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Abstract

Motivation: Sequence alignment is one of the first steps in many modern genomic analyses, such as variant
detection, transcript abundance estimation and metagenomic profiling. Unfortunately, it is often a computationally
expensive procedure. As the quantity of data and wealth of different assays and applications continue to grow, the
need for accurate and fast alignment tools that scale to large collections of reference sequences persists.

Results: In this article, we introduce PuffAligner, a fast, accurate and versatile aligner built on top of the Pufferfish
index. PuffAligner is able to produce highly sensitive alignments, similar to those of Bowtie2, but much more quickly.
While exhibiting similar speed to the ultrafast STAR aligner, PuffAligner requires considerably less memory to con-
struct its index and align reads. PuffAligner strikes a desirable balance with respect to the time, space and accuracy
tradeoffs made by different alignment tools and provides a promising foundation on which to test new alignment
ideas over large collections of sequences.

Availability and implementation: All the data used for preparing the results of this paper can be found with 10.5281/
zenodo.4902332. PuffAligner is a free and open-source software. It is implemented in Cþþ14 and can be obtained
from https://github.com/COMBINE-lab/pufferfish/tree/cigar-strings.

Contact: rob@cs.umd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since its introduction, next generation sequencing (NGS) has been
widely used as a low-cost and accessible technology to produce high-
throughput sequencing reads for many important biological assays.

The sequencing data that is generated in the form of short reads,
drawn from longer molecular fragments, and finding the optimal
alignments of these short reads to some reference is a necessary first
step for many downstream biological analyses. The process of find-
ing the segment on the reference that is most similar to the query
read, and therefore most likely to be the source of the fragment from
which the read was drawn, is known as read mapping or read
alignment.

The main goal in read alignment is to find alignments of contigu-
ous sub-string of the underlying reference that yields a minimum edit
distance (or maximum alignment score) between the read and the
reference sequence at the alignment position. If the reads are paired-
end, characteristics other than the alignment score can be used to fil-
ter spurious alignment locations, such as orientation of each end of
the alignment pair (forward or reverse) or distance between the

alignments corresponding to reads that are ends of the same
fragment.

Short-read aligners are a major workhorse of modern genomics.
Given the importance of the alignment problem, a tremendous num-
ber of different tools have been developed to tackle this problem.
Some widely used examples are BWA (Li and Durbin, 2009),
Bowtie2 (Langmead and Salzberg, 2012), Hisat2 (Kim et al., 2015,
2019) and STAR (Dobin et al., 2013).

Existing alignment tools use a variety of indexing methods. Some
tools, such as BWA, Bowtie2 and STAR use a full-text index over
the reference sequences; BWA and Bowtie2 use variants of the FM-
index, while STAR uses a suffix array.

A popular alternative approach to full-text indices is to instead,
index sub-strings of length k (k-mers) from the reference sequence.
Trading off index size for potential sensitivity, such indices can ei-
ther index all of the k-mers present in the underlying reference, or
some uniform or intelligently chosen sampling of k-mers. There are
a large variety of k-mer-based aligners, including tools like the
Subread aligner (Liao et al., 2013), SHRiMP2 (David et al., 2011),
mrfast (Alkan et al., 2009) and mrsfast (Hach et al., 2010). To re-
duce the index size, one can choose to select specific k-mers based
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on a winnowing (or minimizer) scheme. This approach has been par-
ticularly common in tools designed for long-read sequence alignment
like mashmap (Jain et al., 2018) and minimap2 (Li, 2018).

Recently, a set of new indices for storing k-mers have been pro-
posed based on graphs, specifically de Bruijn graphs (dBg). A de
Bruijn graph is a graph over a set of distinct k-mers where each edge
connects two neighboring k-mers that appear consequently in a ref-
erence sequence and therefore, overlap on ‘k—1’ bases. Kallisto
(Bray et al., 2016), deBGA (Liu et al., 2016), BGreat (Limasset et al.,
2016), BrownieAligner (Heydari et al., 2018) and Pufferfish
(Almodaresi et al., 2018) are some tools which use an index con-
structed over the de Bruijn graph built from the reference sequences.
Cortex (Iqbal et al., 2012), Vari (Muggli et al., 2017), rainbowfish
(Almodaresi et al., 2017) and mantis (Pandey et al., 2018) are also
tools that use a colored compacted de Bruijn graph for building their
index over a set of raw experiments. All these approaches cover a
wide range of the possible design space, and different design deci-
sions yield different performance tradeoffs.

Generally, the fastest aligners (like STAR) have very large mem-
ory requirements for indexing, and make some sacrifices in sensitiv-
ity to obtain their speed. On the other hand, the most sensitive
aligners (like Bowtie2) have very moderate memory requirements
but obtain their sensitivity at the cost of a higher runtime.
Maintaining the balance between time and memory is especially
more critical while aligning to a large set of references, like a large
collection of microbial and viral genomes which may be used as an
index in microbiome or metagenomic studies. As both the collection
of reference genomes and the amount of sequencing data grows
quickly, it is import for alignment tools to scale to such large collec-
tions of data and references with reasonable resource requirements
while remaining fast and sensitive.

Based on the compact Pufferfish (Almodaresi et al., 2018) index,
we introduce a new aligner called PuffAligner, that we believe strikes
an interesting and useful balance in this design space. PuffAligner is
designed to be a highly sensitive alignment tool while, simultaneous-
ly, placing a premium on computational overhead. By using the col-
ored compacted de Bruijn graph to factor out repeated sub-
sequences in the reference, it is able to leverage the speed and cache
friendliness of hash-table-based aligners while still controlling the
growth in the size of the index; especially in the context of redundant
reference sequences. Therefore, the index provides favorable scal-
ability, in terms of index size, construction memory and time, com-
pared to popular indexes such as Bowtie2 and STAR. By carefully
exploring the alignment challenges that arise in different assays,
including single-organism DNA-seq, RNA-seq alignment to the tran-
scriptome, and metagenomic sequencing, we have engineered a ver-
satile tool that strikes desirable balance between accuracy, memory
requirements and speed. We compare PuffAligner to some other
popular aligners and show how it navigates these different tradeoffs.

2 Materials and methods

PuffAligner is an aligner built on top of the Pufferfish indexing data
structure. Pufferfish is a space-efficient and fast index for the colored
compacted de Bruijn graph (ccdBg). A colored compacted de Bruijn
graph is a graph whose vertices (strings) are the compacted non-
branching paths of the underlying de Bruijn graph, with the restric-
tion that each node also have the same color set (set of reference
sequences in which it appears). The nodes in the colored compacted
de Bruijn graph are referred to as unitigs. Each unitig can exist in
multiple references and be mapped to a list of <reference ID, pos-
ition orientation > tuples. The tuple describes the position and
orientation with which the unitig subsequence appears in each refer-
ence. The basic query operation in the Pufferfish index is to query a
k-mer from the input sequence against the index. Given this query,
the Pufferfish index returns the unique position (and orientation)
where this k-mer appears in the colored compacted de Bruijn graph
(or a sentinel value if this k-mer does not occur). This match between
the query and the graph can then be easily ‘unpacked’ into the
implied list of matches with the underlying references by finding all

of the places that the matched unitig appears in the reference
sequences.

The main advantage of an aligner based on a compacted sequence
graph, such as PuffAligner, offers compared to aligners based on linear
full-text indices such as the FM-index, is the reduction of overhead related
to computations for repeated subsequences within or across multiple refer-
ences. This benefit results by performing the basic matching and mapping
preprocessing steps on the graph itself, and annotating the results with re-
spect to each reference, rather than performing these operations on all ref-
erence sequences individually. While k-mer query is the basic operation
performed by Pufferfish index, we actually do not query for all the k-mer
matches directly in PuffAligner. Instead, starting from k-mer k0, we extend
the initial k-mer match into a unique maximal exact match [uni-MEMs,
as introduced by (Liu et al. (2016)] which is the longest match of the read
and the unitig containing k0. This uni-MEM is later used to construct a
Maximal Exact Matches (MEM), which is a Maximal Exact Match
shared between the read and the reference. We utilize the uniqueness
property of unitigs to reduce the operational overhead of MEM extension
per each reference to only once for a unitig. We expand a uni-MEM to
different MEMs by assigning the reference information of the uni-MEM’s
underlying unitig to the uni-MEM. Using this approach, a uni-MEM can
be a part of multiple MEMs, just as a unitig can be a part of multiple
references. During MEM assembly, we merge overlapping consequent
uni-MEMs that are only separated because of small branched unitigs. In
this way, we guarantee the accuracy, performance of later mapping steps,
and obtain similar behavior that is expected from dealing with chains of
MEMs in more traditional alignment approaches. Finally, rather than
fully aligning each query sequence to the anchored position on the refer-
ence, only the sub-sequences from the query that are not part of the
MEMs (exact matches) appearing within the current high-scoring MEM
chain are aligned to the reference; we call this procedure between-MEM
alignment. Each of these steps are explained in detail in the following
sections.

2.1 Exact matching in the Pufferfish index
The Pufferfish index provides PuffAligner with an efficient index for
k-mer lookup within a list of references such as a collection of tran-
scripts, genes or genomes. Specifically, the core components of the
index are (i) a minimal perfect hash function (MPHF), (ii) a unitig se-
quence vector, (iii) a unitig -to-reference table and (iv) a vector stor-
ing the position associated with each k-mer in the unitig sequence
vector. The unitig sequence vector contains all the unitigs in the
ccdBg. In the Pufferfish index, a unitig is a monochromatic path in
the colored compacted de Bruijn graph, where a color corresponds
to a set of reference identifiers. Hence, each unitig is a substring of
some set of reference sequences. Each unitig is annotated with the
list of references that contain the unitig’s sequence. In this design, a
unitig can belong to multiple references and a reference can contain
multiple unitigs.

The Pufferfish index admits efficient exact search for k-mers, as
well as longer matches that are unique in both the query string and
colored compacted de Bruijn graph. These matches, called uni-
MEM, were originally defined in deBGA (Liu et al., 2016). A uni-
MEM is a Maximal Exact Match (MEM) between the query se-
quence and a unitig. Using the combination of the MPHF and the
position vector, a k-mer is mapped to a unitig in the unitig sequence
vector. The k-mer is then extended to a uni-MEM via a linear scan
of the query sequence and the unitig sequence vector. Each uni-
MEM can appear in multiple different references, and since uni-
MEMs must be completely contained within a unitig, it is possible
for multiple uni-MEMs to be directly adjacent on both the query
and some references where the unitig appears.

uni-MEM collection: The first step in read alignment is to collect
exact matches shared between the query (single-end or paired-end
reads) and the reference. In PuffAligner, this is accomplished by col-
lecting the set of uni-MEMs that co-occur between the query and
reference. PuffAligner starts processing the read from the left-end
and looks up each k-mer that is encountered until a match to the
index is found. Once a match is discovered, it is extended in both
query and the reference until one of these termination conditions
occur: (i) a mismatch is encountered, (ii) the end of the query is
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reached or (iii) the end of the unitig is reached. This process results
in a uni-MEM match shared between the query and reference. uni-
MEMs where extension is terminated as a result of reaching the end
of a unitig must later be examined and potentially ‘collpased’ to-
gether to form MEMs with respect to the references on which they
appear. If the uni-MEM extension is not terminated as a result of
reaching the end of the query, then the position in the read is incre-
mented by a small value and the same procedure is repeated for the
next k-mer on the read. This process continues until either the uni-
MEM extension terminates because the end of the query is reached,
or because the last k-mer of the query is searched in the index. Here,
we recall an important property of uni-MEM extension that is differ-
ent from e.g. MEM extension or maximum mappable prefix (MMP)
extension (Dobin et al., 2013). Due to the definition of the ccdBg, it
is guaranteed that any k-mer appearing within a uni-MEM cannot
appear in any other unitig in the ccdBg. Thus, extending k-mers to
maximal uni-MEMs is safe with respect to greedy extension, as such
extension will never cause missing a k-mer that would lead to an-
other distinct uni-MEM shared between the query and reference.
The concept of safe extension of kmer matches was introduced in
(Sarkar et al., 2018).

Filtering highly repetitive uni-MEMs: In order to avoid expend-
ing computation on performing the subsequent steps on regions of
reads mapping to highly repeated regions of the reference, any uni-
MEM that appears more than a user-defined number of times in the
reference is discarded. In this manuscript, we use the threshold of
1000. This filter has a strong impact on the performance, since, even
if one k-mer from the read maps to a highly repetitive region of the
reference, the following expensive steps of the alignment procedure
should be performed for every mapping position of the uni-MEM to
find the right alignment for the read, while the less repetitive uni-
MEMs also map to the true origin of the read on the reference as
well. The drawback of this filter is that for a very small fraction of
the reads which are truly originating from a highly repetitive region,
all of the matched uni-MEMs will be filtered out and no hit remains
for aligning the read. However, we find that in the case of aligning
paired-end reads, usually one end of the read maps to a non-repeti-
tive region, then, the alignment of the other end can be recovered
using orphan recovery (explained in Section 2.4). Furthermore, we
also provide a flag –allowHighMultiMappers that mitigates the ef-
fect of this filter for a slight tradeoff on the alignment performance.

uni-MEM compaction: For paired-end reads, PuffAligner aligns
each end of the read pairs individually. For each end, all the uni-
MEMs are sorted on the basis of their positions on the reference.
First the uni-MEMs are ‘unpacked’ to their corresponding unitig’s
reference list and assigned a reference position by adding the unitig’s
relative position in the reference to the uni-MEM’s position in the
unitig. After mapping the uni-MEMs to the references, it is now pos-
sible to construct the <read end, reference > MEMs. Each MEM is
defined as either a single uni-MEM or a combination of those con-
secutive uni-MEMs that have an overlap of k—1 on both the query
and reference (which is equal to unitigs’ overlap).

The compactable uni-MEMs result from terminating the exten-
sion process due to reaching the end of a unitig. After the compac-
tion of uni-MEMs, there is a list of MEMs which are shared
sequences between the query and a set of reference positions, that
are sorted based on the reference positions.

Generally, a MEM is calculated for each pair of read and refer-
ence. This means that, in the case of highly similar references, the
process of finding the same MEM of the read has to be repeated for
each reference. Through the indirect construction of MEMs from
uni-MEMs we gain a performance boost by extending the k-mer
once per read and simply using the extended subsequence in MEMs
of the read to difference references. However, the shorter the unitigs,
the shorter the uni-MEMs. Therefore, the more k-mers per read
need to be queried. This will affect the performance of MEM con-
struction which, in the worst-case scenario, is required to query for
each k-mer in the read. However, the k-mer queries still only happen
once per each read and not once per each pair of read and reference.

2.2 Finding promising MEM chains
Via the procedures described above, we have enumerated all of the
possible MEMs of length at least k shared between a read and the
reference sequences. As shown in Figure 1, having all the MEMs
from a read to each target reference, the goal of this step is to find
promising chains of MEMs that cover the most unique bases in the
read in a concordant fashion and that can potentially lead to a high
quality alignment.

To accomplish this, we adopt the dynamic programming ap-
proach used in minimap2 (Li, 2018) for finding co-linear chains of
MEMs that are likely candidates to support high-scoring read align-
ments. As mentioned in minimap2, all the MEMs from a read r to
the reference t, are sorted by the ending position of the MEMs on
the reference. Then, this algorithm computes a score for each set of
MEMs based on the number of unique covered bases in the read, the
coverage score is also penalized by the length of the gaps, both in the
read and reference sequence, between each consecutive pair of
MEMs.

In PuffAligner, if the distance between two MEMs, m1 and m2,
on the read and the reference is dr and dt respectively, these two
MEMs should not be chained together if jdr � dtj > C, where C is
the maximum allowed gap. So, the penalization term, the b value in
(Li, 2018), in the coverage score computation is modified according-
ly to prevent pairing of such MEMs.

Also, unlike what is done in minimap2 (Li, 2018), rather than
considering together the MEMs that are discovered on both ends of
a paired-end read, we consider the chaining for each end of the read
separately. This is done in order to make it easier to enforce the
orientation consistency of the individual chains. Specifically, the
chaining algorithm that is presented in (Li, 2018) introduces a transi-
tion in the recursion that can be used to switch between the MEMs
that are part of one read and those that are part of the other.
However, such switching makes it difficult to enforce the orientation
consistency of the chains that are being built for each end of the
read. One solution to this problem is to add another dimension to
the dynamic programming table, encoding if one has already
switched from the MEMs of one read end to the other, and the re-
currence can be modified to allow only one switch from the one read
end to the other, allowing enforcement of orientation consistency.
However, we found that, in practice, simply chaining the read ends
separately led to better performance.

Finally, we also adopt the heuristic proposed by minimap2 (Li,
2018) when calculating the highest scoring chains. That is, when a
MEM is added to the end of an existing chain, it is unlikely that a
higher score for a chain containing this MEM will be obtained by

Fig. 1. This figure shows the main steps of chaining and between-MEM alignment in

the PuffAligner procedure via an example. In this example, m1, m2 and m3 are the

projected MEMs from the left end of the read to the reference and m4 and m5 are

the projected MEMs from the right end of the read. In the first step, the chaining al-

gorithm chooses the best chain of MEMs that provide the highest coverage score for

each end of the read, that is the m1-m2 chain for the left end and two single MEM

chain for the right end. Then, the selected chains from each end are joined together

to find the concordant pairs of chains, that is the (m1-m2, m4) pair for this read as

m5 is too far from m1-m2. Then, the chain from each end will go through to the

next step, between-MEM alignment. For the green (dashed border) areas (MEMs)

no alignment is recalculated as they are exact matches. Only the un-matched blue

(solid border) parts of the reads (those nucleotides not occurring within a MEM) are

aligned using a modified version of KSW2
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adding it to a preceding chain. Thus, we consider only a small fixed
number of rounds (by default 2) of preceding chains once we have
found the first chain to which we can add the current MEM.

The chaining algorithm described above finds the best chains of
MEMs shared between the read r and the reference t in orientation
o. A chain is accepted if its score is greater than a configurable frac-
tion, which we call the consensusFraction, times the length of the
read r. Throughout all the experiments in this manuscript the
consensusFraction is set to 0.65. If a chain passes the consensus frac-
tion threshold, we call it a valid chain. In addition, rather than keep-
ing all valid chains, we also filter highly suboptimal chains with
respect to the highest scoring chain per-reference. All valid chains
shared between r and t are sorted by their scores, and chains having
scores within 10% of the highest scoring chain for reference t are
selected as potential mappings of the read r to the reference t. While
these filters are essential for improving the throughput of the algo-
rithm in finding the right alignment, they are carefully selected to
have very little effect on the sensitivity of PuffAligner. For all the
experiments in this manuscript, the same default settings of these
parameters are used if not mentioned otherwise.

2.3 Computing base-to-base alignments between MEMs
After finding the high-scoring MEM chains for each reference se-
quence, a base-to-base alignment of the read to each of the candidate
reference sequences is computed. Each selected chain implies a pos-
ition on the reference sequence where the read might exhibit a high
quality alignment. Thus, we can attempt to compute an optimal
alignment of the read to the reference at this implied position, poten-
tially allowing a small bit of padding on each side of the read. This
approach utilizes the positional information provided by the MEM
chains. However, the starting position of the alignments is not the
only piece of information embedded in the chains. Rather each chain
of MEMs consists of sub-sequences of the read (of size at least k,
though often longer) which match exactly to the reference. While
the optimal alignment of the read to the reference at the position
being considered is not guaranteed to contain these exact matches as
alignments of the corresponding substrings, this is almost always the
case in practice.

In PuffAligner, we aim to exploit the information from the long
matches to accelerate the computation of the alignments. In fact,
since only chains with relatively high coverage score are selected, a
large portion of the read sequences are typically already matched to
the positions in the reference with which they will be matched in the
final optimal alignment. For instance, in Figure 1, for the final chains
selected on the reference sequence, it is already known for the red
and orange sub-sequences (areas 1 and 2) on the left end of the read
precisely where they should align to the reference. Likewise this is
the case for the purple sub-sequence (area 3) on the right read. The
unmapped regions of the reads are either bordered by the exact
matches on both sides, or they occur at the either ends of the read se-
quence. In fact, other aligners such as STAR (Dobin et al., 2013),
BWA-MEM (Li and Durbin, 2009) and minimap2 (Li, 2018) employ
the same strategy to assume that the exact matches, found during
the query time, are part of the final alignments to be reported.
PuffAligner skips aligning the whole read sequence by considering
the exact matches of the MEMs to be part of the alignment solution.
As a result, it is only required to compute the alignment of the small
unmapped regions, which reduces the computation burden of the
alignments.

When applying such an approach, two different types of align-
ment problems are introduced, which we call bounded sub-sequence
alignment and ending sub-sequence alignment. For bounded sub-se-
quence alignment, we need to globally align some interval ir of the
read to an interval it of the reference. If ir and it are of different
lengths, the alignment solution will necessarily include insertions or
deletions. If ir and it are of the same length, then the optimal global
alignment between them may or may not include indels. For each
such bounded sub-sequence alignment, we determine the optimal
alignment of ir to it by computing a global pair-wise alignment be-
tween the intervals, and stitching the resulting alignment together
with the exact matches that bound these regions.

Gaps at the beginning or the end of the read are symmetric cases
and so we describe, without loss of generality, the case where there
is an unaligned interval of the read after the last MEM shared be-
tween the read and the reference. In this case, we need to solve the
ending sub-sequence alignment problem. Here, the unaligned inter-
val of the read consists of the substring spanning from the last nu-
cleotide of the terminal MEM in the chain, up through the last
nucleotide of the read. There is not a clearly defined interval on the
reference sequence. While the left end of the relevant reference inter-
val is defined by the last reference nucleotide that is part of the
bounding MEM, the right end of the reference interval should be
determined by actually solving an extension or ‘end-free’ alignment
problem. We address this by performing extension alignment of the
unaligned interval of the read to an interval of the reference that
begins on the reference at the end of the terminal MEM, and extends
for the length of the unaligned query interval plus the length of some
problem-dependent buffer (which is determined by the maximum
length difference between the read and reference intervals that
would still admit an alignment within the acceptable score
threshold).

PuffAligner uses KSW2 (Li, 2018; Suzuki and Kasahara, 2018)
for computing the alignments of the gaps between the MEMs and
for aligning the ending sequences. KSW2 exposes a number of align-
ment modes such as global and extension alignments. For aligning
the bounded regions, KSW2 alignment in the global mode is per-
formed, and for the gaps at the beginning or end of reads,
PuffAligner uses the extension mode to find the best possible align-
ment of that region. For increasing the efficiency of alignment com-
putation we also employ some specific techniques in PuffAligner
which are explained in Supplementary Section S1.

2.4 Joining mappings for read ends
Finally, once alignments have been computed for the individual ends
of a read, they must be paired together to produce valid alignments
for the entire fragment. At this point in the process, on each refer-
ence sequence, there are a number of locations where the left end of
each read or the right end of each read, or both, are mapped to the
reference. For the purpose of determining which mappings will be
reported as a valid pair, the mappings are joined together only if
they occur on opposite strands of the reference, and if they are with-
in a maximum allowed fragment length. There are two different
types of paired-end alignments that can be reported by PuffAligner;
concordant and discordant. If PuffAligner is disallowed from report-
ing discordant alignments, then the mapping orientation of the left
and right end should agree with the library preparation protocols of
the reads. PuffAligner first tries to find concordant mapping pairs on
a reference sequence, and if no concordant mapping is discovered
and the tool is being run in a mode where discordant mappings are
allowed, then PuffAligner reports pairs that map discordantly. Here,
discordant pairs may be pairs that do not, for example, obey the re-
quirement of originating from opposite strands. While this is not
expected to happen frequently, it may occur if there has been an in-
version in the sequenced genome with respect to the reference.

3 Results

For measuring the performance of PuffAligner and comparing it to
other aligners, we have designed a series of experiments using both
simulated and experimental data from different sequencing assays.
We compare PuffAligner with Bowtie2 (Langmead and Salzberg,
2012), STAR (Dobin et al., 2013) and deBGA (Liu et al., 2016).
Bowtie2 is a popular, sensitive and accurate aligner with the benefit
of having very modest memory requirements. STAR requires a much
larger amount of memory, but is much faster than Bowtie2 and can
also perform ‘spliced alignment’ against a reference (which
PuffAligner, Bowtie2 and deBGA currently do not allow). deBGA, is
most-related tool to PuffAligner conceptually, as it is an aligner with
a colored compacted de Bruijn graph-based index that is focused on
exploiting redundancy in the reference sequence.
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We use different metrics to assess both the performance and ac-
curacy of each method on a variety of types of sequencing samples.
These experiments are designed to cover a variety of different use-
cases for an aligner, spanning the gamut from situations where most
alignments are expected to be unique (DNA-seq), to situations where
each fragment is expected to align to many loci with similar quality
(RNA-seq and metagenomic sequencing), and spanning the range of
index sizes from small transcriptomes to large collections of
genomes.

PuffAligner’s underlying index, Pufferfish supports two index
variants, ‘dense’, and ‘sparse’ (Dense is the default index and sparse
is activated using the ‘-s’ option in the index build step). The ‘sparse’
version trades off lookup time for index size, and provides a smaller
index in which k-mer lookups take longer. However, in the align-
ment process described here, since the steps after the initial lookup
are the main bottleneck in alignment time (e.g. compacting uni-
MEMs into MEMs, chaining MEMs and finally performing be-
tween-MEM alignment), we recommend the sparse Pufferfish index
to be the choice. This is the index version we have used for all
experiments in this manuscript.

First, we show PuffAligner exhibits similar accuracy for aligning
DNA-seq reads to Bowtie2, but it is considerably faster. In the case
of experimental reads, since the true origin of the read is unknown,
we use measures such as mapping rate and concordance of align-
ments to compare the methods. Furthermore, in Supplementary
Section S7 we evaluate the accuracy of aligners by aligning simulated
DNA-seq reads that include variation (single-nucleotide variants and
small indels with respect to the reference). For aligning RNA-seq
reads, we compare the impact of alignments produced by each
aligner on downstream analysis such as abundance estimation.
Finally, we show PuffAligner is very efficient for aligning metage-
nomic samples where there is a high degree of shared sequence
among the reference genomes being indexed. We also illustrate that
using alignments produced by PuffAligner yields the highest accur-
acy for abundance estimation of metagenomic samples.

3.1 Alignment of whole genome sequencing reads
First, we evaluate the performance of PuffAligner with a whole gen-
ome sequencing (WGS) sample from the 1000 Genomes project
(Consortium et al., 2015). We downloaded the ERR013103 reads
from sample HG00190, which is a low-coverage sample from a
Finnish male, sequenced in Finland (https://www.internationalge
nome.org/data-portal/sample/HG00190). There are 18 297 585
paired-end reads, each of length 108 nucleotides in this sample.
Using fastp (Chen et al., 2018), we remove low quality ends and
adapter sequences from these reads. After trimming, there are 15
404 412 reads remaining in the sample. Indices for each of the tools
are built over all DNA chromosomes of the human genome
[GRCh38 (Schneider et al., 2017)] which is obtained from gencode
release v33 (Frankish et al., 2019) (https://www.gencodegenes.org/
human/release_33.html). All the tool, if possible, are run in the con-
cordant-mode in this experiment.

The alignment rate, run-time memory usage and running time
for all the aligners are presented in Table 1. The reason that deBGA
has the highest mapping rate in Table 1 compared to other tools is
that it is local alignments for the reads that are not alignable end-to-
end under the scoring parameters for the other tools. Bowtie2 and
PuffAligner are both able to find end-to-end alignments for about

�95% of the reads. STAR and PuffAligner are the fastest tools, with
STAR being somewhat faster than PuffAligner. On the other hand,
PuffAligner is able to align more reads than STAR, while requiring
less than half as much memory. The memory usage of Bowtie2 is the
smallest, since Bowtie2’s index does not contain a hash table.
However, this comes at the cost of having the longest running time
compared to other methods. Overall, PuffAligner benefits from the
fast query of hash-based indices while its run-time memory usage,
which is mostly dominated by the size of the index, is significantly
smaller than other hash-based aligners. Although deBGA’s index is
based on the de Bruijn graphs, similar to the Pufferfish index, the
particular encoding for it is not as space-efficient as that of
Pufferfish.

To look more closely how the mappings between the tools differ,
we investigate the agreement of the reads which are mapped by
Bowtie2, STAR and PuffAligner. We are only comparing these three
methods which perform end-to-end alignment in this plot, since out-
liers from the local alignments computed by deBGA would otherwise
dominate the plot. Majority of the reads (�14.2M reads) are
mapped by all three aligners. The next largest set (�400K reads) rep-
resents the reads which are only mapped by Bowtie2 and
PuffAligner. All the other sets are much smaller compared to the first
two sets. This fact illustrates that the highest agreement in the align-
ers is between Bowtie2 and PuffAligner. We have also visualized the
results in an upset plot in Supplementary Figure S1 using the UpsetR
library (Conway et al., 2017).

Exploring a series of individual reads from the smaller sets in the
upset plot, suggests that some of these differences happen as a result
of small differences in the scoring configuration, while some result
from different search heuristics adopted by the different tools.
Supplementary Figure S2 shows the coherence between the align-
ments reported by the tools by also including the exact location to
which the reads are aligned in the reference.

3.2 Transcript abundance estimation from RN-seq reads
Mapping sequencing reads to target transcriptomes is the initial step
in many pipelines for reference-based transcript abundance estima-
tion. While lightweight mapping approaches (Bray et al., 2016;
Patro et al., 2017) greatly speed-up abundance estimation by, in
part, eliding the computation of full alignment between reads and
transcripts, there is evidence that alignments still yield the most ac-
curate abundance estimates by providing increased sensitivity and
avoiding spurious mappings (Sarkar et al., 2018; Srivastava et al.,
2020; Vuong et al., 2018). Thus, the continued development of effi-
cient methods for producing accurate transcriptome alignments of
RNA-seq reads remains a topic of interest.

In Supplementary Section S6, we compare the effect of align-
ments produced by each tool on the accuracy of RNA-seq abun-
dance estimation. We find that RNA-seq quantification based on
alignments produced by PuffAligner, STAR and Bowtie2 reaches the
same level of accuracy. However, PuffAligner is the fastest aligner,
being at least 1.5� faster than STAR and 25� faster than Bowtie2
while the memory usage by PuffAligner is only 2� larger than mem-
ory used by Bowtie2 and 3.4� smaller than STAR (full details in
Section 6).

3.3 Alignment to a collection of microorganisms—

simulated short reads
One main property of metagenomic samples is that they contain
reads from a variety of genomes. Some of these genomes are highly
similar and some are not even assembled yet—and hence unknown.
To demonstrate the performance and accuracy of PuffAligner for
metagenomic samples, we design two different experiments. The
first which we call ‘Single-strain’ experiment is designed to specific-
ally evaluate issues related to the similarity challenge and the second,
the ‘bulk’ experiment, evaluates aligners in the presence of a high
variety of species in the sample in addition to the high similarity of
references. We discuss the results of the ‘bulk’ experiment which is a
more comprehensive one, in the following paragraphs. The ‘single-
strain’ experiment is described in Supplementary Section S8.

Table 1. The performance of different tools for aligning experimen-

tal DNA-seq reads

Aligner Mapping-rate (%) Time (mm:ss) Memory (GB)

PuffAligner 95.58 6:14 13.09

deBGA 99.75 10:46 41.04

STAR 93.88 4:29 30.36

Bowtie2 95.44 16:15 3.50

Note: The time reports are benchmarked after warming up the system

cache so that the influence of index loading time is mitigated.
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We construct the indices of PuffAligner, Bowtie2, STAR and
deBGA on a random set of 4000 complete bacterial genomes down-
loaded from the NCBI microbial database. Supplementary Table S6
shows the time and memory required for constructing each of the in-
dices, in addition to the size of the final index on disk. Overall,
PuffAligner and Bowtie2 show a similar trend in time and memory
requirements, while STAR and deBGA require an order of magni-
tude more memory. In terms of the final index size, Bowtie2 has the
smallest index, PuffAligner has the second-smallest, and STAR has
the largest.

We select three Illumina WGS samples with accession IDs
SRR10948222 (Fisher, 2020), SRR11283975 and SRR11496426,
the details of which are explained in Supplementary Table S4 and
simulate �50M reads for each through the process explained in
Supplementary Section 9.1.

The assessment of ‘accuracy’ directly from the aligned reads is
not a trivial task. Due to the high rate of multi-mapping in these
simulated samples, and due to the fact that multiple references can
produce alignments of the same quality as the ‘true’ origin of the
read, we calculate the accuracy by comparing the true and estimated
abundances using a quantification tool (in this case, Salmon) rather
than by comparing the read alignments directly. In Table 2 the ac-
curacy metrics are calculated over the abundance estimations
obtained using the alignments produced by running the aligners in
the different modes specified. The list of metrics for metagenomic
expression evaluations are Spearman Correlation, Mean Absolute
Relative Difference (MARD), Mean Absolute Error (MAE) and
Mean Squared Log Error (MSLE). The metrics have been chosen to
be similar to previous work such as in Bracken (Lu et al., 2017) and
Karp (Reppell and Novembre, 2018). The definition of each of these
metrics is provided in Supplementary Equation S2 in Supplementary
Material.

This experiment leads to three main observations. First, regard-
less of the alignment mode, quantifications derived from the deBGA
alignments seem to lead to systematic underestimation of abun-
dance. However, PuffAligner, STAR and Bowtie2, show very similar
behavior with respect to accuracy. STAR is the best in primary mode
as well as when allowing 20 alignments, closely followed by
PuffAligner. When allowing up to 200 alignments per read, Bowtie2
tends to yield the most accurate abundances, again with PuffAligner
being the close runner-up. These results demonstrate that
PuffAligner is a reliable alignment tool showing a stable pattern of

being comparable to the best aligner under all the scenarios tested.
That is, the good performance of PuffAligner is robust across a var-
iety of different parameter settings.

Moreover, due to the nature of the metagenomic data—the high
degree of ambiguity and multi-mapping—we expect to see improve-
ment in the accuracy metrics as more alignments are reported per
read, as this leads to a higher recall. While STAR’s accuracy changes
only slightly from 20 alignments to 200 alignments (only improving
MAE) the results for PuffAligner and Bowtie2 improve considerably
when allowing more alignments per read. However, this higher ac-
curacy comes in the cost of alignment time for Bowtie2 as shown in
Figure 3. The difference becomes especially evident when allowing
up to 200 alignments per read, where PuffAligner is 4 times faster
than Bowtie2. In addition, in experimental data, many of the align-
ments reported do not necessarily have high quality, and only appear
in the output as one of the 200 alignments for the read. In fact, we
note the similar accuracy achieved by PuffAligner in bestStrata mode
compared to when we allow up to 200 alignments per read. This ob-
servation is also consistent across the other two simulated samples in
Supplementary Table S5, in those cases with PuffAligner being the
most accurate aligner in different modes for both samples.

Overall, these results along with other similar experiments in
Supplementary Section S8 and Supplementary Table S5 indicate that
PuffAligner is a sensitive and fast aligner. Specifically PuffAligner
exhibits similar accuracy (and is sometimes more accurate) as well-
known aligners like Bowtie2 and STAR. On these data, it exhibits
memory requirements close to those of the memory-frugal Bowtie2,
while being much faster. Figure 3 shows that PuffAligner has the
lowest running time, even when the number of allowed alignments
per read increases. In Supplementary Section S11, we explain the
reasons and advantages behind using PuffAligner as opposed to a
light-weight pipeline like Kraken2þBracken for metagenomic anal-
yses with examples from real metagenomic experiments.

3.4 Scalability
Figure 2 and Supplementary Figure S7 represent how the construc-
tion memory and index size of each tool scales over different types
of sequences. The trend shows the effect of database size as well as
redundancy and sequence similarity on the scalability of each of the
tools. Tools such as PuffAligner and deBGA, which build a de Bruijn
graph-based index on the input sequence, specifically compress simi-
lar sequences into unitigs and therefore scale well for databases with
high redundancy such as collections of related microbial genomes.
As the figure shows, the size of the PuffAligner index increases rela-
tively less compared to that of Bowtie2 and STAR as we add more
(specifically, repetitive) sequences so that, although the PuffAligner
index is almost three times larger than the Bowtie2 index for the
human genome, PuffAligner’s index is similar in size to that of
Bowtie2 over the references for the metagenomic experiments. It is
worth mentioning that Bowtie2 requires a switch from a 32-bit
index to a 64-index as the total count of the input bases increases,

Table 2. Accuracy of abundance estimation with Salmon using

alignments reported by each aligner for the mock metagenomic

sample simulated from SRR10948222

Alignment mode Tool Spearman MARD MAE MSLE

Primary PuffAligner 0.69 0.028 1.39 0.08

Bowtie2 0.58 0.053 2.91 0.15

STAR 0.727 0.023 1.493 0.05

deBGA 0.28 0.616 656.08 6.53

Up to 20 PuffAligner 0.9 0.006 0.40 0.006

Bowtie2 0.85 0.01 0.22 0.012

STAR 0.929 0.004 0.303 0.002

deBGA 0.28 0.573 637.60 5.65

Up to 200 PuffAligner 0.97 0.002 0.36 0.001

Bowtie2 0.99 0.001 0.19 0.00

STAR 0.929 0.004 0.299 0.002

deBGA 0.28 0.571 637.83 5.55

Best strata PuffAligner 0.97 0.002 0.36 0.001

STAR 0.929 0.004 0.3 0.002

Note: All aligners are run in three main modes; allowing only one best

alignment with ties broken randomly (Primary), up to 20 alignments reported

per read and up to 200 alignments reported per read. PuffAligner and STAR

support a fourth mode that allows reporting all equally best alignments

(bestStrata). This option improves the performance while maintaining the ac-

curacy of the results. Best result in each metric is highlighted in bold.

Fig. 2. Time performance for aligning a mock experiment simulated from bulk read

sample SRR10948222. The dashed area shows fraction of the time spent purely on

aligning reads and the rest is the time required for index loading. PuffAligner is the

fastest tool, yet most of its time is still dedicated to loading the index. The alignment

for Bowtie2 increases when asking for more alignments per read while the other

tools show a constant alignment time scaling over number of reads

PuffAligner 4053

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab408#supplementary-data


which is another reason why the size is growing super-linearly. To
better evaluate how the different indices grow as a function of the
size of the reference database and similarity of the sequences that
constitute the database, we designed a small-scale experiment where
we compare the scalability of Bowtie2 and PuffAligner when
increasing the size of the database under two different scenarios. In
one case, we index a collection of increasing size of highly similar
genomes, and in the other we index a collection of increasing size of
genomes from distinct species (with much less sequence similarity).
In Supplementary Section 10, we demonstrate the scalability advan-
tage of PuffAligner for indexing highly redundant and similar refer-
ence collections.

4 Discussion and conclusion

In this article, we introduce PuffAligner, an aligner suitable for the
contiguous alignment of short-read sequencing data. We demon-
strate its use in aligning DNA-seq reads to the genome of a single
species, aligning RNA-seq reads to the transcriptome, and aligning
DNA-seq reads from metagenomic samples to a large collection of
references. It is built on top of the Pufferfish index, which constructs
a colored compacted de Bruijn graph using the input reference
sequences. PuffAligner begins read alignment by collecting unique
maximal exact matches, querying k-mers from the read in the
Pufferfish index. The aligner then chains together the collected uni-
MEMs using a dynamic programming approach, choosing the chains
with the highest coverage as potential alignment positions for the
reads. Finally, PuffAligner is able to efficiently compute alignment,
exploiting information from long matches in the chains and making
use of an alignment cache to avoid redundant work.

We compared the accuracy and efficiency of PuffAligner against
two widely used alignment tools, Bowtie2 and STAR, that perform
unspliced and (optionally) spliced alignments of reads, respectively.
We also compare the results against deBGA, an aligner that also uti-
lizes an index built over the compacted de Bruijn graph.

We analyze the performance of these tools on both simulated
and experimental DNA and RNA sequencing datasets. The accuracy
of PuffAligner is comparable to Bowtie2, which exhibits very high
alignment. PuffAligner generally performs better than STAR and
deBGA (though, unlike STAR, none of these other tools currently
support spliced read alignment). In terms of speed and memory,
PuffAligner reaches a tradeoff between the relatively high memory
usage of STAR and deBGA and the slower speed of Bowtie2. Hence,
while the memory requirement of PuffAligner is more than that of
Bowtie2, the speed gain is significant. In the tests performed in this
manuscript, PuffAligner is almost always the fastest tool (with the
exception being that STAR is faster when aligning unspliced DNA-
seq reads to a single human genome).

An additional advantage of the Pufferfish index used in
PuffAligner is that it can scale well to a collection of genomes, tran-
scriptomes, or both, especially when the reference sequences being
indexed exhibit a high degree of sequence similarity. This feature is
already utilized in a specific pipeline for RNA-seq quantification
that makes use of a joint index over the genome and transcriptome
(Srivastava et al., 2020). The analysis shows that specificity of align-
ments in such a case can be improved by filtering from quantifica-
tion reads that are better aligned to some genomic locus that is not
present in the transcriptome.

Furthermore, the nature of the Pufferfish index, that explicitly
factorizes out highly repetitive sequence, coupled with the fast (and
repetition-aware) alignment procedure of PuffAligner makes it a par-
ticularly useful for indexing and aligning to a highly similar collec-
tion of sequences. This potentially makes it a good match for
metagenomic analyses.

We have provided a proof of concept for such a PuffAligner-
based metagenomic analysis pipeline, and plan to build a more
sophisticated and fully featured metagenomic analysis framework
around PuffAligner in the future.
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