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Abstract: Amyloid formation is a pathological process associated with a wide range of degenerative
disorders, including Alzheimer’s disease, Parkinson’s disease, and diabetes mellitus type 2. During
disease progression, abnormal accumulation and deposition of proteinaceous material are accompa-
nied by tissue degradation, inflammation, and dysfunction. Agents that can interfere with the process
of amyloid formation or target already formed amyloid assemblies are consequently of therapeutic
interest. In this context, a few endogenous proteins have been associated with an anti-amyloidogenic
activity. Here, we review the properties of transthyretin, apolipoprotein E, clusterin, and BRICHOS
protein domain which all effectively interfere with amyloid in vitro, as well as displaying a clinical
impact in humans or animal models. Their involvement in the amyloid formation process is discussed,
which may aid and inspire new strategies for therapeutic interventions.

Keywords: amyloid inhibition; endogenous proteins; transthyretin; apolipoprotein E; clusterin;
BRICHOS; amyloid-beta; IAPP; alpha-synuclein

1. Introduction

Amyloidosis refers to a variety of increasingly common human diseases, including
Alzheimer’s disease (AD), Parkinson’s disease (PD), and diabetes mellitus type 2 (T2D).
Amyloids are composed of insoluble proteinaceous material with a β-sheet rich fibrillar
morphology that can reach several microns in length and are typically between 5–10 nm
in diameter. They can arise from different types of proteins through a multistep process,
known as amyloidogenesis. Up to date, more than 30 different proteins and peptides have
been identified to form amyloid structures in vivo [1]. These polypeptides are encoded by
separate genes without sequence homologies or functional similarities. However, in their
amyloid form, they all acquire similar morphologies including a cross-β sheet structure
and similar tinctorial properties upon staining with thioflavin or Congo red [2].

Amyloid formation in general follows a polymerization process that can be described
by two basic models, being either linear (also known as isodesmic self-assembly) or
nucleation-dependent polymerization (Figure 1) [3]. The linear polymerization process is
initiated by a monomeric subunit followed by the continuous addition of monomers. The
successive incorporation of monomers to the growing polymers is energetically favorable
without the need for a preformed nucleus (Figure 1A). The formation of amyloid via the
linear path results in a hyperbolic curvature initiated at time zero. In contrast to this
reaction, the nucleation-dependent path of polymerization has a slow initial step in the
reaction kinetics, where several molecules assemble to form an oligomeric nucleus before
elongation is initiated (Figure 1B). This period is defined as a lag phase. Consequently,
the nucleus serves as a template for the addition of monomeric molecules. Regarding
the formation of an oligomeric species the energy barrier is significantly higher than the
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template-dependent incorporation of monomers onto a fibrillar end, and once enough initi-
ation sites have been formed, the process of elongation dominates the reaction. The rapid
process of elongation is followed by a saturation phase where the reaction reaches a steady
state when most monomers in the system have been converted into fibrillar structures and
where the association and dissociation rates are equal.
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sensus that prefibrillar structures, especially early soluble oligomers, induce higher tox-
icity than the mature fibrils [12–14]. The relative toxicity, however, seems to vary signifi-
cantly between different amyloids and is likely a function of both their properties as well 
as their site of deposition. For example, the total load of the Aβ-amyloid deposits in the 
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Figure 1. Schematic models of amyloid fibril formation. (A) Linear polymerization, where partially
unfolded or misfolded monomers assemble into short prefibrillar structures and by sequential
addition of monomers elongate into mature fibrils. (B) Nucleation-dependent amyloid formation,
where the monomers form soluble oligomeric nucleus during the lag phase, then assemble into
larger prefibrillar structures followed by elongation and subsequently a saturation phase where
mature fibrils are formed. Regarding some amyloid proteins, mature fibrils can serve as a template
for the formation of new nuclei, resulting in a rate-enhancing process known as surface catalyzed
secondary nucleation.

For most of the polypeptides, amyloid formation occurs via a nucleation-dependent
mechanism [4]. However, there is evidence of linear downstream polymerization leading
to amyloid formation, as it is described for transthyretin (TTR) [5]. In the case of some
amyloids, such as Aβ [6], α-synuclein [7], and IAPP [8] the surface of mature fibrils can
serve as sites that catalyze the formation of new nuclei and hence further enhance the rate of
the reaction. This mechanism is called surface-catalyzed secondary nucleation (SCSN) [6–9],
(see Figure 1B).

Amyloid formation in vivo frequently leads to pathological changes in the affected
organs, including tissue and cell degeneration and inflammation. Although the cell and
tissue damages vary between different amyloid forms, the associated pathological effects
are often linked to cytotoxic properties of amyloid structures. This has been observed
both in vitro, on various cell lines, and in vivo on animal models [1,10,11]. There is also
a consensus that prefibrillar structures, especially early soluble oligomers, induce higher
toxicity than the mature fibrils [12–14]. The relative toxicity, however, seems to vary
significantly between different amyloids and is likely a function of both their properties as
well as their site of deposition. For example, the total load of the Aβ-amyloid deposits in
the brain of an AD patient corresponds to only a few milligrams [15], nevertheless causing
neuroinflammation and massive degeneration of neuronal cells. In contrast, lysozyme-
amyloidosis may generate a total load of amyloid corresponding to several kilograms [16],
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but the pathological mechanism is rather a rupture of the organs due to a high load of
aggregates than an acute cytotoxic effect.

Experimental data on animal and cell models suggest that inhibition of amyloid formation
is essential for preventing or suppressing the progression of the pathological process [17,18].

In the quest to prevent amyloid formation, several different strategies have been
explored. Among these, a range of small molecules of both synthetic [19–21] and natu-
ral origin [22,23] have been evaluated. However, the main problem with most of these
compounds is the translation of laboratory observations into the clinic and application
in vivo, where problems of bioavailability and safety hamper their use. Another approach
is the development of specific anti-amyloid antibodies for immunotherapy, so far mostly
explored against Aβ in AD [24–26] and α-synuclein in PD treatment [27,28]. However,
most of these antibodies failed clinical trials due to the lack of efficiency in the improvement
of pathological conditions and safety problems (reviewed in [27,29]).

A small number of endogenous proteins that display amyloid-interfering properties
have potential therapeutic value, as they can serve as a more natural way of preventing
amyloid formation by promoting self-regulation of protein homeostasis. Among such
proteins are molecular chaperons and several proteins with diverse physiological functions,
including transport. In the early nineties, it was discovered that in extracellular fluids such
as cerebrospinal fluid (CSF) and serum, the highly amyloidogenic amyloid-β peptide (Aβ)
forms stable complexes with some proteins and does not aggregate into amyloid [30–32].
These proteins were also found colocalized with senile plaques, suggesting their involve-
ment in regulation and maintenance of amyloid-prone polypeptides, and that failure in
this process potentially could lead to pathological amyloid formation and deposition.

In this review, we summarize the information accumulated in the literature regard-
ing some of these proteins, which have been intensively studied in recent years, namely,
TTR [33–37], Apolipoprotein E (ApoE) [31,38–42], clusterin (also known as Apolipoprotein
J) [43,44], and the more recently identified BRICHOS protein domain [45–48]. Understand-
ing their role in pathology and their mechanisms of action can help in the development
of new therapeutic strategies. Therefore, we will give an overview of their physiological
function, their role in pathology with a special focus on the amyloid formation process, and
possible mechanisms of intervention.

2. Transthyretin

TTR is a 55 kDa homotetrameric protein circulating in the plasma and CSF. Its main
physiological function is to transport thyroid hormone thyroxine (T4) and retinol-binding
protein. TTR is produced mainly in the liver [49] wherefrom it is secreted into the blood
with concentration levels ranging between 4–7 µM. In the CSF, the concentration of TTR is
about 20 times lower and it is primarily synthesized in the choroid plexus [50]. TTR is also
expressed by the islet of Langerhans of the pancreas [51] as well as within the retina of the
eye [52]. TTR gene expression can also be found in Schwann cells, dorsal root ganglia [53],
and cortical and hippocampal neurons in response to Aβ-induced stress [54]. The structure
of TTR is well studied and was first solved by X-ray crystallography in 1978 [55] (Figure 2).
Each TTR monomer consists of 127 amino acid residues forming eight β-strands named
A-H and one short α-helix between E and F strands [55,56] (Figure 2A). The β-strands CBEF
and DAGH are arranged into two β-sheets. Two monomers form a dimer via hydrogen
bonds between antiparallel H-H’ and F-F’ strands. The functional tetramer is formed from
two dimers predominantly by hydrophobic interactions between the residues of A-B and
G-H loops, producing a central hydrophobic pocket with two binding sites for thyroxin
hormone [55,56] (Figure 2B). Both monomer–monomer and dimer–dimer interactions are
important for the stability of TTR [57].
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TTR also possesses intrinsic amyloidogenic features and its aggregation is linked to
several amyloid disorders including senile systemic amyloidosis (SSA), familial amyloid
cardiomyopathy (FAC), and familial amyloid polyneuropathy (FAP)—a hereditary disease
variant caused by one of over 100 known point mutations in the ttr gene [58–60]. The initial
and rate-limiting step in TTR aggregation is the dissociation of the native tetramer into
monomers that subsequently undergo conformational changes forming aggregation-prone
intermediates [61–65].

Paradoxically, being an amyloidogenic protein itself, it was found that TTR has an in-
hibitory effect on AD-associated Aβ aggregation via direct interaction with the latter [66–71].
This discovery suggested a protective role of TTR against AD, where a possible failure
of these properties could serve as a precondition for the disease development [32] (the
role of TTR in AD was recently reviewed by Giao et al. [72]). This hypothesis is further
supported by clinical data showing a significantly reduced level of TTR in the CSF of AD
patients compared to healthy individuals [73,74]. Moreover, the severity of the disease was
inversely correlated with the concentration of TTR [74]; however, no correlation was found
between the variants of TTR and AD [75].

Since then, numerous studies have confirmed the protective effect of TTR in animal
models of AD. Particularly, overexpression of human TTR in the widely used AD trans-
genic mouse model APP23 prevents cognitive impairment [76]. Stein et. al. showed that
transgenic Tg2576 mice that overexpress mutant amyloid precursor protein (APP) exhibit
upregulation of TTR expression, and chronic infusion of an anti-TTR antibody into the
hippocampus of these mice exacerbates Aβ pathology, as the concentration of free TTR
is decreased [77]. In addition, hemizygous TTR deletion in APPswe/PS1deltaE9 mice
resulted in earlier deposition of Aβ fibrils compared to control mice [78]. It has been
shown that the expression level of TTR, similar to Aβ-degrading neprilysin, is controlled
by the intracellular domain of APP [79]; thus, overexpression of APP in Tg2576 mice could
mediate the up-regulation of TTR [77].

The protective effect of TTR against Aβ-induced cytotoxicity has also been inves-
tigated in cellular models [35,67,80–82]. Together, these findings suggest a functional
connection between Aβ and TTR, and their interactions have been studied extensively
in vitro [33,34,37,69,70,83]. The results support an inhibiting effect of TTR on Aβ amyloid
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formation. However, in this context, there are several controversies in the field. By using
nanoparticle tracking, Yang et al., showed that partially aggregated Aβ binds to TTR more
efficiently than the monomeric or heavily aggregated form of Aβ, and monomeric TTR
binds more Aβ than tetrameric form [84]. The authors suggest a mechanism where the
EF-strand helix/loop of TTR tetramer acts as a sensor in the presence of Aβ oligomers,
the binding of which triggers destabilization of TTR tetramer and exposure of inner hy-
drophobic sheets, thus increasing the oligomer binding capacity and arresting their further
aggregation [84]. In contrast to this, Li et al., demonstrated that Aβmonomers bind to the
ligand-binding pocket of TTR, thus sequestering monomers from the oligomer formation
process [34]. At the same time, they also suggest that both tetrameric and monomeric TTR
can bind Aβ oligomers, with greater efficiency for TTR monomers in vitro [34]. In support
of this, some data suggest an inverse correlation between TTR stability and the inhibitory
potential on Aβ aggregation in vitro [69], and that TTR dissociation into monomers is
required for the inhibition of Aβ-induced cytotoxicity, while stable tetrameric variants are
nonefficient [82]. In contrast, others show that unstable TTR binds poorly to Aβ [85] and
that the stability of tetrameric TTR is critical in Aβ clearance by assisting its internalization
and degradation in lysosomes [86]. Moreover, oral administration of the TTR stabilizing
drug iododiflunisal promotes Aβ clearance, leading to reduced Aβ deposition and im-
proved cognitive functions in AD mouse models [87,88]. In this context, it is interesting to
note the work by Li et al. [34], where they show that in vitro the kinetically rather unstable
TTR-V122I variant is more efficient in inhibiting Aβ aggregation compared to the more
stable TTR-T119M and TTRV30M. However, even the most kinetically stable variant can
suppress Aβ aggregation at a TTR:Aβ ratio corresponding to 1:5. The authors also suggest
that the observed in vitro interactions of TTR monomers with Aβ oligomers might not
reflect in vivo situations where the tetrameric form of wild-type TTR is the dominating
variant and dissociation of TTR tetramer is not necessary for its inhibitory effect [34]. Given
that in vivo the extracellular Aβ concentration is much lower (within high picomolar-low
nanomolar range) and TTR concentration is ranging from 0.25–0.5 µM in CSF and 3–5 µM
in human serum, this should provide sufficient condition for performing its protective
activity against Aβ aggregation. However, studies on AD patients revealed an inability
of TTR to bind its natural ligand [89] and a decreased ratio of folded/monomeric TTR in
plasma [86], which suggests a deficit in functional TTR molecules. Thus, stabilizing the
TTR could represent one of the possibilities in AD therapy which is discussed in a recent
review by Saponaro et al. [90].

In a previous study, we showed that the inhibition of Aβ fibril formation by TTR
primarily involves the nucleation stage and results in the formation of ThT- negative non-
amyloid aggregates [37]. However, we also noted that TTR does not affect the process
of elongation (Figure 3A). More recently Ghadami et al., reported that TTR can inhibit
both primary and secondary nucleation of Aβ aggregation, at the same time confirming
our observation on the inability of TTR to affect the elongation [70]. Interestingly, by
modulating the conditions of nucleation as well as the concentration of TTR, essentially a
complete conversion into non-amyloid amorphous Aβ assemblies could be acquired [37].
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TTR targets both primary and secondary nucleation and re-directs the reaction towards the for-
mation of non-amyloid aggregates (modified from Nilsson et al., 2018 [37]), and (B) IAPP, where
TTR specifically targets the elongation process (modified from Wasana Jayaweera et al., 2021 [91])
amyloid formation.

Besides the inhibitory effect on Aβ aggregation, there is also evidence that TTR may
interfere with other amyloid-forming polypeptides. Recently, Pate et al., showed that both
engineered monomeric TTR and cG8 cyclic peptide, which is based on an Aβ-binding
domain of TTR, efficiently inhibits amylin aggregation, although both did not affect α-
synuclein [92]. Amylin or islet amyloid polypeptide (IAPP) aggregation is associated with
type 2 diabetes, where IAPP amyloid affects the islets of Langerhans accompanied by a
decreased number of β-cell [93–95]. Normally TTR is expressed by pancreatic α-cells [96],
and in much lower levels by β-cells [51]. Interestingly, increased TTR levels were found in
β-cell in type-2 diabetes patients’ pancreatic islets with heavy amyloid deposits [51].

In a recently published work, we showed that TTR affects the process of IAPP amyloid
formation by targeting elongation [91] (Figure 3B), which is in stark contrast to its effect
on Aβ (see Figure 3A,B) [37,70]. We also showed that the efficacy of TTR displays an
inverse correlation with thermodynamic stability, while no such correlation could be noted
regarding the rate of dissociation of the tetramer. However, the addition of TTR-stabilizing
drugs partly suppresses its efficiency [91] in contrast to the suggested beneficial effect on
Aβ [87,88], hence supporting that a partial unfolding is required for its inhibitory actions.
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These findings suggest that TTR can have an important contribution in regulating the
aggregation of certain amyloidogenic polypeptides in vivo. The interaction of TTR with
other amyloidogenic proteins, such as bacterial CsgA [97] and HypF-N [35], also indicates
its generic nature as an anti-amyloidogenic molecular chaperon.

However, the experimental data available for Aβ and IAPP suggest that although TTR
has a common anti-amyloidogenic property on these peptides, the underlying mechanisms
of inhibition might be different, and further investigations are needed to gain a better
understanding of these mechanisms.

The potential use of TTR as a target to improve its anti-amyloidogenic properties
should, however, be handled with care due to its intrinsic amyloidogenic features. Clinical
means to improve its anti-amyloidogenic features should consequently also make sure to
not enhance its intrinsic amyloidogenic features. The role of TTR as an amyloid-interfering
protein may however already be put to the test. The recent development within the
techniques of RNA interference has resulted in clinically approved treatments for FAP
where the endogenous TTR produced in the liver is suppressed by more than 90% [98].
Here the reverse question is raised where lack of TTR instead potentially may enhance the
formation of other amyloids such as Aβ or IAPP.

3. Apolipoprotein E

Apolipoprotein E (ApoE) is a 34 kDa lipid-binding and transport protein found in both
serum and CSF. There are two main sources of production of ApoE. In the periphery, the
majority of circulating ApoE is synthesized by the liver [99], while in the central nervous
system (CNS), it is mainly produced by glial cells [100]. Peripheral ApoE plays a critical
role in lipid metabolism by transporting lipoproteins into the lymph system and blood
and maintaining the cellular uptake of lipoproteins via its primary receptor LDLR (low-
density lipoprotein receptor) [101,102]. ApoE in the CNS promotes the transport of lipids
into neurons, thus participating in neuronal maintenance, synaptic remodeling, repair,
and lipid homeostasis in CNS [103,104]. Human ApoE exists in three isoforms—ApoE2,
ApoE3, and ApoE4, which are encoded by the three alleles ε2, ε3, and ε4, respectively [105].
The dominating isoform in the global population is ApoE3 with an allele frequency of
65–70%, while the ApoE4 variant is found within 15–20% of the population [106]. The
discovery of a strong genetic linkage to AD, where the ApoE4 variant was found to be
a high genetic risk factor for the development of the disease [39,105,107], brought this
protein into focus. Heterozygous carriers of ε4 allele have about a 2 to 3-fold higher risk of
developing AD compared to homozygous ApoE3 carriers, while for homozygous ε4 allele
carriers the risk increases about 10-fold compared to non- ε4 carriers [107] and 40–65%
of all AD patients are carriers of at least one copy of ApoE4 [108]. In contrast, ApoE2 is
considered protective [105] and the prevalence of AD development within this group is
lower as compared to ApoE3.

ApoE has been found co-localized with Aβ-amyloid plaques with relative prevalence
of ApoE4 > ApoE3 > ApoE2 [109,110]. These results suggested that ApoE might play a
specific role in Aβ amyloid formation and related AD pathology, which has been explored in
numerous studies [39–42,110–117]. The amino acid differences between the three isoforms
are only at positions 112 and 158, where ApoE2 has cysteine residues at both positions,
ApoE3 has a cysteine at positions 112 and an arginine at position 158, and ApoE4 has
arginine residues at both positions (Figure 4) [105,118,119].
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Figure 4. Full-length structure of Apolipoprotein E3 (PDB-ID: 2L7B). The N-terminal domain is
colored in blue where the light-blue region is the LDL-receptor binding site, and the C-terminal
domain is colored in green, where the light green region is the lipid-binding site. The red-colored
residues at 112 and 158 positions are the varying residues between the three ApoE variants.

These seemingly small differences in the sequence affect the ApoE receptor and
lipid binding abilities and functionality [105,120–122]. The ApoE molecule consists of
two distinct structural N- and C-terminal domains linked together by an unstructured
hinge region, which is supporting the mobility of the structure. The N-terminal domain
represents a bundle of four α-helixes, comprising positions 1–191, where the LDL-receptor
binding region is located (residues 134–150) [105,123]. The C-terminal amphipathic α-
helical domain consists of residues 210–299 with a largely exposed hydrophobic surface,
where the lipid-binding region is located within the residues 244–272 [105,123]. When
ApoE binds to the lipids the whole molecule undergoes conformational changes to adopt
a biologically active form, which is necessary for recognition and binding to the LDL-
receptors and internalization [124]. Although the isoform-specific residues are located
within the N-terminal domain, the preferences for lipid and lipoprotein binding are different
between the three ApoE isoforms. ApoE2 and ApoE3 variants are mostly associated with
high-density lipoproteins (HDL), while ApoE4 prefers low-density lipoproteins and very-
low-density lipoproteins (LDL, VLDL) [125]. These preferences are most likely attributed to
differential conformational changes of the whole ApoE molecule provided by the residues
at positions 112 and 158. The X-ray crystallography analysis showed that in the dominating
isoform-ApoE3 (associated with normal lipid and lipoprotein metabolism), there is a salt
bridge formation between the Arg-158 and Asp–154. This salt bridge seems to be critical
for LDL-receptor recognizing and binding [106,126]. In the ApoE2 variant, Arg to Cys
substitution at position 158 leads to disruption of the natural salt bridge and formation
of a new bridge between the Asp154-Arg150. This in turn impairs the binding ability of
ApoE2 to the LDL-receptor, which is associated with type III hyperlipoproteinemia [126].
In ApoE4, Arg112 causes a rearrangement of the N-terminal Arg61 side chain, which
is exposed towards Glu255 in the C-terminal domain leading to a salt bridge formation
between these two residues [127]. This interaction between the two domains is responsible
for the preferential binding of ApoE4 to VLDL [122,127]. In general, ApoE4 is shown to
have higher affinity to the lipids and lipoprotein particles, regardless of their size [122]. On
the other hand, it has been suggested that the unique interaction between the two domains
leads to accelerated catabolism of ApoE4 and consequently, elevated cholesterol and LDL
levels in plasma [122,127].

Lipid binding to the C-terminal is a requirement for the ApoE molecule to gain LDL-
receptor binding ability. When bound to the lipids, the C-terminal α-helices are oriented
perpendicularly to the acyl chain of the lipids [128,129]. For the N-terminal domain, several
models were suggested to adapt for lipid-bound ApoE. Calorimetric studies showed that
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ApoE gains an extended conformation due to the four-helix bundle opening, which allows
wrapping around the lipid bilayer [129]. In contrast to this, other studies suggested a
hairpin conformation of ApoE in the lipid-bound state [130–132]. In a more recent study by
Henry et al. [124], it was proposed that both the open and compact hairpin conformations
may co-exist in a dynamic equilibrium, which is shifted to the opened hairpin model in
the presence of the LDL-receptor. Thus, both conformations may be part of a regulation
mechanism of ApoE function at the surface of lipids [124].

Further, differences in stability between the ApoE variants indicate that ApoE4 is less
stable and that it also may aggregate into amyloid-like fibrils [133,134]. In contrast, a recent
study revealed no significant differences between the recombinant ApoE variants at the
structural or conformational level [120].

It has been shown that ApoE can directly interfere with the Aβ aggregation process
by inhibiting or slowing down fibril formation [39–42,113,116,135]. However, the impact of
this interaction on disease progression remains unclear. Several studies suggest that ApoE
acts as a pathological chaperone, although to different extents depending on the variant. For
example, studies on AD mouse models revealed that all ApoE-carrying AD mice developed
amyloid plaques with the highest load observed in ApoE4 animals, while the complete
knockout of the ApoE gene significantly reduced plaque formation and other signs of
disease [109,136]. In agreement with this, administration of ApoE-specific antibodies
promoted efficient clearance of Aβ plaques [137]. In contrast, several studies indicate that
ApoE plays an important role in the degradation and clearance of Aβ amyloid [110,111,
138,139]. For example, it has been shown that ApoE protects human pericytes against
Aβ-induced cytotoxicity [112] and maintains a receptor-mediated in-pericyte clearance of
Aβ aggregates [115], with significantly weaker effects detected for ApoE4 compared to the
other variants [112,115]. Interestingly, cells with the ε4 genotype expressed lower levels of
ApoE and exhibited a higher vulnerability to Aβ toxicity compared to cells with ε2 or ε3
genotype [112,140]. Moreover, a low level of ApoE has been considered as a general risk
factor for AD irrespective of isoform [141,142]. Therefore, low ApoE expression encoded
by the ε4 allele could explain its association to AD pathology as in this case the levels
of functional ApoE4 would be insufficient to perform its protective function. However,
reports on the levels of ApoE in AD also remain controversial. Several studies link low
ApoE levels in plasma to an increased risk of AD and dementia [143,144], while others
argue that the low levels are specifically associated with the ApoE4 isoform and that there
is no difference in ApoE levels in AD vs non-AD individuals [145]. Similarly, conflicting
results are reported for CNS ApoE levels in AD, shown to be either decreased [146–148],
increased [149–151], or unchanged [145,152].

In support of a protective role of ApoE, a recent case report described an individual
carrying the ApoE3 Christchurch variant with no signs of AD, despite expectations to
develop early-onset AD due to an aggressive familial presenilin mutation [153]. These
data further highlight the clinical importance of ApoE both in modulating the amyloid
formation and disease progression, as well as implying that ApoE generally has a protective
role against amyloid formation and toxicity, with a loss of function for ApoE4.

In vitro, the direct interaction of ApoE with Aβ has an inhibitory effect on the amyloid
formation process [41,42,83,135]. Our group recently reported that ApoE targets both the
process of Aβ nucleation and fibril elongation, and effectively prevents the maturation of
amyloids in a concentration-dependent manner [135] (Figure 5). This effect is pronounced
even at highly substoichiometric ratios of ApoE:Aβwith low nM concentrations of ApoE
and about 1000 times excess of Aβ. This finding indicates that ApoE most likely binds to
Aβ assemblies rather than monomers (Figure 5).
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Figure 5. Mechanisms of ApoE interference with amyloid fibril formation. The schematic presentation
in the upper panel shows that ApoE can target multiple steps of amyloid formation, including
primary nucleation, elongation, and secondary nucleation. The lower panel shows the effect of ApoE
concentration in interfering with amyloid formation process, where the higher concentration can
convert the amyloid protein into non-amyloid aggregates and the lower concentrations lead to the
production of amyloid fibrils with altered morphology.

Besides Aβ, only a few studies examined interactions of ApoE with other amyloid-
forming proteins [154–156]. Lei et al., showed earlier that ApoE can directly interact with
IAPP in vitro, and the effect on amyloid formation is dependent on ApoE concentration,
with higher concentrations promoting IAPP aggregation and lower concentrations inhibit-
ing it [154]. In contrast to this, our recent studies indicate that ApoE efficiently suppresses
IAPP amyloid formation in a concentration-dependent manner starting already at highly
sub-stochiometric concentrations. Upon increasing ApoE concentration in the reaction,
we observed the formation of mainly ThT-negative assemblies with amorphous morphol-
ogy [156]. Interestingly, in this study, we saw no difference in amyloid interfering ability
between the three ApoE isoforms. However, we showed that ApoE protects the cells
from IAPP-induced toxicity with the weakest effect observed in the ApoE4 variant. The
difference between the protective effects of ApoE isotypes is especially pronounced at low
nM concentrations and longer treatment time, where ApoE2 and ApoE3 still efficiently
protect the cells, but where ApoE4 almost completely loses this ability [156].

Another possible target of ApoE is α-synuclein, a protein involved in dementia with
Lewy bodies, including PD. However, the existing data are scarce and controversial. Gal-
lardo et al., showed that overexpression of human α-synuclein in transgenic mice induces
neurodegeneration and leads to a massive increase of ApoE and Aβ [157]. While this
could be a defensive response directed to reduce α-syn aggregation and protect from
PD, the authors showed that the elevation of ApoE levels is accompanied by Aβ aggre-
gation [157]. Another study showed that at very low concentrations ApoE can promote
α-synuclein aggregation, while higher concentrations have an inhibitory effect on the
aggregation process [155].

These and our data [135,156] indicate the importance of the concentration factor
of an amyloid inhibiting protein, where simply insufficient inhibition could lead to the
formation of more pathological species (see Figure 5, where in the presence of lower
concentrations of ApoE, the generated fibrils adopt a more diffuse morphology) and
trigger further aggregation of an amyloidogenic protein. In response to early amyloid
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formation, cells could possibly increase ApoE expression as a protective measure to halt
the aggregation process. Failure in raising ApoE levels could then lead to a sustained
amyloid formation process. Carrying the ApoE4 variant additionally increases this risk
due to its intrinsic properties and weaker protective ability, which can be observed on
cellular models [112,156].

Several ApoE-based therapeutic approaches have been suggested particularly for
AD and summarized in a recent review [158]. Among these approaches are gene editing
and gene therapy directed to recalibrate ApoE function via CRISPR-mediated or adeno-
associated virus-mediated gene delivery. By those methods, it is possible to edit ApoE4 allele
to ApoE3, replace ApoE4 by protective ApoE2 or overexpress ApoE2 in ApoE4 carriers, which
could play a compensatory role for loss of function ApoE4. Other suggested approaches
include restoring or tuning the function of ApoE via enhanced lipidation or targeted
modification of ApoE4 structure. Alteration of ApoE levels is also considered as a potential
disease-modifying therapy [158].

4. Clusterin

Clusterin, also known as Apolipoprotein J, is a well-conserved, 50 kDa heterodimer
protein [159]. It is mainly synthesized in the liver, prostate, and ovaries from where it is
secreted into the plasma [160,161]. The concentration of circulating clusterin in human
plasma is ~100 µg/mL, while it is present at only ~2 µg/mL in the CSF [162,163]. Clusterin
is primarily expressed and released from astrocytes in the CNS [159].

The structural properties of clusterin are not well understood, probably due to its
aggregation-prone nature. It is synthesized as a polypeptide comprised of 449 amino acids
with a 22-residue signal peptide at the N-terminus. The protein is cleaved between amino
residues 205 and 206 to generate two different subunits that remain connected via disulfide
bonds [164]. Furthermore, intrinsically disordered domains have been predicted at the N-
and C- termini of both subunits [164,165] (Figure 6).
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Figure 6. Schematic structure of Clusterin. The two subunits of clusterin are assembled anti-parallel
resulting in a heterodimeric molecule. The cysteine-rich centers are linked by five disulfide bridges
(black lines) and are surrounded by two predicted coiled-coil α-helices (green) and three predicted
amphipathic α-helices (blue). The N-linked glycosylation sites are indicated as yellow spots (adapted
from Jones et al., 2002 [166]).

The mature clusterin is highly N-glycosylated and due to a variable degree of glycosy-
lation, it displays a mass between 58.5–63.5 kDa when analyzed by mass spectrometry.

Together with ApoE, clusterin is one of the most abundant apolipoproteins in the
brain [159,166]. It participates in multiple biological processes in the body, including
removal of cellular debris [167], regulation of programmed cell death [168], lipid trans-
port [169], and exhibits a chaperon-like activity in several protein folding processes [169–171].
As mentioned, clusterin is mainly a secreted protein, but there are cytoplasmic and nuclear
forms that are activated under several stress conditions [172].
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Clusterin was associated with AD after identifying multiple genetic variations (single
nucleotide polymorphisms) in its CLU gene in late-onset AD patients in independent
studies [173–175]. However, the role of clusterin in AD remains unclear. In contrast to
TTR and ApoE, the levels of clusterin are consistently increased in blood plasma [176],
CSF [177], and in the affected brain areas [178,179] of AD patients. Interestingly, the
increase in clusterin levels was found to be proportional to the number of apoE4 alleles
in the brain of AD subjects, where low levels of ApoE could be compensated by elevated
levels of clusterin [146].

The involvement of clusterin in different signaling pathways, relevant for AD, is dis-
cussed in a recent review [159] where the dual role of clusterin is elucidated. On one hand,
clusterin has a protective role in AD by improving autophagy, regulating the proliferation
of neuronal precursors, and inhibiting TNFα-induced apoptosis in Akt signaling pathway.
On the other hand, clusterin can activate Wnt-PCP signaling pathway and cause JNK
activation, which mediates tau phosphorylation and Aβ neurotoxicity.

Clusterin is found colocalized with Aβ plaques and considered as one of the key
regulators of Aβmetabolism. However, the mechanisms of interaction between Aβ and
clusterin are not fully understood and studies often report controversial results. For ex-
ample, clusterin was reported to have a protective role by maintaining Aβ clearance [180],
reducing its toxicity by inhibiting amyloid assembly [43], and preventing senile plaque for-
mation [181]. In contrast to this, clusterin has been reported to promote fibrillogenesis [182]
and the knock-out of the ApoJ gene reduced fibrillary Aβ, thus preventing Aβ-induced
neuronal cell death [159]. However, it is noteworthy that although clusterin-knockout
AD mice have less Aβ accumulation and plaque formation in the cerebral cortex and
hippocampus, they develop cerebral amyloid angiopathy (CAA) as Aβ accumulates in
the cerebrovasculature [183]. In a healthy brain, most of Aβ is cleared by vascular trans-
port across the blood–brain barrier (BBB), and only a small fraction of Aβ is removed via
perivascular clearance mechanism [184]. The clearance of Aβ across the BBB is mediated by
clusterin by binding and subsequent transport via low-density lipoprotein-related protein 2
(LRP2) [44]. In the absence of clusterin, a proper clearance of Aβ fails and is instead shifted
to the perivascular pathway [183].

The amyloid-interfering property of clusterin depends on the ratio of clusterin to
substrate in vitro. At high clusterin levels and a molar ratio of 1:10 of clusterin to substrate,
clusterin exhibits strong anti-amyloidogenic properties by inhibiting fibril formation, as
well as protecting the cells against amyloid-induced cytotoxicity. However, at much lower
concentrations of clusterin and with an excess of the amyloidogenic protein, clusterin
promotes the amyloid formation, and thus enhances cytotoxic effects caused by these
clusterin-amyloid complexes [185]. The affinity of clusterin to the substrate is rather
conformation-specific than substrate-specific as it binds to intermediate species during the
fibril-forming process (Figure 7) and can interfere with a wide range of amyloid-forming
proteins including Aβ, α-syn, calcitonin, and the short coiled-coil β [43,185].
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Figure 7. Schematic illustration of clusterin on the aggregation kinetics of Aβ. Clusterin perturbs the
amyloid formation process by binding to fibril ends, thus inhibiting the elongation phase (modified
from Scheidt et al., 2019 [186]).

The inhibitory effect of clusterin has been shown also on tau fibrillization in vitro, and
the protective effect of clusterin against tau pathology in an AD mouse model [187]. This
supports the hypothesis that clusterin can have a generic protective role against protein
aggregation. However, it is not clear whether the modulatory effects on Aβ aggregation
and tau pathology by clusterin occur independently during AD or if it is linked with a
common mechanism.

From the experimental data available today one can conclude that the important
factor in regulating amyloid formation may not only be the absolute levels of clusterin
but rather the ratio of clusterin/amyloid-forming protein. Even the significantly increased
protein production, which is most likely a protective response of the body to the elevated
harmful amyloidogenic protein, can be consumed rapidly and competed by progressively
elevating levels of amyloidogenic protein. As it has been shown on APP23 mice, peripheral
administration of clusterin reduces insoluble Aβ and CAA load in the brain [188] and thus
could have been considered as a therapeutic intervention in the human clinic.

Taken together, clusterin has a good therapeutic potential for AD and possibly, other
amyloid-related disorders. Detailed understanding of the role of clusterin in different
cell signaling pathways associated with these pathologies and the mechanisms of in-
teraction with the amyloid-forming proteins will help develop approaches that can en-
hance beneficial properties of clusterin which will lead to reversion or normalization of
pathological processes.

5. Brichos

BRICHOS is a 100 amino acid residue protein domain found in 12 protein families
including over 300 proteins (Figure 8) [189]. The name BRICHOS was derived from
its initial discovery on the proteins called Bri2, Chondromodulin-I, and proSurfactant
protein C (proSP-C). Bri2 is expressed in neural tissue and related to familial British
dementia (FBD) and familial Danish dementia (FDD). Chondromodulin-I is associated
with chondrosarcoma, while ProSP-C and its mature form SP-C are linked to interstitial
lung disease [190,191]. BRICHOS family proteins have an overall conserved architecture
containing five regions: an N-terminal cytosolic part, a hydrophobic transmembrane part,
a linker region, BRICHOS, and C-terminal, with the exception for proSP-C which is lacking
the C-terminal [45]. Although the residual conservation is low among the regions from the
different protein families, which indicates the substantial differences in functionalities of
these proteins, the BRICHOS domain is the most conserved within all families (51–83%
average pairwise percent identities), suggesting a common function of this region for all
families [189]. Moreover, all BRICHOS domains have three strictly conserved residues,
one aspartic acid and two cysteines. These cysteines form a disulfide bridge in proSP-C
BRICHOS and are predicted to be the same for BRICHOS from other families [66].



Biomolecules 2022, 12, 446 14 of 25

Biomolecules 2022, 11, x FOR PEER REVIEW 14 of 26 
 

Proteolytic processing of BRICHOS proteins results in the release of different pep-
tides from C-terminal, such as Bri23 functional peptide from Bri2. Further processing can 
also release the BRICHOS domain to extracellular space [191,192]. 

 
Figure 8. 3D ribbon backbone conformation of proSP-C BRICHOS domain (PDB-ID: 2YAD). The 
five β-strands (β1–β5) are shown in blue and the two α-helices (α1 and α2) in green. 

Among the BRICHOS containing proteins, proSP and BRI families are the most stud-
ied for BRICHOS function. It is believed that the physiological role of BRICHOS is acting 
as a chaperone during the protein folding process, preventing them from misfolding and 
aggregation. ProSP-C and Bri2 contain an amyloidogenic segment and it is hypothesized 
that BRICHOS domain prevents these segments from forming aggregates [193,194]; how-
ever, the anti-amyloidogenic properties of BRICHOS are not limited to its precursor pro-
teins and have been extensively studied in relation to AD-associated Aβ aggregation 
[45,46,48,66,193,195]. 

ProSP-C, a 21kDa transmembrane protein, is expressed and secreted from the pul-
monary alveolar type II cells and eventually cleaved to form a 35 residue of lipophilic 
mature peptide SP-C in the alveolar space to stabilize surfactants at low lung volumes 
[196–198]. Under physiological conditions, the poly-Val segment of the native proSP-C is 
prone to form amyloid aggregates. The BRICHOS prevents the poly-valine folding to β-
sheets and forms a stable α-helix structure [194,199]. Mutations of the proSP-C BRICHOS 
domain occurring either within the linker region or in the BRICHOS sequence leads to 
amyloid aggregations of SP-C that causes interstitial lung disease and lung fibrosis 
[191,198,200] The most common mutation is I73T in the linker between the transmem-
brane and BRICHOS regions. SP-C isolated from lung surfactant forms amyloid aggre-
gates in vitro; however, when co-incubated with proSP-C BRICHOS these aggregates are 
not formed [201]. 

Among the BRICHOS proteins, the Bri2 and Bri3 of the BRI family play a significant 
role in the prevention of neurodegenerative diseases [47,193,202,203]. These proteins are 
highly expressed in the brain. The Bri2 BRICHOS domain is shown to bind to Bri23 pep-
tide that is released from the C-terminal, preventing its aggregation [47,193]. Mutations in 
Bri2 result in extended C-terminal, the cleavage of which gives rise to two different 34 
residue peptides ABri or ADan. These peptides form amyloid-like deposits in the brain 
and are associated with FBD and FDD, respectively [204]. They also cause cell toxicity and 
affect synaptic plasticity of neurons similar to AD-related Aβ [205]. However, there are no 
data available about an interaction between the BRICHOS domain and ABri or ADan pep-
tides. In addition, at least in the case of FDD, an increased APP processing and signifi-
cantly increased Aβ suggest that AD and FDD can share a common mechanism [206]. It is 
noteworthy that at physiological conditions, both Bri2 and Bri3 interact with APP pre-
venting its pathological cleavage and halting the release and aggregation of Aβ peptide 

Figure 8. 3D ribbon backbone conformation of proSP-C BRICHOS domain (PDB-ID: 2YAD). The five
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Proteolytic processing of BRICHOS proteins results in the release of different peptides
from C-terminal, such as Bri23 functional peptide from Bri2. Further processing can also
release the BRICHOS domain to extracellular space [191,192].

Among the BRICHOS containing proteins, proSP and BRI families are the most studied
for BRICHOS function. It is believed that the physiological role of BRICHOS is acting as
a chaperone during the protein folding process, preventing them from misfolding and
aggregation. ProSP-C and Bri2 contain an amyloidogenic segment and it is hypothe-
sized that BRICHOS domain prevents these segments from forming aggregates [193,194];
however, the anti-amyloidogenic properties of BRICHOS are not limited to its precursor
proteins and have been extensively studied in relation to AD-associated Aβ aggrega-
tion [45,46,48,66,193,195].

ProSP-C, a 21kDa transmembrane protein, is expressed and secreted from the pul-
monary alveolar type II cells and eventually cleaved to form a 35 residue of lipophilic ma-
ture peptide SP-C in the alveolar space to stabilize surfactants at low lung volumes [196–198].
Under physiological conditions, the poly-Val segment of the native proSP-C is prone to
form amyloid aggregates. The BRICHOS prevents the poly-valine folding to β-sheets and
forms a stable α-helix structure [194,199]. Mutations of the proSP-C BRICHOS domain
occurring either within the linker region or in the BRICHOS sequence leads to amyloid
aggregations of SP-C that causes interstitial lung disease and lung fibrosis [191,198,200] The
most common mutation is I73T in the linker between the transmembrane and BRICHOS
regions. SP-C isolated from lung surfactant forms amyloid aggregates in vitro; however,
when co-incubated with proSP-C BRICHOS these aggregates are not formed [201].

Among the BRICHOS proteins, the Bri2 and Bri3 of the BRI family play a significant
role in the prevention of neurodegenerative diseases [47,193,202,203]. These proteins are
highly expressed in the brain. The Bri2 BRICHOS domain is shown to bind to Bri23 peptide
that is released from the C-terminal, preventing its aggregation [47,193]. Mutations in Bri2
result in extended C-terminal, the cleavage of which gives rise to two different 34 residue
peptides ABri or ADan. These peptides form amyloid-like deposits in the brain and are
associated with FBD and FDD, respectively [204]. They also cause cell toxicity and affect
synaptic plasticity of neurons similar to AD-related Aβ [205]. However, there are no data
available about an interaction between the BRICHOS domain and ABri or ADan peptides.
In addition, at least in the case of FDD, an increased APP processing and significantly
increased Aβ suggest that AD and FDD can share a common mechanism [206]. It is note-
worthy that at physiological conditions, both Bri2 and Bri3 interact with APP preventing
its pathological cleavage and halting the release and aggregation of Aβ peptide [207,208].
It is still not clear whether ABri or ADan alone can cause the disease or a loss of function
of the Bri2 protein, and thus affected processing of APP and Aβ aggregation also could
contribute to the pathology [204,209–211].
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An increased overall level and deposition of Bri2 in amyloid plaques of AD brains has
been observed at early stages of AD development, which is accompanied by the decreased
presence of Bri2-APP complexes, suggesting a loss of function of Bri2 during AD [48]. In
contrast to Bri2, the overall levels of Bri3 are shown to be decreased in AD, although the
deposition with the amyloid plaques is similar for both Bri2 and Bri3 [202]. BRICHOS from
both Bri2 and Bri3 interact with Aβ in neurons and inhibit Aβ fibrillization in vitro, but
Bri3 shows less efficiency compared to Bri2 [202,203], suggesting a different role for Bri2
and Bri3 BRICHOS in Aβ pathology.

Studies on transgenic Drosophila showed that co-expression of Aβ42 and BRICHOS
domain in the CNS delays the aggregation of Aβ42 and significantly improves both lifespan
and locomotor function compared with only Aβ42 expressing flies [212]. Moreover, BRI-
CHOS increases the ratio of soluble:insoluble Aβ42, binds to Aβ aggregates, and efficiently
reduces the neurotoxic effects of Aβ42 in the fly brains. [195,212]. However, the BRICHOS
from Bri2 exhibits more efficiency than the BRICHOS from proSP-C [195].

In vitro, recombinant proSP-C BRICHOS and Bri2 BRICHOS directly interact with Aβ42,
significantly reducing its aggregation already at substoichiometric levels of BRICHOS [213].

Interestingly, different quaternary structures of BRICHOS affect qualitatively different
aspects of protein misfolding and toxicity [214]. Particularly, Bri2 BRICHOS monomers
potently prevent Aβ-induced neuronal network toxicity, while dimers strongly suppress
Aβ fibril formation, and higher molecular weight-oligomers efficiently inhibit non-fibrillar
protein aggregation [214]. It has been shown also that Bri3 BRICHOS forms more and
larger oligomers and prevents non-fibrillar protein aggregation better than Bri2 BRICHOS
oligomers, which explains its lower efficiency in suppressing Aβ42 fibrilization compared
to Bri2 BRICHOS [203].

The mechanism by which BRICHOS inhibits Aβ amyloid formation is explored in
several studies. Cohen et al., showed that BRICHOS specifically inhibits surface catalyzed
secondary nucleation by binding to the surface of Aβ42 fibrils [213]. This interaction breaks
the catalytic cycle and thus suppresses the continuous production of neurotoxic oligomers.
The aggregation reaction instead is redirected towards end-point mature fibril formation,
which involves only primary nucleation and elongation [213]. Later it has been shown that
while the BRICHOS from proSP-C inhibits only secondary nucleation, the BRICHOS from
Bri2 targets both secondary nucleation and fibril elongation of Aβ42 by binding to both
fibril surface and fibril ends, respectively [215] (Figure 9). This difference between the two
BRICHOS is reflected in the study on Drosophila, where the protective potential of Bri2
BRICHOS against Aβ-induced pathology was higher compared to proSP-C BRICHOS [195].
These findings suggest that although BRICHOS from different precursor proteins share
common features, they show, however, selectivity towards their amyloidogenic substrates
with an optimal efficiency corresponding to the areas of physiological activity.
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Recent studies on mice showed that peripherally administered recombinant BRICHOS
can pass over the BBB [216], and the delivery can be enhanced by focused ultrasound and
microbubbles [217]. The delivered BRICHOS is uptaken by hippocampal neurons. More-
over, a specifically designed Bri2 BRICHOS mutant (R221E) that forms stable monomers
selectively blocks the production of toxic oligomers during Aβ42 aggregation. In the
presence of this BRICHOS variant, the oligomers of wild type Bri2 BRICHOS are partly
disassembled into monomers, leading to potentiated prevention against Aβ42-induced tox-
icity [218]. These results could have therapeutic significance in suggesting that the delivery
and the activity of endogenous molecular chaperones can be modulated to enhance their
anti-amyloid properties.

The inhibitory activity of BRICHOS has recently been explored also on IAPP aggre-
gation and toxicity [219]. The study shows a high expression of Bri2 in human pancreatic
islets and β-cells, as well as co-localization of Bri2 with IAPP both intracellularly and in the
islet amyloid deposits from type 2 diabetes patients. Moreover, BRICHOS showed a strong
inhibitory effect on IAPP amyloid formation in vitro by targeting secondary nucleation
and redirecting the reaction towards formation of amorphous aggregates. It also reduced
IAPP-induced toxicity both in cell lines and in a Drosophila model [219]. These findings
extend the knowledge on BRICHOS role and properties and suggest that it can be an
important therapeutic target not only for AD or type 2 diabetes but probably for other
amyloidoses, which need further investigations.

6. Concluding Remarks

Amyloid-related disorders are complex pathologies involving the impairment of
many biological mechanisms. Each of these diseases has unique characteristics and at
the same time, they share many common and overlapping mechanisms, such as protein
misfolding, aggregation and deposition, tissue degeneration, and inflammation. Moreover,
the cases with the coexistence of two or more conventionally distinct pathological features
are not uncommon, for example, type-2 diabetes and AD/dementia [220], or AD with
synucleinopathy [221]. Currently, there is no efficient cure for the majority of amyloid-
related disorders. Under physiological conditions, many intrinsic regulatory mechanisms in
the body prevent protein from misfolding and abnormal aggregation. Several endogenous
proteins have been found to play a key role in these mechanisms by acting as molecular
chaperons with strong anti-amyloidogenic activities. Failures in the function of these
proteins could become a trigger for disease initiation and/or progression. In the current
review, we discussed some of these proteins that have been more extensively studied.
Evaluation of available data allows us to conclude that each of these proteins is involved
in the regulation and control of several amyloidogenic proteins, often by overlapping
or complementary mechanisms, and most likely, their synergistic functioning helps to
maintain normal protein homeostasis and protection from pathological alterations in
the body. In vivo, their amyloid interfering effect should consequently be viewed as
an ensemble that simultaneously can target different parts in the path from a native
monomer to a mature fibril. Experimental data show that these endogenous proteins have
potential therapeutic value in the treatment of amyloid-related diseases. Their endogenous
production is an advantage as they are already at the correct location. However, their
targeted modulation or exogenous administration are possible modes of intervention.
Thus, understanding the mechanisms of action for these proteins will help to develop
new therapeutic approaches that can tune the intrinsic regulatory mechanisms towards
prevention of the disease development and reversion of pathological processes towards
normalization.
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