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Abstract: Prostate cancer is the most common cancer in men in western countries, and its incidence is increasing steadily 
worldwide. Molecular changes including both genetic and epigenetic events underlying the development and progression 
of this disease are still not well understood. Epigenetic events are involved in gene regulation and occur through different 
mechanisms such as DNA methylation and histone modifi cations. Both DNA methylation and histone modifi cations affect 
gene regulation and play important roles either independently or by interaction in tumor initiation and progression. This 
review will discuss the genes associated with epigenetic alterations in prostate cancer progression: their regulation and 
importance as possible markers for the disease.
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Introduction
Prostate cancer is a major public health problem, as it is the most common cancer diagnosed in men 
and the leading cause of cancer deaths in the United States. Although recent discoveries in cancer genet-
ics have improved our understanding of prostate carcinogenesis, much remains to be explained concern-
ing the molecular and genetic events important in prostate cancer progression.

Epigenetics is defi ned as the study of heritable changes in gene expression that are not explained by 
changes in DNA sequence. Three important mechanisms lead to epigenetic events: DNA methylation, 
histone modifi cation, and RNA-associated silencing. Among these mechanisms, DNA methylation and 
histone modifi cation are related to chromatin remodeling have been extensively studied, both often 
interacting for the control of gene expression (Jones and Baylin, 2002; Santos et al. 2005; Zhang and 
Dent, 2005). Unlike genetic alterations, which are permanent alterations of DNA sequence, epigenetic 
changes in tumor and normal cells may have “phenotypic plasticity”. This allows cells to alter their 
gene expression pattern and adapt to their environment.

In recent years, with the availability of new technologies to further understand the molecular mech-
anisms in cancer, it has become clear that epigenetic events play a crucial role in cancer (Feinberg and 
Tycko, 2004). In prostate cancer, it has been shown that DNA methylation and histone modifi cation are 
important epigenetic mechanisms for changes in gene regulation that can lead to tumorigenesis. These 
two mechanisms, closely related, sometimes interact to control gene expression (Watanabe et al. 2006; 
Li and Dahiya, 2007).

In this review, we discuss some of the genes that have been described to frequently be dysregulated 
in prostate cancer as a consequence of aberrant epigenetic alterations such as DNA methylation and 
histone modifi cations.

Prostate Cancer: Carcinogenesis
In general, prostate cancer has been described as heterogeneous and multifocal, with different clinical 
and morphological characteristics (Ruijter et al. 1996). Although prostate cancer is generally an indolent 
disease, 25%–30% of tumors are clinically aggressive (Greenlee et al. 2001; Coffey, 1993).

Prostate cancer is thought to occur initially as an androgen-dependent tumor that, in some cases, can 
progress to a highly invasive androgen-independent tumor. When the disease is advanced, the tumor 
spreads locally, metastasizes to the pelvic lymph nodes, and to distant areas like the bone. Once metastasis 
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is initiated, prostate cancer is incurable (Zetter, 
1990; Rinker-Schaeffer et al. 1994; Arnold and 
Isaacs, 2002). During prostate carcinogenesis, 
multiple cellular and molecular events including 
genetic changes occur (De Marzo et al. 2003a).

In adults, two main types of prostate disease 
occur: benign prostatic hyperplasia (BPH) and 
prostate cancer, which is believed to derive from 
prostatic intraepithelial neoplasia (PIN) lesions 
(Untergasser et al. 2005; Chrisofos et al. 2007). 
Based on their relationship to prostatic disease, 
three distinct morphological zones have been 
described in the prostate: (i) the peripheral zone, 
primarily the site where prostate carcinoma arise; 
(ii) the transition zone, where BPH mainly occurs; 
and (iii) the central zone which is relatively resis-
tant to carcinoma and other disease (McNeal, 1969; 
McNeal, 1988). In prostate cancer development, 
transformation occurs from benign epithelial 
glands to pre-malignant lesions and to invasive 
carcinoma. Some morphological lesions have been 
proposed as potential precursor of prostate cancer, 
such as high-grade PIN (Chrisofos et al. 2007) and 
proliferative inflammatory atrophy (PIA) (De 
Marzo et al. 1999; De Marzo et al. 2003b).

Background on Epigenetic Events
Epigenetic mechanisms such as DNA methylation 
and histone modifi cation play an essential role in 
many molecular and cellular alterations associated 
with the development and progression of prostate 
cancer (Rennie and Nelson, 1999; Li et al. 2005; 
Schulz and Hatina, 2006). Although, the majority 
of the epigenetic changes, as discussed below, 
occur in prostate cancer, some changes have been 
characterized in BPH and recent data showed a 
unique set of genes associated with BPH progres-
sion (Li and Dahiya, 2007; Prakash et al. 2002). 
The role of methylation in regulating alterations 
of gene expression in BPH has not been estab-
lished, however.

DNA methylation refers to the covalent bound-
ing of a methyl group specifi cally to the dinucleo-
tide CpG. This is catalyzed by the family of 
enzymes, the DNA methyltransferases. It is thought 
that DNA methylation alters chromosome structure 
and defi nes regions for transcriptional regulation. 
Clusters of CpG sites are found dispersed around 
the genome and are referred to as CpG islands, 
stretches of DNA ranging from 0.5 to 5 kb with a 
GC content of at least 50% (Cross and Bird, 1995). 

These islands are found in the promoter region of 
about 60% of genes, in exons and introns, and in 
repetitive elements. Most CpG islands in the pro-
moter regions are unmethylated whereas CpG 
islands in intronic regions and repetitive sequences 
are heavily methylated, perhaps to help the cell 
identify regions for gene transcription.

Two types of DNA methylation alterations have 
been demonstrated in human cancers. The fi rst 
refers to global hypomethylation where the 
genomes of cancer cells show decreased methyla-
tion compared to normal cells (Ehrlich, 2002). This 
hypomethylation is primarily due to the loss of 
methylation in repetitive elements and other non-
transcribed regions of the genome, which results 
in genomic instability. The second type of meth-
ylation alteration in cancer cells is the methylation 
of CpG islands that lie in promoter regions of tumor 
suppressor and other regulatory genes that are 
normally unmethylated. The promoter regions of 
these genes are inactivated by methylation and their 
gene expression silenced. This is referred to as gene 
hypermethylation.

Alterations in DNA methylation often work in 
concert with changes in chromatin structure 
modulated through histone modifi cation to silence 
gene expression. DNA methylation allows for 
the binding of DNA methylation-specifi c binding 
proteins such as MECP2, MBD1, MBD2, which 
acts to recruit inhibitors and induce histone modi-
fi cation to its inactive state (Watanabe et al. 2006; 
Li and Dahiya, 2007). In addition, methylation in 
or near promoter sites may work to directly inhibit 
the binding of transcription factors to their recog-
nition sequences (Attwood et al. 2002).

Hypermethylation and Prostate 
Cancer
DNA hypermethylation has been the most common 
and best-characterized epigenetic event in cancer, 
including prostate cancer. In prostate cancer, a large 
number of genes have been found hypermethyl-
ated. These genes are correlated with pathological 
grade or clinical stage, and thought to contribute 
to initiation and progression of the disease. These 
genes, shown in Table 1 and discussed below, are 
involved in a variety of cellular pathways such as 
DNA damage repair (Glutathione S Transferase 
P1; O6-Methylguanine-DNA-Methyltransferase), 
signal transduction (RASSF1A), adhesion (Endo-
thelin Receptors, E-cadherin, CD44, Adenomatous 
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Polyposis Coli gene, and galectins), hormonal 
responses (Retinoic Acid Receptor; Androgen 
Receptor, and Estrogen Receptor), apoptosis 
(Death-Associated Protein Kinase), cell growth, 
invasion and metastasis (Tissue Inhibitors of 
Metalloproteinases, and galectins), and cell cycle 
control (cyclins, cyclin dependent kinases, and 

their inhibitors). A schematic depicting the different 
stages in prostate cancer and related hypermethyl-
ated genes is shown in Figure 1.

Glutathione S transferases
The glutathione S transferases (GSTs) are a family of 
enzymes involved in intracellular detoxifi cation of 

Table 1. Summary of genes frequently hypermethylated in prostate cancer.

Genes/pathways Function Methylation frequency
DNA damage repair   
Glutathione S Transferase Pi (GSTP1) Intracellular detoxifi cation 70% to 100%
O-6-Methylguanine DNA-Methyltransferase 
(MGMT)

Remove alkyl adducts from
O6-guanine

0% to 75%

Cell adhesion   
Endothelin Receptor B (ENDRB) Tumor suppressor 38% to 83%
E-cadherin (CDH1) Tumor suppressor: invasion

and metastasis
13% to 70%

CD44 Tumor suppressor: metastasis 33% to 68%
Adenomatous Polyposis Coli (APC) Tumor suppressor 27% to �85%

Hormonal responses   
Retinoic Acid Receptor beta (RARβ) Tumor suppressor 30% to 90%
Androgen Receptor (AR) Hormone regulation 0% to 28%
Estrogen Receptor Alpha (ERα) Hormone regulation 19% to 95%
Estrogen Receptor Beta (ERβ) Hormone regulation �20% to 100%

Signal transduction   
Ras association domain family 1A (RASSF1A) Tumor suppressor: cell growth 53% to 100%
Death-Associated Protein Kinase1 (DAPK1) Regulator of cell death 1% to 36%

Cell growth, invasion, metastasis   
Tissue Inhibitors of Metalloproteinase-2 (TIMP-2) Tumor suppressor 78.5%
Tissue Inhibitors of Metalloproteinase-3 (TIMP-3) Tumor suppressor 6% to 96.6%

Cell cycle   
CDKN2A/p16 Tumor suppressor 3% to 66%
CDKN1C/p57 Tumor suppressor 56%
CDKN1A/p21 Tumor suppressor 6%
CDKN1B/p27 Tumor suppressor 6%
Cyclin D2 Cell cycle regulator 32%
14-3-3sigma (SFN) Cell cycle regulator 40% to 100%

References: (GSTP1): Kang, 2004; Woodson, 2004a; Yamanaka, 2003; Yegnasubramanian, 2004. (MGMT): Kang, 2004; Konishi, 2002; 
Maruyama, 2002; Yamanaka, 2003; Yegnasubramanian, 2004. (ENDRB): Jeronimo, 2003; Nelson, 1997; Woodson, 2004a; Yegnasubramanian, 
2004. (CDH1): Li, 2001; Maruyama, 2002; Woodson, 2004b. (CD44): Kito, 2001; Woodson, 2004a, 2004b. (APC): Kang, 2004; Maruyama, 
2002; Yegnasubramanian, 2004. (RARβ): Maruyama, 2002; Nakayama, 2001; Yamanaka, 2003; Woodson, 2004a. (AR): Kinoshita, 2000; 
Nakayama, 2000; Sasaki, 2002; Yamanaka, 2003. (ERα): Li, 2000; Sasaki, 2002; Yegnasubramanian, 2004. (ERβ): Nojima, 2001; Sasaki, 
2002; Zhu, 2004. (RASSF1A): Kang, 2004; Kuzmin, 2002; Liu, 2002; Maruyama, 2002; Woodson, 2004a and 2004b ; Yegnasubramanian, 
2004. (DAPK1): Kang, 2004; Maruyama, 2002; Yamanaka, 2003. (TIMP-2): Pulukuri, 2007. (TIMP-3): Jeronimo, 2004;Yamanaka, 2003. 
(CDKN2A/p16): Jarrard, 1997; Konishi, 2002; Maruyama, 2002. (CDKN1C/p57): Lodygin, 2005. (CDKN1A/p21): Konishi, 2002. (CDKN1B/p27): 
Konishi, 2002. (Cyclin D2): Padar, 2003. (SFN): Henrique, 2005; Lodygin, 2004; Mhawech, 2005.



316

Diaw et al

Gene Regulation and Systems Biology 2007:1 

xenobiotics and carcinogens by conjugation to 
glutathione, ultimately protecting cells from DNA 
damage and cancer initiation (Rushmore and Pickett, 
1993; Berhane et al. 1994). Several isoforms of human 
GST have been described: fi ve cytosolic forms—alpha, 
mu, pi, sigma, and theta—and one membrane form. 
Among these genes, pi isoform (GSTP) is the most 
ubiquitously expressed and well-studied gene (Hayes 
and Pulford, 1995; Henderson et al. 1998).

In prostate cancer, decrease or loss of GSTP1 
expression as a result of gene promoter methylation 
is the most frequent epigenetic alteration observed 
(Lee et al. 1994; Maruyama et al. 2002; Yamanaka 
et al. 2003; Kang et al. 2004; Woodson et al. 2004a; 
Yegnasubramanian et al. 2004). Silencing of GSTP1 
has been shown in 70% to 100% of cancerous lesions, 
50%–70% of PIN lesions, whereas it has been rarely 
detected in normal prostate or BPH tissues (Brooks 

et al. 1998; Jeronimo et al. 2001; Jeronimo et al. 2002; 
Yamanaka et al. 2003; Nakayama et al. 2003; Goeman 
et al. 2003). Recently, GSTP1 gene methylation has 
been found in a subset of PIA lesions, which are 
believed to be a precursor for tumors (Nakayama 
et al. 2003). Also, racial differences have been cor-
related to GSTP1 methylation status (Woodson et al. 
2003; Woodson et al. 2004b).

O6-Methylguanine-DNA-
Methyltransferase
The DNA-alkyl repair gene O6-Methylguanine-
DNA-Methyltransferase (MGMT) is involved in 
DNA damage repair; it removes mutagenic and 
cytotoxic alkyl adducts from O6-guanine in DNA 
(Pegg, 1990; Esteller and Herman, 2004). Hyper-
methylation of the MGMT promoter leads to the 

Figure 1. BPH: Benign Prostatic Hyperplasia; PIA: Proliferative Infl ammatory Atrophy; PIN: Prostatic Intraepithelial Neoplasia; GSTP1: 
Glutathione S Transferase Pi; MGMT: O-6-Methylguanine DNA-Methyltransferase; ENDRB: Endothelin Receptor B; CDH1: E-cadherin - 
CD44; APC: Adenomatous Polyposis Coli; RARβ: Retinoic Acid Receptor beta; AR: Androgen Receptor; ERα: Estrogen Receptor; ERβ: 
Alpha Estrogen Receptor Beta; RASSF1A: Ras association domain family 1A; DAPK1: Death-Associated Protein Kinase1; TIMP-2: Tissue 
Inhibitors of Metalloproteinase-2; TIMP-3: Tissue Inhibitors of Metalloproteinase-3; SFN: 14-3-3sigma.
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loss of its function in various carcinomas (Soejima 
et al. 2005); however, prostate cancer data are not 
clear. Indeed, some studies have reported a lack of 
signifi cant MGMT methylation in prostate tumors 
(Maruyama et al. 2002; Yamanaka et al. 2003; 
Yegnasubramanian et al. 2004), whereas others 
have detected moderate to high levels (Kang et al. 
2004; Konishi et al. 2002).

RASSF1A
RAS proteins have a major function in extra-
cellular signals transduction regulating cell growth, 
survival and differentiation. Many RAS effectors 
are known as onco-proteins involved in different 
mechanisms,—apoptosis, contact inhibition, tumor 
phenotype-, when over-expressed; on the other 
hand, less is known regarding the effectors acting 
as tumor suppressor (Vos et al. 2000; Song et al. 
2004; Dammann et al. 2000). Among a new family 
of genes encoding RAS-binding proteins, RAS 
association domain family 1 gene (RASSF1) has 
been identifi ed as a tumor suppressor in many 
carcinomas (Dammann et al. 2005). RASSF1 gene 
mainly consists of RASSF1A and RASSF1C tran-
scripts that are expressed on two distinct CpG 
promoters and present in normal human tissues; 
however, in many cancer, RASSF1A is inactivated 
and has been correlated to methylation (Dammann 
et al. 2003).

In prostate cancer, RASSF1A methylation is 
either frequently detected in tissue samples or not 
(Kang et al. 2004; Yegnasubramanian et al. 2004; 
Woodson et al. 2004a; Woodson et al. 2004b; 
Maruyama et al. 2002; Liu et al. 2002; Kuzmin 
et al. 2002) and in the latter case it has been a cor-
related with prostate-specific antigen level or 
disease stage (Kang et al. 2004; Yegnasubramanian 
et al. 2004; Woodson et al. 2004a). Furthermore, 
several fi ndings indicate that RASSF1A methyla-
tion occurs at different stages of prostate cancer 
development as reported in PIN lesions (Kang et al. 
2004; Aitchison et al. 2007) and advanced tumors 
(Kang et al. 2004; Maruyama et al. 2002; Liu et al. 
2002).

Endothelin receptors
The endothelin (ET), a family of peptides, consists 
of three isotypes that have potent vasoconstructive 
properties; they are expressed differently in various 
cells and tissues (Inoue et al. 1989; Rubanyi and 
Polokoff, 1994). ET-1 isotype is predominant and 

produced in endothelial cells. It is a growth 
regulatory peptide involved in cell proliferation 
(Yanagisawa et al. 1988; Ortega Mateo and de 
Artinano, 1997). Two receptors ETA and ETB have 
been identifi ed; they differ from each other, but 
belong to the same family of heptahelical 
G-protein-coupled receptors. Both are found in 
various cells and tissues with different levels of 
expression (Sakurai et al. 1992; Goto et al. 1996). 
The receptor A binds highly with equivalent affi n-
ity to ET-1 and ET-2 but not to ET-3, whereas 
receptor B is nonselective and binds with equal 
affi nity to the three isotypes (Sakurai et al. 1992; 
Goto et al. 1996).

In prostate cancer, ET-1 is produced by primary 
and metatstatic cells in vivo (Nelson et al. 1995). 
As prostate cancer progresses, increased expres-
sion of ET receptor A is observed, whereas the 
expression of receptor B is reduced or lost (Gohji 
et al. 2001; Nelson et al. 1996). Furthermore, the 
endothelin receptor B gene has been frequently 
found methylated in prostate cancer samples, and 
to a lesser frequency in benign samples (Nelson 
et al. 1997; Pao et al. 2001; Jeronimo et al. 2003; 
Woodson et al. 2004a; Yegnasubramanian et al. 
2004).

E-cadherin
E-cadherin is a transmembrane glycoprotein, and 
a member of the cadherin family of cell adhesion 
molecules that mediates cell-cell adhesion via 
calcium-dependent interactions (Kemler, 1993; 
Hirohashi and Kanai, 2003). E-cadherin, which 
may function as a tumor suppressor gene in inva-
sion and metastasis, has been shown to be decreased 
or absent in many cancers, and is predictive of poor 
patient outcome (Oka et al. 1993; Umbas et al. 
1994; Richmond et al. 1997). In prostate cancer, 
decreased expression of E-cadherin, which is 
related to tumor progression, has been correlated 
to hypermethylation of the promoter in patients’ 
samples and human cell lines as well (Kallakury 
et al. 2001; Maruyama et al. 2002; Woodson et al. 
2004b; Yegnasubramanian et al. 2004; Graff et al. 
1995; Li et al. 2001).

CD44
CD44 is a polymorphic cell adhesion molecule that 
belongs to a family of integral membrane glyco-
protein; CD44 plays a role in cell adhesion and 
cell-matrix interactions as a receptor for hyaluronic 



318

Diaw et al

Gene Regulation and Systems Biology 2007:1 

acid and osteopontin (Naor et al. 1997; Rudzki and 
Jothy, 1997; Underhill, 1992; Weber et al. Science. 
1996). In prostate cancer, it has been suggested 
that CD44 may act as a metastasis suppressor gene, 
and its down-regulation is associated with tumor 
progression and metastasis (Nagabhushan et al. 
1996; Sy et al. 1997; Lou et al. 1999). The exact 
mechanism of CD44 down-regulation remains 
elusive; however an epigenetic mechanism, meth-
ylation, is clearly involved in this effect. Indeed, a 
number of studies, both in human samples and cell 
lines, have shown hypermethylation at the CpG 
islands in the promoter region of CD44, resulting 
in the decrease of its expression (Kallakury et al. 
1996; Verkaik et al. 1999; Kito et al. 2001; 
Woodson et al. 2004a; Woodson et al. 2004b).

Adenomatous polyposis coli
The adenomatous polyposis coli (APC) gene 
encodes a multifunctional protein that plays a role 
in Wnt signaling pathway, cell migration, cell 
adhesion, and mitosis; it is also known to act as a 
tumor suppressor gene in familial adenomatous 
polyposis (Fearnhead et al. 2001; Nathke, 1999).

In prostate cancer development, APC hyper-
methylation has been detected in its earliest stage, 
in more than 30% of PIN samples, and as the 
disease progresses the frequency becomes higher 
(Kang et al. 2004; Maruyama et al. 2002; 
Yegnasubramanian et al. 2004).

Galectins
Galectins are a family of animal lectins that act by 
specifically binding β-galactosides. Presently, 
fi fteen members have been identifi ed; most of them 
are ubiquitously expressed in various tissues, 
whereas others are more specifi c (Leffl er et al. 
2004; Liu and Rabinovich, 2005). Among the dif-
ferent members, two galectins, 1 and 3 are the most 
studied. In cancer, galectins play a role in a number 
of biological functions such as adhesion, prolif-
eration, differentiation, invasion and metastasis. 
They exert their functions both extra- and intra-
cellularly; however, the mechanism by which they 
regulate these different functions is still unknown 
(Van Den Brule et al. 2004; Liu and Rabinovich, 
2005).

In prostate cancer progression, galectin-3 is 
mainly studied; and different reports show a down-
regulation of this gene (Ellerhorst et al. 1999; Pacis 
et al. 2000). Galectin-3 is shown to have dual 

activity, acting as an anti-tumor protein or aid in 
tumor progression, dependent on its localization 
in the nucleus or cytoplasm, respectively (Van Den 
Brule et al. 2000; Califi ce et al. 2004). Further-
more, very recently, it has been shown for the fi rst 
time in prostate cancer cell lines that silencing of 
galectin-3 expression is regulated by promoter 
hypermethylation (Ahmed et al. 2007).

Retinoic acid receptorβ
The retinoic acid receptor (RAR) family, which 
comprises three subtypes (α, β, and γ), belongs to 
the superfamily of steroid/thyroid hormone recep-
tors (Evans, 1988; Delescluse et al. 1991). Each 
subtype consists of several isoforms resulting from 
different promoter usage and alternative splicing. 
Among these receptors, RARβ2, expressed in most 
tissues, has been extensively studied in various 
cancers where it acts as a tumor suppressor gene 
(Glass et al. 1991; Gudas, 1992; Liu et al. 1996; 
Ivanova et al. 2002). Loss or down-regulation of 
RARβ2 expression appears to be both at genetic 
and epigenetic levels; in the latter it is associated 
with methylation in the promoter region (Sirchia 
et al. 2002; Ivanova et al. 2002; Wang et al. 
2003).

In prostate cancer, methylation of RARβ2 in 
the promoter region is frequently detected in pri-
mary tumors and very high in hormone-refractory 
tumors, but not in BPH and normal samples as well 
(Nakayama et al. 2001; Maruyama et al. 2002; 
Yamanaka et al. 2003: Woodson et al. 2004a). 
Furthermore, methylation also occurs at a low level 
in PIN samples (Jeronimo et al. 2004a). Taken 
together, it seems that RARβ2 methylation is an 
early event in prostate cancer, and an indicator of 
aggressiveness as the disease progresses to late 
stages (Nakayama et al. 2001; Yamanaka et al. 
2003).

Androgen receptor
Androgens such as testosterone and 5α-
dihydrotestosterone are the main steroid hormones 
in the prostate. These hormones act through the 
androgen receptor (AR), which belongs to the fam-
ily of steroid/thyroid nuclear receptors (Heinlein 
and Chang, 2004). The AR gene expression in 
prostate cancer progression occurs through differ-
ent mechanisms including amplifi cation, muta-
tions, and ligand-independent activation (Visakorpi 
et al. 1995; Taplin et al. 1995; Tilley et al. 1996). 
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Furthermore, androgen independence is a feature 
of terminal stages in metastatic prostate cancer and 
the loss of AR expression in those cells appears to 
be at the transcriptional level (Tilley et al. 1990; 
Wolf et al. 1993) rather than involving deletion or 
mutation mechanisms (Dai et al. 1996).

The presence of CpG islands in the AR suggests 
that this gene might be regulated by methylation. 
In prostate cancer, a number of studies have indeed 
shown methylation in the promoter region of the 
AR leading to its inactivation; however, the fre-
quency of methylation seems to be low (Jarrard 
et al. 1998; Kinoshita et al. 2000; Nakayama et al. 
2000; Sasaki et al. 2002; Yamanaka et al. 2003). 
In addition, methylation appears to be more prev-
alent in hormone refractory tumors than in primary 
tumors (Kinoshita et al. 2000; Nakayama et al. 
2000).

Estrogen receptors
Estrogens are steroid hormones, which are believed 
to play an important role in prostate carcinogenesis 
(Carruba et al. 1996; Carruba, 2006). They act 
through intracellular receptors, which are also effec-
tors involved in proliferation, differentiation, and 
development of prostate cells (Carruba et al. 1996; 
Carruba, 2006). The estrogen receptors (ERs) are 
members of a nuclear receptor superfamily of 
ligand-activated transcription factors; at present, two 
receptors, ER-α and ER-β, have been identifi ed, 
shown to be expressed in a cell and tissue specifi c 
manner, and involved in the regulation of the normal 
function of reproductive tissues (Mosselman et al. 
1996; Grandien, 1996). Several studies have 
reported the presence of both receptors in normal 
and cancerous prostate tissues, as well as the loss 
or down-regulation of ER-β during prostate cancer 
development (Royuela et al. 2001; Horvath et al. 
2001; Leav et al. 2001; Bardin et al. 2004).

The epigenetic mechanism, namely methylation 
in promoter regions of ER-α and ER-β has been 
associated with decreased or loss of expression of 
these two genes in prostate cancer. Both receptors 
are frequently inactivated by CpG methylation in 
tumor samples and cell lines as well (Li et al. 2000; 
Lau et al. 2000; Nojima et al. 2001; Sasaki et al. 
2002; Yegnasubramanian et al. 2004). However, 
regarding ER-β, a high frequency of methylation 
in the promoter region of the gene has been 
observed at the early stages of the disease, whereas 
this frequency declined in metastatic tumors 

(Nojima et al. 2001; Zhu et al. 2004). It has also 
been reported the methylation of ER-α and ER-β 
in BPH but to a lesser extent than in prostate can-
cer tumors (Li et al. 2000; Nojima et al. 2001).

Death-associated protein kinase
The death-associated protein kinase (DAPK) fam-
ily is a member of the pro-apoptotic calcium-
regulated serine/threonine kinases; it is ubiquitously 
expressed in tissues, and its inactivation leads to 
the loss of important apoptotic pathway (Bialik 
and Kimchi, 2004). Although different mechanisms 
may affect DAPK inactivation, it has been shown 
that mainly aberrant methylation is responsible for 
silencing of this gene. Thus, DAPK has been found 
methylated in BPH and prostate cancer samples, 
but not in PIN samples (Maruyama et al. 2002; 
Yamanaka et al. 2003; Kang et al. 2004; Yegnasu-
bramanian et al. 2004).

Tissue inhibitors of metalloproteinases
The tissue inhibitors of metalloproteinases (TIMPs) 
belong to a family of homologous proteins inhibi-
tors that control the activity of matrix metallopro-
teinases (MMPs) (Gomez et al. 1997). Presently, 
four members have been identified; they are 
involved in a number of biological functions such 
as cell growth, apoptosis, invasion, metastasis and 
angiogenesis (Fassina et al. 2000; Lambert et al. 
2004).

Few reports investigated the possible epigen-
etic mechanisms underlying the down-regulation 
of TIMPs in prostate cancer. Methylation patterns 
have been studied for TIMP-3 and very recently 
for TIMP-2. TIMP-3 methylation is detected at 
low levels both in prostate carcinoma and BPH 
(Yamanaka et al. 2003; Yegnasubramanian et al. 
2004; Jeronimo et al. 2004b). Moreover, Jeron-
imo et al. reported that this event might be age-
dependent and zone-dependent (Jeronimo et al. 
2004b). Furthermore, a very recent study of 
prostate cell lines and primary tumors shows that 
TIMP-2 down-regulation is associated with 
methylation of the promoter region (Pulukuri 
et al. 2007).

Cell cycle genes
A hallmark of tumor cells is their inability of growth 
control, which is often associated with lack of 
regulation of the cell cycle. The cell cycle has 
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multiple checkpoints that are controlled by many 
molecular regulators; often the regulatory mole-
cules affected in cancer are those involved in the 
control of the G1/S transition of the cell cycle (Peter 
and Herskowitz, 1994; Biggs and Kraft, 1995; 
Kamb, 1995). The regulatory proteins involved in 
the cell cycle include the retinoblastoma protein 
(RB), cyclins, cyclin dependent kinases (CDKs), 
and CDK inhibitors (CDKIs), all of which have 
been implicated in tumor progression (Sherr, 2000). 
CDKIs have been described as negative regulators 
of the cell cycle, and subsequently considered as 
tumor suppressor genes. They consist of two 
families, the INK4 family and the CIP/KIP (kinase 
inhibitor protein) family. The INK4 family is com-
posed of four members CDKN2A or p16, CDKN2B 
or p15, CDKN2C or p18, and CDKN2D or p19, 
which specifi cally inhibits CDKs 4 and 6 (Ruas and 
Peters, 1998; Ortega et al. 2002). The CIP/KIP 
family includes CDKN1A or p21, CDKN1B or p27, 
and CDKN1C or p57; they inhibit most CDKs 
(Sherr and Roberts, 1995). Genetic and/or epigen-
etic alterations in regulatory molecules and growth 
pathways directly or indirectly involved in cell 
cycle control may result in gene inactivation and 
consequently to deregulation of cell cycle progres-
sion, therefore contributing to the pathogenesis of 
cancer (Macaluso et al. 2005).

In prostate cancer, cell cycle genes can be inac-
tivated by a number of mechanisms such as dele-
tion, point mutation, and hypermethylation. p16 
expression has been found up regulated in prostate 
cancer (Faith et al. 2005). CpG island methylation 
of p16 gene, which has been observed in prostate 
cell lines, appears rare in prostate cancer tissues 
(Herman et al. 1995; Jarrard et al. 1997; Gu et al. 
1998; Nguyen et al. 2000; Konishi et al. 2002; 
Maruyama et al. 2002). Furthermore, in prostate 
cancer tissues, p16 methylation has been frequently 
detected at exon2 compared to the promoter region; 
however, the signifi cance of this event is unclear 
(Nguyen et al. 2000; Konishi et al. 2002). In addi-
tion, cyclin D2 promoter methylation has been 
detected, and correlated with disease progression 
in prostate cancer (Padar et al. 2003). Regarding 
the CIP/KIP family, although epigenetic silencing 
of p57 is not a rare event, the other members p21 
and p27 are rarely methylated in prostate tumors 
(Konishi et al. 2002; Bott et al. 2005; Kibel et al. 
2001; Lodygin et al. 2005a).

The 14-3-3 families of proteins play an impor-
tant role in regulating cellular signaling involved 

in cancer development (Hermeking, 2003). Among 
the different genes in this family, the 14-3-3sigma 
(SFN) isoform has been mostly implicated in 
human cancer. It is thought to act as a tumor sup-
pressor gene by inhibiting cell cycle progression 
(Hermeking et al. 1997; Hermeking, 2003). CpG 
island methylation and loss of SFN expression have 
been detected in different types of cancer 
(Hermeking, 2003; Lodygin and Hermeking, 
2005b). SFN, a negative cell cycle regulator, has 
been found down regulated in prostate cancer cell 
lines and tissues by promoter hypermethylation 
(Lodygin and Hermeking, 2005b; Mhawech et al. 
2005; Lodygin et al. 2004). SFN methylation has 
been also observed in BPH tissues (Henrique et al. 
2005).

Hypomethylation and Prostate 
Cancer
A second type of aberrant methylation, hypometh-
ylation, has also been described to occur in neo-
plastic cells. This form of DNA methylation occurs 
principally in many tumors of advanced stages and 
is thought to be genome-wide (Santos et al. 2005). 
Hypomethylation or demethylation of normally 
methylated DNA may lead to structural and func-
tional alterations of the genome. Two types have 
been described: (i) global or genomic hypometh-
ylation, which is defi ned as the decrease in overall 
level of DNA cytosine methylation, and affects 
different types of repetitive sequences, and (ii) 
localized or gene-specifi c hypomethylation, which 
refers to a decrease in methylation compared to the 
normal level. Both types have been involved in 
human cancers (Dunn, 2003).

In general, global and gene hypomethylation in 
prostate cancer has not been well studied thus far. 
Global hypomethylation has been observed in a 
few prostate cancer cases. Prostate cancer cells 
showed a decrease in overall methylation com-
pared to normal prostate cells (Brothman et al. 
2005). Moreover, other studies found associations 
between global hypomethylation and clinical and 
metastatic stage of prostate cancer (Schulz et al. 
2002; Kindich et al. 2006).

Gene-specifi c hypomethylation refers to the 
loss of methylation of gene promoters that are 
normally methylated. Several studies have found 
gene hypomethylation in prostate cancers. The 
following genes affected by this mechanism are 
urokinase plasminogen activator, cancer/testis 
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antigen gene (CAGE), heparanase, cytochrome 
P450 1B1 (CYP1B1) and X (inactivate)-specifi c 
transcript (XIST) (Table 2). All of these genes 
have been shown over-expressed and associated 
with specifi c stage of the disease (Helenius et al. 
2001; Pakneshan et al. 2005; Cho et al. 2002, 
2003; Ogishima et al. 2005; Tokizane et al. 2005; 
Laner et al. 2005). These preliminary studies 
suggest of gene hypomethylation as a potential 
mechanism in the up-regulation of genes 
involved in prostate cancer. This needs to be 
explored further.

Histone Modifi cations and Prostate 
Cancer
The basic structural unit of DNA, chromatin, is 
composed of nucleosomes. Nucleosome consists 
of an octamer of core histones, H2A, H2B, H3 and 
H4, tightly bound to DNA, and the strength of this 
interaction is crucial to regulate gene expression 
(Kornberg and Thomas, 1974a; Kornberg, 1974b; 
Struhl, 1998; Grunstein, 1997). Five post-
translational modifi cations of histone proteins, 
involved in regulation of gene expression, have 
been identified: acetylation, phosphorylation, 
methylation, ubiquitination, and ADP-ribosylation; 
(Ruiz-Carrillo et al. 1975; Jenuwein and Allis, 
2001). DNA and histones are linked functionally 
to control transcription and repair. It has been 
shown that methylated DNA recruits histone 
deacetylase (HDAC) through methyl-DNA binding 
proteins (MBPs); consequently, DNA methyla-
tion/histone deacetylation cross talk has been sug-
gested to infl uence gene silencing (Jones et al. 
1998; Nan et al. 1998; Bird, 2002; Goll and Bestor, 
2002; Jones and Baylin, 2002; Fahrner et al. 2002; 
Nguyen et al. 2002).

In prostate cancer, a number of in vitro studies 
provide evidence that promoter hypermethylation 
and histone deacetylation interact to maintain 
chromatin in its inactive state. These studies have 
shown that combined treatment with the his-
tone deacetylase inhibitor, Trichostatin A, and 
demethylating agents 5-aza-cytidine or 5-aza-2′-
deoxycytidine led to reversing epigenetic silenc-
ing of several genes. A loss of hypermethylation 
in the promoter and concomitant gene activation 
has been observed for a number of tumor sup-
pressor genes in various prostate cancer cell lines. 
For example, DAB2IP in PC-3 cell line, RARβ 
gene in LNCaP, PC-3, and DU145 cell lines, 
GSTP1 in LNCaP cells, and MAGE a gene that 
encodes tumor-associated antigens in LNCaP and 
DU145 cells (Chen et al. 2003; Nakayama et al. 
2001; Stirzaker et al. 2004; Wischnewski et al. 
2006). These studies provide more evidence for 
a causative role of DNA hypermethylation and 
histone modifi cation in the silencing of gene 
expression.

Conclusion
In this review, we have described a limited number 
of genes frequently dysregulated in prostate cancer, 
postulated to be due to changes in methylation 
status. Studies show that prostate tumors have a 
large number of genes with epigenetic changes, 
indicating that epigenetics plays an important role 
in the development and progression of prostate 
cancer. Given this, studies that further knowl-
edge in the epigenetic events related to prostate 
carcinogenesis may lead to the development of 
molecular markers for screening and risk assess-
ment, as well as therapeutic targets for preventing 
and controlling this disease.

Table 2. Summary of hypomethylated genes in prostate cancer.

Genes Function Methylation References
  frequency
Urokinase Plasminogen Tumor invasion and metastasis 75% to 96.9% Pakneshan, 2005
Activator (uPA) 
Cancer/testis Antigen Cell cycle control: cellular proliferation 34% Cho, 2003
Gene (CAGE)  
Heparanase Tumor invasion and metastasis 8.5 to 30.5% Ogishima, 2005
Cytochrome P450 Hydroxylation of estrogens 5.7 to 17.1% Tokizane, 2005
1B1 (CYP1B1) and activation of carcinogens
X (inactivate)-specifi c X-chromosome inactivation �4% to �12% Laner, 2005
transcript (XIST)
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