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1  | INTRODUC TION

Bacteria are ubiquitous inhabitants of the animal gut. Research on 
the function of these gut mirobiota has focused primarily on benefits 
to the host (e.g., Nicholson et al., 2012), which can include enhanced 

uptake and synthesis of nutrients, breakdown of toxic food byprod‐
ucts and protection against pathogen invasion (Clemente, Ursell, 
Parfrey, & Knight, 2012; Dillon & Dillon, 2004). However, wide‐
spread interest in their benefits can obscure the complex and var‐
ied outcomes of these relationships. Species differ in the degree to 
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Abstract
Gut microbes are believed to play a critical role in most animal life, yet fitness effects 
and cost–benefit trade‐offs incurred by the host are poorly understood. Unlike most 
hosts studied to date, butterflies largely acquire their nutrients from larval feeding, 
leaving relatively little opportunity for nutritive contributions by the adult's microbi‐
ota. This provides an opportunity to measure whether hosting gut microbiota comes 
at a net nutritional price. Because host and bacteria may compete for sugars, we hy‐
pothesized that gut flora would be nutritionally neutral to adult butterflies with plen‐
tiful food, but detrimental to semistarved hosts, especially when at high density. We 
held field‐caught adult Speyeria mormonia under abundant or restricted food condi‐
tions. Because antibiotic treatments did not generate consistent variation in their gut 
microbiota, we used interindividual variability in bacterial loads and operational taxo‐
nomic unit abundances to examine correlations between host fitness and the ab‐
dominal microbiota present upon natural death. We detected strikingly few 
relationships between microbial flora and host fitness. Neither total bacterial load 
nor the abundances of dominant bacterial taxa were related to butterfly fecundity, 
egg mass or egg chemical content. Increased abundance of a Commensalibacter spe‐
cies did correlate with longer host life span, while increased abundance of a 
Rhodococcus species correlated with shorter life span. Contrary to our expectations, 
these relationships were unchanged by food availability to the host and were unre‐
lated to reproductive output. Our results suggest the butterfly microbiota comprises 
parasitic, commensal and beneficial taxa that together do not impose a net reproduc‐
tive cost, even under caloric stress.
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which they depend upon their gut symbionts: for some hosts, they 
are essential to survival (e.g., Eutick, Veivers, O'Brien, & Slaytor, 
1978; Coon, Brown, & Strand, 2016), but for others they may be 
largely superfluous (e.g., Hammer, Janzen, Hallwachs, Jaffe, & Fierer, 
2017; Shelomi, Lo, Kimsey, & Kuo, 2013). Understanding what de‐
termines the direction and strength of these relationships for differ‐
ent hosts requires careful comparative work not only at the level of 
physiological impacts, such as nutrient synthesis, but also at the level 
of net impacts, such as the gut flora's effects on host life history and 
reproductive output.

Only a handful of studies have quantified the effects of the gut 
microbiota on host fitness. In chickens, experimentally increasing the 
abundance of one bacterial species, Lactobacillus acidophilus, results 
in faster growth and increased egg output (Haddadin, Abdulrahim, 
Hashlamoun, & Robinson, 1996). In termites, elimination or pertur‐
bation of the gut flora severely shortens the host's life span and 
reduces oviposition rate (Eutick et al., 1978; Rosengaus, Zecher, 
Schultheis, Brucker, & Bordenstein, 2011). In mosquitos and dung 
beetles, gut microbes are required for larval development (Coon et 
al., 2016; Schwab, Riggs, Newton, & Moczek, 2016). In tsetse flies, 
host fecundity decreases as gut microbes are eliminated earlier and 
earlier in a fly's life, and flies without gut flora produce no offspring 
(Nogge & Gerresheim, 1982). This previous work suggests that the 
gut microbiota can indeed impact host fitness, and stresses the need 
for additional investigation in a variety of hosts with diverse nutri‐
tional ecologies and life histories.

The relationship between a host and its gut microbiota is highly 
context‐dependent. Because much of the gut flora's function docu‐
mented thus far revolves around nutrient acquisition and synthesis, 
the quality of the diet in relation to the host's needs should deter‐
mine whether the nutritive contribution of gut microbes increases 
or diminishes host fitness. A poor diet consists of the improper ratio 
or amount of the nutrients needed by the host, or contains toxins 
or recalcitrant compounds which the host cannot metabolize. Such 
diets create an opportunity for gut microbes to provide a service 
(e.g., nutrient biosynthesis or breakdown). On the other hand, diets 
that already fulfil the host's requirements may render microbial con‐
tributions irrelevant. Because gut symbionts absorb nutrients for 
their own metabolism and can stimulate the host's immune system, 
hosts that sustain gut microbes but do not gain services from them 
could incur a net fitness cost.

Research on this topic is limited, but generally supports these 
expectations. Gut microbiota increase the fecundity of female olive 
flies fed an unbalanced diet, but do not affect the fecundity of fe‐
males fed a complete diet (Ben‐Yosef, Aharon, Jurkevitch, & Yuval, 
2010). On a poorer diet, thrips with gut symbionts lay more eggs 
than those without; on a richer diet, thrips without gut flora lay more 
eggs (de Vries, Jacobs, Sabelis, Menken, & Breeuwer, 2004). A poor 
diet is lethal to germ‐free Drosophila larvae, but symbiotic larvae sur‐
vive (Shin et al., 2011). These examples suggest that gut flora can 
benefit hosts by compensating for a poor diet, but may have nega‐
tive or no effects on hosts that consume a diet that already satisfies 
their nutritional needs.

The prevalence of gut microbial associations and their context‐
dependent impacts on the host emphasize the need to investigate 
gut associations across a broad spectrum of comparative systems. 
Adult butterflies provide a previously unexplored context in which 
to investigate the outcomes of gut symbioses. Because lepidopter‐
ans gather most of their nutrients during the larval stage, adults’ nu‐
tritional needs are simple—limited primarily to sugars, which provide 
energy to the adult and carbon for egg production (O'Brien, Boggs, 
& Fogel, 2004). This adult diet is also easy for the host to digest. 
Furthermore, the adult lepidopteran gut flora is highly variable in 
both species composition and abundance, probably because butter‐
flies acquire most or all of their gut microbiota from the environment 
(Ravenscraft, Berry, Hammer, Peay, & Boggs, 2019). Gut microbiota 
are therefore unlikely to be nutritionally advantageous to butter‐
flies, providing a potential opportunity to measure the costs which 
insect hosts—especially those with environmentally acquired gut mi‐
crobiota—incur for housing bacteria in the gut.

The impact of the butterfly gut flora probably depends on host 
nutritional context. In the wild, adult food availability strongly affects 
population size in Speyeria mormonia (Boggs & Inouye, 2012), probably 
through effects on fecundity (Boggs & Ross, 1993). Variation in food 
availability is often extreme—flowers per butterfly shift by up to four 
orders of magnitude across years (C. Boggs, unpublished data). Food 
limitation might change the cost–benefit ratio of hosting gut flora: be‐
cause the gut flora consume some portion of the host's diet to support 
their own metabolism, food restriction could shift a gut microbial as‐
sociation from a net mutualism or commensalism to a net parasitism.

To better understand the relationship between environmentally 
acquired gut microbiota and host reproductive fitness, we used the 
butterfly S. mormonia (Lepidoptera: Nymphalidae) to investigate 
whether the abdominal (mostly gut) microbiota are related to butter‐
fly life span, fecundity and egg quality, and whether food availability 
to the host modulates these effects. We predicted that gut flora, as 
a whole, would be less costly to butterflies that were fed ad libitum 
than those that were semistarved.

Ultimately, the net cost or benefit of the microbiota must be the 
sum of the effects of the individual, often interacting, microbial taxa 
of which it is composed. Individual microbial species or strains may 
be commensal, detrimental or beneficial to their host, and the nature 
of each of these relationships may shift with host nutrition or envi‐
ronmental conditions. We therefore also performed an exploratory 
analysis of how food availability to the host modulated relationships 
between butterfly fitness and particular microbial taxa, with the ex‐
pectation that a greater number of bacterial species would be nega‐
tively correlated with host fitness under semistarvation than under 
unrestricted feeding.

2  | METHODS

2.1 | Study system and site

The Mormon fritillary, Speyeria mormonia, is a univoltine, montane 
butterfly. Adults fly from June to September and eggs hatch in the 
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autumn. Eggs contain protein, triglyceride and glycogen stores, 
which are important nutrient sources for the offspring (Chippendale, 
1978). Larvae overwinter as unfed first instars and seek out their 
host plant Viola (Violaceae) in the spring. Adults primarily feed on 
nectar from plants in the Compositae; males also feed at mud pud‐
dles, dung and carrion. The study population was located in a fes‐
cue grassland near the Rocky Mountain Biological Station (RMBL), 
Gunnison County, CO, USA (38°56′50″N, 106°58′50″W; 2,900 m 
asl). In midsummer, ranchers move cattle onto the site to graze, de‐
creasing nectar availability.

Adults’ nutritional ecology and nutrient allocation under dif‐
ferent feeding regimes are well documented (Boggs, 1986,1997; 
Boggs & Freeman, 2005; Boggs & Ross, 1993; O'Brien et al., 2004). 
Because oocytes are not mature upon the female's emergence from 
the pupa, adult‐derived nutrients are incorporated into the eggs and 
thus directly influence host fitness (Boggs & Ross, 1993). Up to 80% 
of egg carbon is derived from adult feeding (O'Brien et al., 2004), 
which is tightly linked to reproductive output: female fecundity de‐
creases linearly in direct proportion to adult food availability (Boggs 
& Ross, 1993). Egg carbon/nitrogen (C:N) composition is unusually 
high for a butterfly, probably in response to the species’ over‐win‐
tering strategy (O'Brien et al., 2004).

2.2 | Butterfly collection and 
experimental treatments

In July and August 2014, we captured 125 freshly eclosed and 
mated females from the field study population, brought them 
to the lab, and immediately weighed them and measured their 
wing length. Females were provided with a surface‐sterilized, 
dried and pressed leaf of their host plant and housed in individ‐
ual cages within an environmental chamber at 16:8 hr light/dark. 
Cages were constructed of lantern globes topped with large plas‐
tic Petri dishes with ventilation holes and were lined with wax 
paper. Lantern globes, Petri dishes and wax paper were sprayed 
with ethanol to reduce bacterial contamination. Females were fed 
a filter‐sterilized diet similar in composition to flower nectar, fol‐
lowing Erhardt and Rusterholz (1998). HOBO data loggers (Onset 
Computer Corporation) recorded the temperature of the environ‐
mental chamber at 15‐min intervals.

To control for differences in butterfly size among the feeding 
treatments, females were paired by mass and wing length. The 
members of each pair were assigned to one of two feeding treat‐
ments: ad libitum or semistarved. The ad lib female was allowed 
to feed to satiation twice per day, in the morning and afternoon. 
The semistarved female was offered a reduced volume of diluted 
artificial nectar, resulting in a 25% reduction in volume and a 
50% reduction in the 2‐day running average of the calories and 
amino acids her partner consumed. Previous work has shown that 
egg production decreases linearly with adult female food intake 
(Boggs & Ross, 1993). We chose a starvation level of 50% ad lib di‐
rectly from the results of this work to ensure that the semistarved 
females experienced physiological food stress. We measured how 

much every butterfly ate by offering a droplet of known volume, 
allowing the butterfly to feed, and then measuring the leftover 
volume with a Hamilton syringe.

Butterflies were assigned to one of three gut flora treatments: 
unaltered, perturbed, or perturbed and reseeded (hereafter “re‐
seeded” for brevity). Unaltered females were fed only sterile diet; 
their gut communities were therefore composed of microbes they 
acquired in the field as larvae and freshly emerged adults, and any 
microbes acquired in the lab in spite of antiseptic conditions. These 
females served as a control for possible direct effects of antibiotic 
treatments on the butterflies. Perturbations in the gut flora of the 
other two groups were generated by antibiotic treatment. To differ‐
entiate between direct effects of antibiotics on the butterfly itself, 
and actual relationships between fitness and perturbation of the gut 
microbiota, both the perturbed and the reseeded butterflies were 
fed broad‐spectrum antibiotics (diet containing 500 mg/L each of 
penicillin, gentamicin, rifampicin and streptomycin, and 667 mg/L 
nystatin) for their first four feedings. In an attempt to repopulate the 
guts of the reseeded group, we captured wild individuals of S. mor‐
monia, dissected out their guts and gut contents, homogenized these 
in sterile artificial nectar, and fed this to the reseeded females on the 
day after the final antibiotic treatment. All females were then fed 
sterile artificial nectar (without antibiotics) for the remainder of their 
lives. This treatment scheme was designed to generate variation in 
gut community membership and total bacterial load.

We combined the feeding and gut treatments in a full factorial 
design, resulting in six treatment groups: (a) ad lib feeding, unaltered 
gut microbial community (N = 10); (b) semistarved, unaltered gut 
(N = 11); (c) ad lib, perturbed gut (N = 18); (d) semistarved, perturbed 
gut (N = 18); (e) ad lib, reseeded gut (N = 19); and (f) semistarved, re‐
seeded gut (N = 16). The females included in the analyses of perfor‐
mance and fitness varied slightly due to missing or excluded data. 
(For example, six samples failed during quantitative PCR [qPCR] of 
bacterial 16S rRNA or host ef1α genes, and euthanized females were 
not included in the analysis of life span.) We report final sample sizes 
for each model in Table 4 and the number of females contributing to 
each model in Supporting Information Table S1.

We weighed females every other day. Eggs were removed from 
each cage every day and counted. Every other day, up to 10 eggs from 
each butterfly were dried at 50°C and stored in sealed Eppendorf 
tubes for later chemical analysis. Summary statistics for all life history 
metrics are reported in Supporting Information Table S2.

Upon death, abdomens were washed with 70% ethanol and pre‐
served in cetrimonium bromide (CTAB) for sequencing. Because we 
sequenced whole abdomens, the bacteria in this study include those 
present in the reproductive tract and other areas of the abdomen, in 
addition to the gut. However, because most abdominal bacteria are 
located in the gut—as indicated by the fact that the microbiota de‐
rived from entire insects closely resemble samples taken specifically 
from their guts (Sabree, Hansen, & Moran, 2012)—we use “abdomi‐
nal flora” and “gut flora” interchangeably.

Most females died naturally. However, post‐reproductive butter‐
flies that were weak and largely immobile were euthanized (N = 15).
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2.3 | Egg chemical analyses

Egg mass and chemical composition were measured at the University 
of South Carolina following the procedures of Niitepõld and Boggs 
(2015). Briefly, to measure triglyceride content we crushed three or 
four eggs in distilled water, centrifuged this and added the super‐
natant to a 96‐well plate with Infinity triglycerides stable reagent 
(Thermo Scientific). Absorbance was read at 500 nm and compared 
to a triglyceride standard. To measure glycogen content we crushed 
four eggs in 2% sodium sulphate, washed this with 1:2 chloroform–
methanol followed by 80% methanol, took the supernatant, added 
anthrone reagent, and heated at 90°C. Absorbance was read at 
625 nm and compared to a glucose standard curve. Triglyceride and 
glycogen data were corrected to micrograms per egg.

2.4 | Microbial community characterization

DNA was extracted at Stanford University following the protocol of 
Peay, Bruns, Kennedy, Bergemann, and Garbelotto (2007). Briefly, 
samples were homogenized via bead beating, extracted with chloro‐
form and cleaned using the DNeasy Blood and Tissue Kit (Qiagen). 
Interspersed among our samples, we also performed DNA extractions 
on two empty tubes and two tubes of clean CTAB buffer. These four 
blank extractions were processed simultaneously with and identically 
to the samples, including all downstream lab work and sequencing.

Bacterial sequences were indexed using barcoded re‐
verse primers (Caporaso et al., 2012). We amplified the V4 
hypervariable region of the 16S rRNA gene using primer 
set 515f (5′‐GTGCCAGCMGCCGCGGTAA‐3′) and 806r (5′‐
GGACTACHVGGGTWTCTAAT‐3′). This region amplifies bacterial 
taxa with few biases and is appropriate for accurate phylogenetic 
placement (Bergmann et al., 2011; Liu, Lozupone, Hamady, Bushman, 
& Knight, 2007). Because these primers also amplified butterfly 18S 
rRNA, we designed a PNA clamp to block amplification of host DNA 
(Lundberg, Yourstone, Mieczkowski, Jones, & Dangl, 2013). The clamp 
sequence was GCCCGCTTTGAGCACTCT and it was synthesized by 
PNA Bio. Samples were amplified in a volume of 25 µl with the follow‐
ing recipe: 12.5 μm PNA clamp, 0.2 μm forward primer, 0.2 μm reverse 
primer, 0.2 mm dNTP, 0.65 U OneTaq HotStart (New England Biolabs) 
and 1× Thermopol buffer (New England Biolabs). Thermocycler set‐
tings were denaturation at 95°C for 45 s followed by 35 cycles of dena‐
turation at 95°C for 15 s, PNA clamp annealing at 76°C for 10 s, primer 
annealing at 50°C for 30 s and extension at 68°C for 30 s, with a final 
extension of 68°C for 3 min (adapted from Lundberg et al., 2013). We 
used Veriti (Applied Biosystems) and T100 (Bio‐Rad) thermocyclers. 
We did not amplify our samples in triplicate; empirical research has 
shown that PCR replication is unnecessary (Smith & Peay, 2014).

Every 96‐well sample plate included at least one blank sample of 
PCR water. These PCR blanks entered the workflow after DNA ex‐
traction and were subsequently processed simultaneously with and 
identically to the samples, including all downstream lab work and se‐
quencing. In total, we processed five of these PCR blanks (in addition 
to the four DNA extraction blanks mentioned above).

To verify amplification success, PCR products were visualized 
using gel electrophoresis. Products were cleaned and concentrated 
using SequalPrep normalization plates (Life Technologies A10510‐01). 
Samples were sequenced at the Stanford Functional Genomics Facility 
on an Illumina Mi‐Seq platform using 2 × 300 chemistry.

Sequences were edited to remove priming sites and poor qual‐
ity bases at the 5′ and 3′ ends using the program cutadapt (Martin, 
2011), merged and clustered at a 97% similarity cutoff with uparse 
(Edgar, 2013). De novo and reference‐based chimera checking were 
performed in uparse against the RDP Gold database. Taxonomy was 
initially assigned using the RDP classifier with Greengenes as the 
training set (McDonald et al., 2012; Wang, Garrity, Tiedje, & Cole, 
2007). We checked and revised these assignments by searching rep‐
resentative sequences in the NCBI nucleotide collection.

For each of the operational taxonomic units (OTUs) observed in 
the negative controls (four blank extractions and five PCR blanks 
that underwent all sample preparation and sequencing, as described 
above), we performed a t test comparing each OTU's relative abun‐
dance in the samples to its relative abundance in the blanks. If the 
OTU was present at significantly greater relative abundance in the 
negative controls than the samples, we identified it as a contami‐
nant. One OTU (OTU_8, an Acidovorax species) was classified as a 
contaminant by this method and was removed from the data set 
prior to analysis. Rare OTUs—those that did not account for at least 
0.1% of the total reads of at least five samples prior to rarefaction—
were also removed from the data set.

To control for differences among samples in sequencing depth, 
we rarefied the sequencing data to 1,000 reads per sample using the 
r package “phyloseq” (McMurdie & Holmes, 2013). The 1,000 read 
cut‐off allowed us to retain an adequate number of butterflies in the 
data set while still profiling the dominant bacteria in their guts. At this 
depth the slopes of the sample rarefaction curves were shallow, rela‐
tive abundances of the focal OTUs (described below) were stable, and 
coverage analysis indicated that we detected a median of 98.5% of true 
diversity in the experimental females (Supporting Information Figures 
S2–S4). To ensure that results were not driven by a single rarefaction, 
we performed each of our analyses on 1,000 rarefied data sets (de‐
scribed below). However, as a result of rarefying to 1,000 reads, we 
probably failed to reliably detect OTUs that were present in a butterfly 
at a relative abundance of approximately 1/1,000 raw reads or less. This 
may have reduced our ability to detect relationships between the focal 
OTUs (described below) and butterfly fitness, especially for those focal 
OTUs that were present at low relative abundance on average, such as 
Arthrobacter sp. (OTU_65), Rhodococcus sp. (OTU_58), Methylobacterium 
sp. (OTU_112), Caulobacter sp. (OTU_15), Pedobacter sp. (OTU_83) and 
Stenotrophomonas sp. (OTU_2544) (Table 3).

2.5 | Quantification of total bacterial load and 
absolute OTU abundances

Bacterial DNA was quantified with qPCR using SYBR green fluo‐
rescence chemistry (iCycler IQ, Bio‐Rad) and primers 515f /806r. 
DNA was amplified in a volume of 20 µl with the following recipe: 
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12.5 μm PNA clamp, 0.2 μm forward primer, 0.2 μm reverse primer 
and 1× PerfeCTa SYBR Green FastMix for iQ (Quanta Biosciences). 
Thermocycler settings were denaturation at 95°C for 10 min fol‐
lowed by 45 cycles of denaturation at 95°C for 15 s, PNA clamp 
annealing at 76°C for 10 s, primer annealing at 50°C for 30 s and ex‐
tension at 68°C for 30 s. To verify that amplified fragments were the 
expected length, we performed a melt curve ramping from 55°C to 
95°C. PCR products were also visualized using gel electrophoresis.

The original number of 16S rRNA copies per sample was cal‐
culated by comparing the sample's threshold cycle to an internal 
standard curve. Standards were composed of full‐length Escherichia 
coli 16S rRNA amplicons and ranged from an initial 10–107 copies/
µl. (Curve generation is described below.) Each sample and standard 
was run in triplicate and the results were averaged.

Efficiencies across all qPCR plates ranged from 61.2% to 71.7%. 
Standard curve correlation coefficients ranged from 0.957 to 0.986. 
Low efficiencies resulted from use of the 515f/806r primer set, 
which is not optimized for qPCR. Use of these primers was neces‐
sary to maintain consistency with the Illumina data and allows cor‐
respondence between bacterial community composition and 16S 
rRNA copy counts. More specifically, it allowed us to multiply the 
relative abundances of the focal OTUs by the absolute bacterial 
loads estimated via qPCR. Had we used different primer sets for the 
Illumina and qPCR components of the study, the primer sets would 
probably have had different amplification biases for different bacte‐
rial taxa, which would have invalidated direct comparisons between 
the Illumina and qPCR data. Quantification with 515f/806r plus an 
E. coli standard curve has been successfully used in studies rang‐
ing from soil bacterial communities to insect gut flora (Carini et al., 
2016; Hammer et al., 2017; Sanders et al., 2017). Due to the low 
efficiency of the 515f/806r primers, our reported bacterial counts 
may underestimate true bacterial titres, but any downwards bias will 
apply to all samples. As a result, the trends we detected, and our 
overall results, would not have changed if we had used more effi‐
cient bacterial primers. However, for studies that focus on the role of 
specific bacterial taxa, an alternative would be to use more efficient, 
taxon‐specific primers.

To generate the standard curve, 16S rRNA was amplified from 
E. coli using primers 27f/1492r, ligated into a plasmid vector and 
cloned. To screen for the correct insert, colonies were PCR‐ampli‐
fied using primers M13f/M13r followed by gel electrophoresis and 
bidirectional sequencing. One colony that passed both screens was 
grown to saturation in LB + kanamycin media. Plasmids were ex‐
tracted (Qiagen Plasmid Mini kit) and linearized with Spel restriction 
enzyme (FastDigest, Thermo Fisher FD1253). To confirm complete 
linearization, DNA was purified (Qiagen PCR cleanup column) and vi‐
sualized on a gel. DNA concentration was quantified with PicoGreen. 
We calculated copy number/µl as the molecular weight of plasmid 
plus insert (g/molecule = length in bp × 650 Da/bp/6.02 × 1023) 
divided by the measured DNA concentration (g/µl). Via serial dilu‐
tion of the raw extract we created standards ranging from 107 to 10 
copies/µl.

Bacterial 16S rRNA counts per sample were normalized by 
the number of host ef1α copies per sample. The practice of stan‐
dardizing by the copy number of a host gene controls for possible 
variation among samples in the total amount of DNA obtained 
from the DNA extraction and its suitability for PCR. We de‐
signed primers that amplified a 159‐bp segment of the ef1α gene 
of S. mormonia (SpeyF: ACACCTGTGTTGGATTGCCA, SpeyR: 
GAGGGGCTTGGATGGTTGAA). With these primers, we quanti‐
fied host ef1α using the same reagents and thermocycler protocol 
as for bacterial 16S rRNA, with the exception that we did not add a 
PNA clamp and omitted the clamp annealing step. To calculate the 
starting number of ef1α copies, each sample's threshold cycle was 
compared to an internal standard curve ranging from an initial 10 to 
107 copies/µl of ef1α amplicons. Each sample and standard was run 
in triplicate and the results were averaged. Efficiencies of the ef1α 
qPCRs ranged from 91.8% to 98.6% and the correlation coefficients 
of the standard curves ranged from 0.997 to 0.999.

To generate the ef1α standards, we amplified one sample using 
primers SpeyF/SpeyR, purified the PCR product (QIAquick PCR 
Purification Kit, Qiagen), quantified the product (Qubit DS DNA 
HS assay, Qiagen), diluted this to a concentration of 2 ng/µl and re‐
quantified. Using the molecular weight of a 159 ‐bp DNA fragment 
(159 × 650 Da), we calculated the copy number of ef1α. We then se‐
rially diluted to obtain standards ranging from 107 to 10 copies/µl.

We calculated per‐sample absolute abundances of the OTUs by 
multiplying each OTU's relative abundance in the rarefied data by 
the total number of 16S rRNA copies per ef1α copies in each sample.

2.6 | Statistical analyses

To assess the effects of the gut treatments, we used ordination 
(nonmetric multidimensional scaling [NMDS]) plots to visualize and 
PERMANOVA (the adonis test in the r package “vegan”; Oksanen 
et al., 2015) to test for dissimilarity in abdominal community com‐
position, measured as the abundance‐weighted Unifrac (Lozupone, 
Hamady, & Knight, 2006) distances between rarefied samples. The 
PERMANOVA test assumes that within‐group distances are equiva‐
lent (Anderson & Walsh, 2013); we therefore tested for differences 
in dispersion among gut treatments using vegan's betadisper function.

We used linear and linear mixed effect models (Zuur, Ieno, 
Walker, Saveliev, & Smith, 2009) to assess whether food availability 
influenced the relationship between bacterial load and butterfly per‐
formance (food consumption, life span) and fitness (fecundity, egg 
quality). To control for additional possible covariates, we found the 
best‐fit fixed effects structure using backwards model selection with 
likelihood ratio tests starting from the full models listed in Table 1. 
(Variables are defined in Table 2.) All models were fit in r version 
3.5.1 (R Core Team, 2018). Models without random effects were 
fit using the lm command in the “stats” package; models with ran‐
dom effects were fit using the lmer command in the package “lme4” 
(Bates, Maechler, Bolker, & Walker, 2015). All metrics were modelled 
with Gaussian error and an identity link function.
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We conducted a power analysis to measure the ability of each 
model to detect a meaningful interaction between feeding treat‐
ment and total bacterial load, where a biologically meaningful effect 
size was defined to be 20% of one standard deviation of the given 
life history metric. For each metric, we took the final model from 
backwards model selection and added a term for the interaction of 
feeding treatment and bacterial load. We set the coefficient of this 
interaction term to equal our “meaningful” effect size and then ap‐
plied this updated model to our original data. This produced predic‐
tions under the assumption that the meaningful effect size was the 
true effect size. We simulated 1,000 data sets by adding residual 
error to the model predictions as follows: for each data set, error was 
randomly drawn from a normal distribution with a mean of 0 and a 

standard deviation equal to the original model's estimated residual 
standard error. Where applicable, we also added error to account for 
random effects structure, assigning each female its own error drawn 
from a normal distribution with a mean of 0 and standard deviation 
equal to the estimated standard deviation of the original model's 
random effect term. We reran the updated model on each simulated 
data set. Power was calculated as the percentage of iterations in 
which the interaction of feeding treatment and bacterial load was 
detected as significant. For example, a model in which the interac‐
tion was detected as significant in 998 out of 1,000 simulations had 
99.8% power to detect a meaningful effect that truly existed.

We also investigated whether food availability influenced re‐
lationships between the life history metrics and abundances of 

Metric Predictors testeda 

Whole life

Average eaten 
per day

gut + winglength +mass.initial + temp.life + bacterial.load + egg.onset

Life span gut*feed + bacterial.load*feed + winglength +mass.initial + temp.
life + egg.onset

Fecundity gut*feed + bacterial.load*feed + life span + winglength +mass.ini‐
tial + temp.life + egg.onset

Daily

Egg weight gut*feed + bacterial.load*feed + winglength +mass.bfly + neggs 
+preveaten3 + temp.prevday*age + (1|femaleID)

ln(triglycerides) gut*feed + bacterial.load*feed + winglength +mass.bfly + neggs 
+preveaten3 + temp.prevday*age + egg.wt + (1|femaleID)

Glycogen gut*feed + bacterial.load*feed + winglength +mass.initial + neggs 
+preveaten3 + temp.prevday*age + egg.wt + (1|femaleID)

aVariables are defined in Table 2. A random effect for butterfly individual is indicated as (1|femaleID). 
Asterisks denote main terms with interactions. 

TA B L E  1   Variables evaluated as 
predictors of each performance or fitness 
metric

Age Days since the butterfly was captured

bacterial.load The log (base 2) of the number of bacterial 16S copies divided by the 
number of host ef1a copies per individual

egg.onset Age at which a female laid its first egg (a proxy for how old the 
butterfly was when it was captured)

egg.wt Average weight of an egg laid by a given butterfly that day

feed Feed treatment (ad lib or semistarved)

foodperday Average volume of food eaten per day

gut Gut treatment (unaltered, perturbed or reseeded)

lifespan The number of days a female lived in the lab

mass.bfly Butterfly mass (measured every other day)

mass.initial Initial mass of the butterfly at capture

neggs Number of eggs laid on a given day

preveaten3 Average volume eaten over the previous 3 days

femaleID Identity of the butterfly

temp.life Average temperature the butterfly experienced over its life in the lab

temp.prevday Average temperature experienced over the previous day

winglength Wing length at capture (a proxy for size)

TA B L E  2   Predictor definitions
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individual OTUs. We focused on OTUs that were observed in at 
least 13 (20%) of the females and had an average of at least three 
reads per butterfly after rarefaction. Table 3 lists the resulting 
20 focal OTUs. For each performance or fitness metric, we used 
a likelihood ratio test to compare a model that included the sig‐
nificant covariates found during backwards model selection (the 
“base model”) to 20 equivalent models, each with an additional 
term for the interaction between feeding treatment and the ab‐
solute abundance of one of the focal OTUs, calculated as (frac‐
tion of reads assigned to the OTU) × log2(16S rRNA copies/ef1α 
copies + 0.001). Because there were 20 focal OTUs, this usually 
resulted in 20 p‐values per fitness metric, but in rare cases where 
>85% of observations were associated with a 0 count for a par‐
ticular OTU, that OTU was omitted from testing. To account for 
multiple testing we used false discovery rate (FDR) correction as 
implemented by the p.adjust function in r. To ensure that our re‐
sults were not driven by a single rarefaction, we generated 1,000 
rarefied data sets, repeated the described procedure for each rar‐
efaction (including FDR correction for the number of OTUs tested 
for each fitness metric), and counted the number of times the in‐
teraction between feeding treatment and an OTU was significant.

We similarly tested for direct relationships between the life 
history metrics and the abundances of the OTUs: we added the log 
absolute abundance of each focal OTU to the base model of a given 
fitness metric, tested for improved fit and performed FDR correc‐
tion for the number of OTUs tested for that metric. This procedure 
was repeated over the 1,000 rarefied data sets, counting the num‐
ber of times each OTU was a significant predictor of each metric.

We conducted power analyses to measure the ability of our 
models to detect meaningful relationships between butterfly fit‐
ness and (a) interactions between feeding treatment and absolute 
abundances of the focal OTUs and (b) the absolute abundances of 
the focal OTUs alone. A biologically meaningful effect size was again 
defined to be 20% of one standard deviation of the given life history 
metric. These analyses were performed in the same manner as the 
power analyses for total bacterial load except that we simulated 100 
data sets instead of 1,000 for each case. More specifically, for each 
combination of a metric and a focal OTU, we took the metric's final 
model from backwards model selection and added a term either for 
(a) the interaction of feeding treatment and the given OTU's abso‐
lute abundance, or (b) just the given OTU's absolute abundance. We 
set the coefficient of this term to equal our “meaningful” effect size 
and applied this updated model to the original data. We simulated 
100 data sets according to the parameters of the updated model, 
following the same method as described above for the bacterial load 
power analyses; the resulting simulated data sets incorporate fixed 
effects, error associated with random effects and residual error. We 
reran the updated model on each of these 100 simulated data sets. 
Power was defined as the percentage of these iterations in which the 
relevant term (either the feed × OTU term or just the OTU term) was 
detected as significant. Because we only performed these analyses 
on a single rarefied data set, power estimates for the focal OTU tests 
are approximate (Rarefaction was not involved in the previously de‐
scribed power analysis for bacterial load because it used only qPCR 
data, not sequencing data).

3  | RESULTS

3.1 | Effects of semistarvation

Semistarved females laid fewer eggs compared with ad lib‐fed fe‐
males (ANOVA, df = 1, F = 29.8, p < 0.001; Figure 1). Controlling for 
life span and the age at which a butterfly began laying eggs, an aver‐
age ad lib‐fed butterfly laid 333 eggs while a semistarved animal laid 
only 191 eggs. Food availability did not affect life span, egg mass, or 
egg triglyceride or glycogen content (Table 4). Gut community com‐
position did not differ between the feeding treatments (weighted 
Unifrac, betadisper ANOVA: df = 1, F = 0.33, p = 0.57; PERMANOVA: 
df = 1, F = 0.80, p = 0.50; Supporting Information Figure S6).

3.2 | Bacterial load

Total bacterial abundances were highly variable among individu‐
als: qPCR indicated that experimental females hosted a mean of 1.1 

F I G U R E  1   Effects of the feeding treatments on fecundity. Ad 
lib‐fed females laid almost twice as many eggs over their lifetime as 
semistarved females. Thick black lines denote medians. The tops 
and bottoms of the boxes denote the lower and upper quartiles, 
respectively. Whiskers are placed at 1.5 times the interquartile 
range or, if all data fall within this range, they are placed at the most 
extreme value measured. The p‐value is the result of comparing 
the final model for fecundity (Table 4) to a model without the 
feeding treatment (df = 1, F = 29.8) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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and a median of 0.4 bacterial 16S rRNA copies per host ef1α copy, 
but bacterial load ranged from 0.002 to 8,396 16S rRNA copies per 
ef1a copy (interquartile range 0.13–3.9 16S rRNA/ef1a; Supporting 

Information Figure S1; calculations were performed on log base 2 
abundances but are in reported here in base 10 for ease of interpre‐
tation.) Gut bacterial load did not differ between semistarved and 

TA B L E  4   Predictors of butterfly performance and fitness

Metric Significant predictorsa  OTU identityb 
Coefficient (OTU or 
feed*OTU) N

Whole life

Average eaten per day egg.onset   45

Life span egg.onset + log2(OTU_1 + 0.001) + 
log2(OTU_58 + 0.001)

Commensalibacter sp. 0.45 49

Rhodococcus sp. −0.72

Fecundity feed + life span + egg.onset   88

Daily

Egg weight mass.bfly + age   175

ln(triglycerides)c  gut*feed + temp.prevday   193

Glycogen egg.wt + temp.prevday*age   88
aVariables are defined in Table 2. bTaxonomic identity of significant OTUs. cThe significance of the gut term was driven by whether or not animals were 
exposed to antibiotics, suggesting a direct effect of antibiotic treatment. 

F I G U R E  2   No relationships between total bacterial load and butterfly fitness or performance. Neither total bacterial load nor the 
interaction of bacterial load with feeding treatment was significantly correlated with butterfly fitness or performance. Dashed lines show 
model expectations as a function of the interaction of feeding treatment by total bacterial load while controlling for significant covariates 
(see Table 4). For presentation, these covariates were set to their median values. Shading indicates the model‐estimated standard errors. 
Points are the raw data. In the case of food consumption only the ad lib prediction is shown because semistarved females’ consumption was 
determined by ad lib females’ consumption. In the lower three panels, note that egg measurements were taken at multiple time points for 
each female; due to differing life spans and egg laying patterns, individual females are associated with different numbers of data points. (The 
random effects structure of the models takes this into account.) [Colour figure can be viewed at wileyonlinelibrary.com]
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ad lib females (ANOVA, F = 0.4, p = 0.53; Supporting Information 
Figure S1), nor did it differ between gut treatments (ANOVA, F = 1.6, 
p = 0.20; Supporting Information Figure S1).

We had predicted that semistarved butterflies would suffer from 
hosting large numbers of microbes, while ad lib‐fed animals would 
not. Contrary to these expectations, bacterial load was unrelated to 
fitness in both the ad lib‐fed and the semistarved females (Figure 2; 
Table 4). Our ability to detect the influence of feeding treatment on 
the relationship between total bacterial load and a life history met‐
ric was high: statistical power was >95% for all models (Supporting 
Information Table S3).

3.3 | Composition of the gut microbiota

After  sequence processing, quality filter ing, and removal of rare 
and contaminant OTUs, we obtained 180,096 sequences from the 
abdomens of 92 experimental females (24 unaltered, 50 perturbed, 
51 reseeded) and 142,333 sequences from the abdomens of the 46 
wild donor butterflies whose gut flora was fed to reseeded females. 
After rarefaction to 1,000 reads per sample, a total of 519 OTUs 
were observed across the 63 remaining experimental females. The 
20 mos t abundant OTUs detected across these females are pre‐
sented  in Supporting Information Tab le S4, and, for comparison, 
the 20 most abundant OTUs detected across donors are listed in 
Supporting Information Table S5. Nine OTUs were shared between 
experimental females’ and donors’ most abundant OTUs. Females’ 
and donors’ gut flora differed in community composition (weighted 

Unifrac, betadisper ANOVA: df = 1, F = 2.2, p = 0.14; PERMANOVA: 
df = 1, F = 3.9, p = 0.004; Supporting Information Figure S5). More 
specifically, 19 out of 519 OTUs (3.7%) differed in their frequency 
of detection between donors and experimental butterflies, includ‐
ing four of the focal OTUs (Supporting Information Figure S7). Of 
the focal OTUs, a Rhodococcus species (OTU_32), a Pedobacter spe‐
cies (OTU_83) and a Sphingomonas s pecies  (OTU_17) were more 
likely to be present in the experimental females, while a bacterium 
in the family Caulobactereaceae (OTU_15) was more likely to be 
present in the donors (Supporting Information Figure S7).

Abdominal bacterial communities were highly variable in compo‐
sition. Observed OTU richness varied substantially (mean 71 OTUs 
per female when rarefied to 1,000 reads per sample; SD 48; range 
2–167). No OTU was present in all 63 females. On average, each OTU 
was found in only nine females (SD = 9) (Supporting Information 
Figure S8). The OTU present in the greatest number of females was 
a Cloacibacterium species (OTU_2) found in 51 out of the 63 individu‐
als. On average, a randomly selected pair of females shared 18 OTUs 
(SD = 17), or 26% of their OTUs, and the mean pairwise Bray–Curtis 
dissimilarity between females was 0.84 (where a score of 0 indicates 
that two samples’ species compositions match completely, and a 
score of 1 indicates they share no species).

3.4 | Effects of the gut treatments

The t hree gut treatments did not di ffer i n total bacterial load 
(ANOVA , df = 2, F = 1.6, p = 0.20; F igure 3a) nor in observed OTU 

F I G U R E  3   Effects of the gut treatments on abdominal flora. (a) Females did not differ in total bacterial load across the three gut 
treatments. Boxplot features are as in Figure 1. (b) NMDS plot of the abundance‐weighted Unifrac dissimilarities between females. 
PERMANOVA tests (see Table 5) indicated that unaltered females differed in OTU composition from reseeded and perturbed females 
[Colour figure can be viewed at wileyonlinelibrary.com]
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richness (ANOVA: df = 2, F = 0.3, p = 0.60). The treatments did not 
differ in dispersion (weighted Unifrac, betadisper ANOVA: df = 2, 
F = 1.5, p = 0.23) but did differ in microbial community composi‐
tion (PERMANOVA: df = 2, F = 2.4, p = 0.02; Figure 3b; Table 5). 
Specifically, the gut of flora unaltered females differed from that of 
the perturbed and reseeded females (Table 5). Results were equiva‐
lent when differences in composition were measured with Bray–
Curtis distances (Supporting Information Figure S5). Overall, these 
results suggest that (a) our reseeding attempt was unsuccessful and 
had little, if any, effect on the gut microbiota, and (b) the antibiotic 
treatment had only small effects on gut community composition.

The gut treatments correlated with only one life history metric: 
egg triglyceride content (Table 4). Females exposed to antibiotics 
(perturbed or reseeded treatments) laid eggs with lower triglyceride 
content if they were semistarved than if fed ad lib, while unaltered 
females laid eggs with higher triglyceride content when they were 
semistarved than if fed ad lib. These patterns were probably the re‐
sult of direct effects of the antibiotics on the host. For further dis‐
cussion of the gut treatments and their effects, see the Supporting 
Information Appendix.

3.5 | Relationships between focal OTUs and 
butterfly performance and fitness

We selected 20 focal OTUs (those present in the rarefied data set in 
at least 20% of females and with an average read count of at least 
three per animal) and tested for correlations between their abso‐
lute abundances and the fitness and performance of their hosts. 
These focal OTUs were members of the phyla Proteobacteria, 
Bacteroidetes, Firmicutes and Actinobacteria; most were known in‐
sect or gut associates or common environmental bacteria (Table 3; 
Supporting Information Table S7). Many of the focal OTUs were pre‐
sent at low abundance on average, but spiked to higher abundance 
in some females (Supporting Information Table S6).

The results of significance testing for relationships between 
the fitness metrics and absolute abundances of each of the 20 
focal OTUs are presented in Table 6. We considered a relationship 
to have strong support if it was significant for at least 80% of the 
rarefied data sets, and moderate support if it was significant for at 
least 70% of the rarefied data sets. We detected only two relation‐
ships between the focal OTUs and butterfly fitness or performance: 

a Commensalibacter species (OTU_1) was positively correlated with 
host life span, while one of the Rhodococcus species (OTU_58) was 
negatively correlated with host life span.

The most strongly supported relationship was the positive cor‐
relation between abundance of the Commensalibacter species and 
life span (Tables 4 and 6; Figure 4a). With every doubling in the abso‐
lute abundance of Commensalibacter, life span increased by 0.5 days, 
3.6% of the average life span of 14 days. Addition of this bacterium 
as a predictor increased the predictive power of the life span model 
by 28% (predicted R2 for a model with only egg.onset  = 0.03; pre‐
dicted R2 for a model with egg.onset plus the Commensalibacter 
species’ abundance = 0.31). This relationship is confounded by the 
facts that (a) relative abundances of Commensalibacter tended to in‐
crease with total bacterial load and (b) total bacterial load tended to 
increase at the end of the summer (Supporting Information Figure 
S9). The relative abundance of Commensalibacter was not correlated 
with host life span (Supporting Information Table S10).

In contrast to Commensalibacter, absolute abundance of a 
Rhodococcus species was negatively correlated with butterfly life 
span (Tables 4 and 6; Figure 4b). With every doubling in the absolute 
abundance of this Rhodococcus, life span decreased by 0.7 days, or 
5% of the average life span. This bacterium increased the predictive 
power of the life span model by 9% (predicted R2 for a model with 
only egg.onset = 0.03; predicted R2 for a model with egg.onset plus 
the Rhodococcus species’ abundance = 0.12). Neither the absolute nor 
the relative abundance of this Rhodococcus was related to the date of 
butterfly capture (absolute abundance ANOVA: F = 2.2, p = 0.14; rel‐
ative abundance ANOVA: F = 1.3, p = 0.27), nor was its relative abun‐
dance correlated with total bacterial load (ANOVA, F = 2.1, p = 0.15). 
Abundances of the Commensalibacter species and this Rhodococcus 
species were not strongly correlated (absolute abundance: correla‐
tion = −0.06; relative abundance: correlation = −0.14). Interestingly, a 
second focal OTU in the genus Rhodococcus (OTU_32) was not cor‐
related with any aspect of butterfly fitness or performance (Table 6).

The statistical power of our models to detect relationships be‐
tween absolute OTU abundances and butterfly life history was gen‐
erally high (Supporting Information Table S9). However, our models 
were under‐powered for 12 out of 18 OTU–food consumption re‐
lationships, four out of 20 OTU–life span relationships, and one re‐
lationship each for egg weight, egg triglycerides and egg glycogen 
(Supporting Information Table S9). Power was often insufficient to 

  Differences in dispersiona  Differences in compositionb 

Comparison df F raw p FDR p F raw p FDR pc 

Overall 2 1.51 0.230  2.37 0.023  

unaltered‐perturbed 1 2.62 0.114 0.197 3.34 0.019 0.029

unaltered‐reseeded 1 2.38 0.131 0.197 3.43 0.009 0.028

perturbed‐reseeded 1 0.03 0.859 0.859 0.38 0.880 0.880
aResults of betadisper tests (PERMANOVA assumes no difference in dispersion). bResults of 
PERMANOVA tests. cp‐values of post hoc pairwise tests adjusted for multiple testing (FDR 
correction). 

TA B L E  5   Differences in abdominal 
community composition (Unifrac) 
between gut treatments
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detect significant interactions between food availability and abun‐
dances of the focal OTUs (Supporting Information Table S8). This 
was particularly true for life span, for which we only had sufficient 
power to detect the interaction with OTU_1. However, we did have 
sufficient power for 12/20 focal OTUs for fecundity, 15/20 for egg 
weight, 14/20 for egg triglycerides and 10/20 for egg glycogen 
(Supporting Information Table S8).

We also tested for relationships between the fitness metrics and 
relative abundances of the 20 focal OTUs. We did not detect cor‐
relations between these relative abundances and butterfly fitness or 
performance (Supporting Information Table S10).

4  | DISCUSSION

We investigated how (a) the overall density of the gut flora and 
(b) the abundances of dominant bacterial OTUs were related to 
butterfly fitness under abundant or restricted food conditions. 
As predicted, in a well‐fed female there was no relationship be‐
tween total bacterial load and fitness or performance. Contrary 
to our expectations, however, semistarvation did not trigger 
negative consequences of hosting gut flora: under food limitation, 
greater bacterial loads did not correlate with decreased fitness. 
Abundance of a bacterial species in the genus Commensalibacter 
was positively correlated with life span and abundance of a 
Rhodococcus species was negatively correlated with life span; 

these relationships were also unaffected by food availability to 
the host. Taken as whole, these results suggest that individual gut 
microbial taxa may have positive, negative or neutral relationships 
with Speyeria mormonia, but overall S. mormonia does not incur a 
net cost for hosting gut microbes.

4.1 | No evidence that food availability mediates the 
host–gut flora relationship in butterflies

The feeding treatments induced physiological food limitation in 
semistarved females: a 50% reduction in calories resulted in a 51% 
reduction in fecundity. These results are consistent with previous 
work that has shown that in S. mormonia, female fecundity de‐
creases linearly in proportion to food availability while life span is 
maintained (Boggs & Ross, 1993). However, even the densest mi‐
crobial communities did not correspond with decreases in the fit‐
ness of semistarved females. Although we observed a trend in the 
predicted direction for life span (a tendency for ad lib‐fed females 
to have increased fitness at high bacterial loads, while the fitness of 
semistarved females did not vary with bacterial load), this trend was 
not significant. Power analysis indicated that we should have been 
able to detect a relationship if it was present. Overall, we found no 
evidence to suggest that high bacterial loads impose a cost on but‐
terfly hosts, even under food restriction.

In other hosts, gut floras have been shown to compensate for 
the negative effects of qualitatively unbalanced diets: in olive flies 

F I G U R E  4   Relationship between life span and abundances of Commensalibacter sp. and Rhodococcus sp. Host life span was correlated 
with the abundance of (a) Commensalibacter sp. (OTU_1) and (b) Rhodococcus sp. (OTU_58). Points show the raw data (N = 49); dotted lines 
show model‐predicted means and shading indicates model‐estimated standard errors. For the model predictions, egg.onset is set to 2 days 
and the abundance of the unplotted OTU is set to its median observed value [Colour figure can be viewed at wileyonlinelibrary.com]
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and Drosophila larvae, germ‐free hosts suffered reduced fitness on 
an unbalanced diet, but fitness was rescued by the acquisition of 
either normal gut flora, or of a diet that met the host's nutritional 
requirements (Ben‐Yosef et al., 2010; Shin et al., 2011). We focused 
on adult butterflies as a comparative system to test the net effect 
of the gut flora on quantitative, rather than qualitative, dietary re‐
striction. Because investing in gut flora can be costly when they 
are not needed—as has been shown for thrips supplied with a diet 
that met their nutritional needs (de Vries et al., 2004)—and because 
the nutritional needs of the adult butterfly are simple, we expected 
that semistarved adult butterflies would be an appropriate system 
in which to test for a net caloric cost to hosting environmentally ac‐
quired gut flora. However, we found no evidence that the gut flora 
impose a meaningful caloric burden on food‐limited hosts.

Lepidopteran gut microbes could have a wide range of effects 
unrelated to host caloric intake, including competitive exclusion 
of pathogens or detoxification of plant secondary compounds 
(Hammer & Bowers, 2015; Mason, Couture, & Raffa, 2014). In par‐
ticular, there is some evidence that gut flora confer pathogen pro‐
tection to larval lepidopterans (Robinson, Schloss, Ramos, Raffa, & 
Handelsman, 2010). This study was not designed to test whether 
gut microbes serve any of these functions in butterflies, and they 
remain possibilities.

4.2 | Lepidopteran gut flora are highly variable

Only a few of the butterflies tested had particularly high abundances 
of any given microorganism. Indeed, the density and composition 
of the gut flora varied widely among the animals in our study. This 
variation may have been due in part to the gut treatments to which 
the animals were subjected. However, these treatments were not 
sufficient to generate consistent differences among gut microbial 
communities (discussed further in the Appendix). Wide variation in 
both bacterial load and taxonomic composition appears to typify the 
lepidopteran gut microbiota; a survey of wild butterflies of 50 Costa 
Rican species found that gut bacterial density varied across six or‐
ders of magnitude and, on average, a pair of adults shared less than 
one‐quarter of their gut bacterial species (Ravenscraft et al., 2019). 
The lack of consistent differences between our gut treatments could 
have resulted, in part, from the high degree of natural heterogeneity 
in this system.

Three of the dominant genera in S. mormonia appear to be 
common in other adult butterflies. Commensalibacter is abundant 
in Neotropical butterflies (Hammer, McMillan, & Fierer, 2014; 
Ravenscraft et al., 2019), and is also found in other insects with sugar‐
rich diets (Crotti et al 2010). We discuss its possible relationship to 
host life span below. Pantoea is a general insect associate and was 
common in a survey of adult Costa Rican butterflies (Ravenscraft 
et al., 2019). Finally, there appears to be a widespread association 
between butterflies and Orbus bacteria: the genus has been de‐
tected in adults across a wide geographical range including Costa 
Rica, Panama, South Korea and, in the present study, Colorado, USA 
(Hammer et al., 2017; Kim et al., 2013; Ravenscraft et al., 2019). 

Orbus has also been detected in the guts of flies and bees (Chandler, 
Lang, Bhatnagar, Eisen, & Kopp, 2011; Kwong & Moran, 2013). Given 
that we did not detect a relationship between Pantoea or Orbus and 
the fitness of S. mormonia, it seems likely that these genera are not 
specific butterfly associates, but rather opportunistic tenants that 
are generally adapted to colonize the insect gut.

Most of the dominant bacteria in the guts of experimental 
and donor S. mormonia were common environmental bacteria 
(Supporting Information Table S7). This suggests that S. mormo‐
nia may acquire most or all of its adult gut flora directly from the 
environment after emergence from the pupa, and that adults of 
this species (and perhaps many short‐lived, temperate butterfly 
species) do not form strong associations with particular gut mi‐
crobes. This does not necessarily preclude a functional role for the 
butterfly gut flora: some hosts, such as mosquito larvae, depend 
upon environmentally acquired microbes for survival (Coon et al., 
2016). However, in such generalized relationships between a host 
and environmentally acquired bacteria, most interactions may be 
commensal, rather than mutualisms or parasitisms. Evidence sug‐
gests this to be the case for a growing number of hosts (Hammer 
et al., 2017; Sanders et al., 2017; Shelomi et al., 2013; Šustr, Stingl, 
& Brune, 2014; Whitaker, Salzman, Sanders, Kaltenpoth, & Pierce, 
2016). Despite the recent surge of interest in the functional roles 
gut flora play in animal hosts, highly variable and functionally com‐
mensal gut flora may be more common than generally assumed. In 
particular, they may be typical of many insects, especially those 
with a simple gut structure and holometabolous development 
(Engel & Moran, 2013).

4.3 | Correlations between host life span and 
abundances of Commensalibacter and Rhodococcus are 
intriguing but require experimental verification

Despite the unstable nature of the butterfly gut flora, two OTUs 
were related to host performance: increased abundance of a 
Commensalibacter species was related to longer life span, while 
decreased abundance of a Rhodococcus species was correlated 
with shorter life span. These relationships are intriguing, but only 
correlative in nature; the directionality of the relationships can‐
not be determined from our data. Furthermore, interpretation of 
the first relationship is difficult because relative abundances of 
Commensalibacter were positively correlated with total bacterial 
load, and total bacterial load itself increased at the end of sum‐
mer. However, Commensalibacter is a beneficial mutualist in other 
insects. Drosophila with monospecific colonization of their gut by 
Commensalibacter intestini grow and develop slightly faster than 
conventionally reared flies (Shin et al., 2011). The bacterium may 
benefit the flies by suppressing a pathogenic bacterial species, 
Gluconobacter morbifer (Roh et al., 2008; Ryu et al., 2008).

Members of the genus Rhodococcus are common environmen‐
tal bacteria and are also known insect symbionts: the kissing bug, 
Rhodnius prolixus, depends on the presence of Rhodococcus rhodnii 
in its gut for normal growth and development (Bell, Philp, Aw, & 
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Christofi, 1998). Rhodococcus has also been isolated from the gut of 
the larval gypsy moth (Broderick, Raffa, Goodman, & Handelsman, 
2004). The negative correlation between Rhodococcus abundance 
and adult butterfly life span, even if it proves to be causal, does not 
necessarily imply that Rhodococcus is detrimental to butterfly fit‐
ness. Indeed, we found no relationship between abundance of this 
bacterium and host reproductive output or egg quality.

Further research on the possible effects of Commensalibacter 
and Rhodococcus on butterfly life history is warranted. In the 
meantime, the contrast between these two organisms’ relation‐
ships to host life span serves to demonstrate that the net effects 
of the gut microbiota are ultimately the sum of the component 
microbes’ varied commensal, mutualistic or parasitic relationships 
with their host.

4.4 | Limitations of this study's approach

Detangling the effects of an entire symbiotic community on a host is 
difficult due to the number of players involved and the difficultly of 
culturing many gut microbes. The approach of testing for correlation 
between the dominant OTUs and host fitness can yield suggestive 
results for further exploration. This may be especially true for hosts 
that have more stable gut communities (although enough variation 
must exist, or be created, to allow tests for correlation) and whose 
gut flora are more likely to serve an important functional role. Of 
course, follow‐up studies are crucial to experimentally test the cau‐
sality of any correlations found.

This approach does have limitations. First, there are limits to 
statistical power; some of our models were underpowered, espe‐
cially to detect an influence of food availability on relationships 
between fitness and the focal OTUs. Furthermore, because we 
rarefied to 1,000 reads per butterfly, we may have failed to detect 
the focal OTUs in butterflies in which they were present at low 
relative abundance (i.e., fewer than approximately 1/1,000 raw 
reads). For both of these reasons, we could easily have missed re‐
lationships that were actually present. Second, we were only able 
to sample the microbiota at a single time point, upon death of the 
butterfly. The microbes found in aged individuals may not reflect 
the density or composition of the microbiota at the time of peak 
functioning and fecundity. This shortcoming could be overcome in 
other hosts that produce solid faeces, which would allow nonde‐
structive sampling of the gut flora at multiple time points. Third, 
some of the microbes we detected in S. mormonia could have been 
metabolically dormant or dead cells passing through the gut with 
no effect on the host. The presence of inactive bacteria among 
the focal OTUs may have lessened our chance of detecting cor‐
relations with host fitness because some other, nonfocal OTUs 
might have been active in the gut. Fourth, although our animals 
were collected in the field, captivity can have a pronounced effect 
on the microbial community (Hammer et al., 2014). The density 
and taxonomic composition of our animals’ microbiota did differ 
from that of wild (donor) butterflies; this may also have lessened 
our ability to detect biologically relevant relationships. Fifth, the 

gut microbial community is not limited to bacteria; adult butter‐
flies are known to host other microorganisms, including yeasts 
(Ravenscraft et al., 2019). The potential effects of eukaryotic gut 
microbes on butterfly hosts are unknown. Finally, relationships 
between microbes and hosts can occur at taxonomic levels below 
or above the 97% sequence similarity cut‐off which is often inter‐
preted as defining a microbial species. At a finer scale, strains of 
E. coli can have different effects on human hosts depending on 
which plasmids they possess (Rasko et al., 2008; Wijetunge et al., 
2014). At broader scales, whole clades of microbes can share simi‐
lar functional traits, and members of a functional group may there‐
fore be interchangeable with respect to host function. Analyses 
conducted at the OTU level will be relatively blind to this type of 
diffuse mutualism effect.

5  | CONCLUSIONS

Across a wide range of bacterial densities in Speyeria mormonia, we 
found no conclusive evidence that the gut microbiota as a whole 
either contribute to, or significantly detract from, host nutrition, 
performance or fitness. Although we expected that high bacterial 
loads would be detrimental to these butterflies, we did not detect 
any net reproductive costs incurred due to hosting gut bacteria, 
even at high bacterial densities and under food restriction. We also 
failed to detect any evidence that food availability modulates rela‐
tionships between butterfly fitness and the abundances of particular 
gut bacteria. Mutualism theory posits that symbiotic partners often 
participate in a cost–benefit trade‐off (Douglas, 2008). However, our 
work suggests that if butterflies do derive any benefits from their 
gut flora as a whole, or from individual members (which remains an 
open question; our study did not, for example, investigate the po‐
tential for gut flora to provide protection from pathogens), they may 
receive these benefits for “free.” Future research should investigate 
when, and whether, the cost–benefit trade‐off paradigm applies to 
gut microbial symbioses.
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