance ketone mediated NLRP3
inflammasome inactivation

Enhance M2 macrophage
polarization

Enhance AMPK mediated reduction
of inflammatory mediators

Inactivation of NLRP3
inflammasome

References of the anti-inflammatory mechanisms are colour coded in for animal models, for in-vitro and ex-vivo studies, for human data and for studies with
combined models.
AngII, angiotensin II; AMPK, 50 adenosine monophosphate activated protein kinase; Cana, canagliflozin; Dapa, dapagliflozin; Ertu, ertugliflozin; EMA, European Medicines Agency;
Empa, empagliflozin; FDA, Food and Drug Administration; Ipra, ipragliflozin; Luseo, luseogliflozin; NLRP3, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-
containing-3; ROS, reactive oxygen species; SGLT2, sodium glucose co-transporter 2; Sota, sotagliflozin; Tofo, tofogliflozin.
SGLT2 inhibitors is probably not cardioprotective per se, but it is rather
a reflection of oxidative stress mitigation via promoting the antioxidant
SIRT1 expression or through direct inhibition of the main ROS gener-
ating mechanisms in the heart. Oxidative stress and inflammation
could also be mediated by RAS activation, which was reversed upon
SGLT2 inhibitor administration. Reduction of ectopic fat deposition by
SGLT2 inhibitors is associated with reduced proinflammatory cytokine
and adipokine release, which directly influence cardiac and vascular
remodelling. Rather being a super fuel, a hypothesis which is still
under debate, bOHB has been established as a specific HDAC and
NLRP3 inflammasome inhibitor, which may explain the antioxidant and
anti-inflammatory effects of ketonemia associated with this drug class.
Although based on limited number of studies to date, the reported CV
benefits could partially be a consequence of direct influence on
proinflammatory signalling pathways. SGLT2 inhibitors contributed to
enhanced AMPK phosphorylation which was associated with down-
stream inhibition of inflammatory mediators. Activation of autophagy
mediated by AMPK/mTOR signalling could explain these effects. Apart
from AMPK activation, SGLT2 inhibitors contributed to inhibition of
NLRP3 inflammasome priming and assembly, possibly via modulation
of Ca2þ signalling. Enhancing macrophage polarization to the M2
subtype could attribute to SGLT2 inhibitor anti-inflammatory actions,
although further studies are needed to establish these findings in
cardiac tissues.
In summary, among other mechanisms cardioprotective effects and
major improvement of HF outcomes observed with SGLT2 inhibitors
are possibly related to both direct and indirect mitigation of inflam-
matory signalling pathways independent of glycaemic control.
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