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Supramolecular chemistry explores non-covalent interactions between molecules, and it has 
facilitated the design of functional materials and understanding of molecular self-assembly 
processes. We investigate a captivating class of supramolecular structures, the guanidinium and 
hydrogen carbonate rosette layers. These rosette layers are composed of guanidinium cations 
and carbonate anions, exhibiting intricate hydrogen-bonding networks that lead to their unique 
structural properties. Topological and entropy indices unveil the connectivity and complexity of 
the structures, providing valuable insights for diverse applications. We have developed the cut 
method technique to deconstruct the guanidinium and hydrogen carbonate rosette layers into 
smaller components and obtain the distance, Szeged-type and entropy measures. Subsequently, 
we conducted a comparative analysis between topological indices and entropies which contributes 
to a deeper understanding of the structural complexity of these intriguing supramolecular 
systems. We have derived the degree based topological indices and entropies of the underlying 
rosette layers. Furthermore, our computations reveal several isentropic structures associated 
with degree and entropy indices. We have employed distance vector sequence-based graph 
theoretical techniques in conjunction with symmetry-based combinatorial methods to enumerate 
and construct the various NMR spectral patterns which are demonstrated to contrast the isomers 
and networks of the rosettes.

1. Introduction

Non-covalent interactions play significant roles in determining the structure, stability, and various mechanisms associated with 
biological macromolecules, such as protein folding, DNA replication, ligand-receptor binding, and the associated biochemical pro-
cesses [1–5]. While these interactions are individually weak their cumulative effects can significantly influence the performance and 
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Fig. 1. A unit cell of guanidinium carbonate (GC).

properties of these molecular systems. Hydrogen bonds, in particular, are relatively strong compared to other non-covalent interac-
tions and hence these bonds play a significant role in various biological processes [6–8]. As is well known, oxygen and nitrogen, 
among other electronegative elements, are often involved in hydrogen bonding due to their ability to form strong partial negative 
charges as a consequence of their electronegativity. Supramolecular chemistry is the study of assemblies of molecules or ions based 
on non-covalent interactions such as hydrogen bonding, van der Waals forces, 𝜋 − 𝜋 stacking, and electrostatic and hydrophobic 
interactions [9–12]. Supramolecular assemblies have a wide range of applications, including drug delivery systems, catalysis, nan-
otechnology and the development of molecular machines and switches [13–17]. Many biological processes, such as enzyme-substrate 
interactions, antibody-antigen recognition, and DNA base pairing, are based on supramolecular host-guest complexes [18–22]. One 
of the most fascinating aspects of supramolecular chemistry is its self-assembly. It explores how molecules with complementary 
functional groups tend to spontaneously organize themselves into larger, well-defined structures through non-covalent interactions 
[23–25]. This self-organization feature is harnessed in designing complex architectures and functional materials at the nanoscale. 
The supramolecular assembly is also observed in nature, for instance, when proteins fold into specific three-dimensional structures 
through non-covalent interactions, and when lipid bilayers self-assemble to form cell membranes [26,27]. Similarly, DNA molecules 
can self-assemble into intricate nanostructures through complementary base-pairing interactions [28–30]. In recent years mathemat-
ical and artificial intelligence techniques including big data, neural networks, combinatorial, and graph theoretical methods have 
been shown to have several applications in drug discovery, dynamic reaction networks and so forth [31–34].

The guanidinium ion, denoted as CH6N6
+, is the cationic form of guanidine (NH2C(NH)NH2) and hence contains three amino 

groups (NH2), which can take part in the H-bonding due to the available lone pair on the nitrogens. Consequently, the guanidinium 
ion plays a significant role in supramolecular chemistry due to strong intramolecular and intermolecular hydrogen bonding with 
a variety of molecular species, including anions, polar organic compounds, and water molecules [35,36]. It is often influences 
biological and chemical processes such as gene therapy, protein and DNA assmeblies, and protein crystallization. Guanidinium 
carbonate consists of guanidinium cations and carbonate anions held together by ionic bonds. A unit cell of guanidinium carbonate, 
illustrated in Fig. 1, comprises atoms such as hydrogen, carbon, oxygen, and nitrogen. In contrast, the unit cell of boric acid 2D 
sheet is relatively similar to guanidinium carbonate, having only six pendant bonds and atoms of hydrogen, boron, and oxygen. 
Furthermore, the degree based bond partitions of the boric acid 2D structure include the bond classes [37] (1, 3), (2, 2), (2, 3), and 
(3, 3), while guanidinium carbonate has only three classes: (1, 3), (2, 3), and (3, 3). This difference in bond classes results in a high 
degree of structural symmetry for guanidinium carbonate. Consequently, the topological studies of these two units exhibit differing 
effects.

A rosette layer arrangement in a material refers to a circular or radial pattern, analogous to the petals of a rose flower. In the 
context of nanomaterials or molecular assemblies, a rosette layer is comprised of a pattern where certain molecules or molecular 
groups are arranged in a flower-like configuration [25]. Guanidinium and hydrogen carbonate rosette layers are white or colorless 
crystalline solids formed by a self-assembly of guanidinium carbonate ribbons by joining through hydrogen bonds to form a several 
layered sheet like structure with a rosette kind of appearance [38,39]. This assemblage of rosette layers leads to a bitrapezium 
shaped structure as shown in Fig. 2. Researchers are exploring its potential applications in various fields, ranging from electronics 
and catalysis to energy storage and biomedical applications [40,41].

Chemical graph theory is a branch of theoretical chemistry and mathematics where chemical compounds are represented as 
graphs, with atoms as nodes (vertices) and chemical bonds as edges (node connectors). This graph-based representation provides a 
mathematical framework for analyzing and modeling the various structural and molecular characteristics. Topological indices are 
2

numerical values associated with a chemical graph that provide significant information about the graph’s underlying connectivity 
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Fig. 2. Bi-trapezium type BT-GC(6,4).

with the aid of quantitative structure-activity relationship (QSAR) and quantitative structure property relationship (QSPR) studies 
[42–49]. There are numerous types of topological indices based on factors like distance, atomic-bond connectivity, vertex degree, 
ring structure, or branching patterns [50,51]. Each index is tailored to capture specific aspects of a molecular structure.

Distance-based topological indices, pioneered by the introduction of the Wiener index, quantify structural characteristics based 
on the topological distance between atoms in the molecular graph, and these indices have been widely used to describe the physical 
density or compactness of chemical networks [52]. These indices provide quantitative measures of the structural aspects of molecules 
and compounds, including their branching patterns. Degree-based topological indices are a class of topological descriptors used 
particularly in QSAR studies, cheminformatics, and molecular graph theory. These indices are derived based on the number of edges 
connected to a node, which in turn provides valuable information about the connectivity and branching patterns of atoms for further 
study [46,53–57]. Information-theoretic entropy, such as Shannon entropy, is a versatile tool that allows researchers to quantify 
the structural complexity and uncertainty in chemical networks, making it applicable to a wide range of domains within chemistry, 
biology, and data science [58]. In this study, we discuss the different distance and degree-based indices, along with Shannon entropy 
and its modified measure of guanidinium and hydrogen carbonate rosette layers, in detail. As various supramolecular assemblies 
exhibit complex and intricate networks, it becomes necessary to develop network-based mathematical techniques to contrast closely 
related structures. In this study, it is shown that the title networks exhibit both isentropic and isomeric networks. Thus, it becomes 
necessary to develop the needed tools to juxtapose their properties, such as spectroscopic properties. We have applied distance degree 
vector sequence methods in conjunction with symmetry-based combinatorial methods to generate the various NMR spectral patterns 
3

of these networks, such as proton NMR spectra, 13C NMR spectra, 14N NMR and 17O NMR spectra of these networks.
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2. Computational techniques

To study the distance-based topological indices [59–63] and gain comprehensive insights into the structural traits of guanidinium 
carbonate (GC), we depict its two-dimensional layout as a simple, connected chemical graph, taking into account the presence of 
hydrogen atoms, typically disregarded in graph theoretical studies. The graphical representation involves organizing the atoms such 
as hydrogen, carbon, oxygen, and nitrogen into a distinct assemblage known as the vertex set 𝑉 (GC), with the interconnecting bonds 
among these atoms forming the edges denoted by the edge set 𝐸(GC). For any vertex 𝑝1 ∈ 𝑉 (GC), we define its degree, denoted by 
𝑑GC(𝑝1), as the number of edges that are linked to 𝑝1 and the open neighborhood 𝑁GC(𝑝1) encompasses the set of vertices that are 
directly connected to vertex 𝑝1 through edges. Moreover, when considering any two vertices 𝑝1, 𝑝2 ∈ 𝑉 (GC), we set 𝑑GC(𝑝1, 𝑝2) to 
denote the length of a shortest path between these two vertices, where the length of a path is the number of its edges. The distance 
𝑑GC(𝑝1, 𝑞1𝑞2) between the vertex 𝑝1 and the edge 𝑞1𝑞2 is defined as min{𝑑GC(𝑝1, 𝑞1), 𝑑GC(𝑝1, 𝑞2)}, while the distance 𝐷GC(𝑒1, 𝑒2)
between two edges 𝑒1 = 𝑝1𝑝2 and 𝑒2 = 𝑞1𝑞2 is min{𝑑GC(𝑝1, 𝑒2), 𝑑GC(𝑝2, 𝑒2)}.

We define the neighborhood vertex elements associated with the terminal vertices of 𝑒1 = 𝑝1𝑝2 as follows: 𝑁𝑝1
(𝑒1|GC) = {𝑢 ∈

𝑉 (GC) ∶ 𝑑GC(𝑝1, 𝑢) < 𝑑GC(𝑝2, 𝑢)} and 𝑁𝑝2
(𝑒1|GC) = {𝑢 ∈ 𝑉 (GC) ∶ 𝑑GC(𝑝2, 𝑢) < 𝑑GC(𝑝1, 𝑢)}. Let 𝑛𝑝1

(𝑒1|GC) and 𝑛𝑝2
(𝑒1|GC) be the 

number of elements in the sets 𝑁𝑝1
(𝑒1|GC) and 𝑁𝑝2

(𝑒1|GC), respectively. Similarly, we define the neighborhood edge elements 
associated with the terminal vertices of 𝑒1 as 𝑀𝑝1

(𝑒1|GC) = {𝑢𝑣 ∈ 𝐸(GC) ∶ 𝑑GC(𝑝1, 𝑢𝑣) < 𝑑GC(𝑝2, 𝑢𝑣)} and 𝑀𝑝2
(𝑒1|GC) = {𝑢𝑣 ∈

𝐸(GC) ∶ 𝑑GC(𝑝2, 𝑢𝑣) < 𝑑GC(𝑝1, 𝑢𝑣)}. Further, 𝑚𝑝1
(𝑒1|GC) and 𝑚𝑝2

(𝑒1|GC) stand for the number of elements in the sets 𝑀𝑝1
(𝑒1|GC)

and 𝑀𝑝2
(𝑒1|GC), respectively.

Recently, there has been an emergence of topological indices tailored for strength-weighted graphs, which have been extensively 
explored and discussed in various research papers [37,50,59–61,64,65]. For this purpose, the GC structure was assembled to be 
the strength-weighted graph GC𝑠𝑤 = (GC, (𝑤𝑣, 𝑠𝑣), 𝑠𝑒) where the vertex weight and strength functions are 𝑤𝑣 ∶ 𝑉 (GC𝑠𝑤) → ℝ+

0 , 
𝑠𝑣 ∶ 𝑉 (GC𝑠𝑤) → ℝ+

0 and the edge strength function is 𝑠𝑒 ∶ 𝐸(GC𝑠𝑤) → ℝ+
0 . The basic graph theoretical terminologies of GC𝑠𝑤 are 

relatively connected to GC structure that are defined as follows: 𝑁GC𝑠𝑤
(𝑝1) = 𝑁GC(𝑝1), 𝑑GC𝑠𝑤

(𝑝1, 𝑝2) = 𝑑GC(𝑝1, 𝑝2), 𝑑GC𝑠𝑤
(𝑝1, 𝑞1𝑞2) =

𝑑GC(𝑝1, 𝑞1𝑞2), 𝐷GC𝑠𝑤
(𝑒1, 𝑒2) = 𝐷GC(𝑒1, 𝑒2), 𝑁𝑝1

(𝑒1|GC𝑠𝑤) = 𝑁𝑝1
(𝑒1|GC), and 𝑀𝑝1

(𝑒1|GC𝑠𝑤) = 𝑀𝑝1
(𝑒1|GC). The degree of vertex 𝑝1 in 

GC𝑠𝑤 is defined by the expression 𝑑GC𝑠𝑤
(𝑝1) =

∑
𝑥∈𝑁GC𝑠𝑤

(𝑝1)
𝑠𝑒(𝑝1𝑥). The cardinality of the closeness measures of the edge 𝑒1 = 𝑝1𝑝2

is calculated by 𝑛𝑝1
(𝑒1|GC𝑠𝑤) =

∑
𝑢∈𝑁𝑝1 (𝑒1|GC𝑠𝑤)

𝑤𝑣(𝑢), 𝑚𝑝1
(𝑒1|GC𝑠𝑤) =

∑
𝑢∈𝑁𝑝1 (𝑒1|GC𝑠𝑤)

𝑠𝑣(𝑢) +
∑

𝑢𝑣∈𝑀𝑝1 (𝑒1|GC𝑠𝑤)
𝑠𝑒(𝑢𝑣). The computations of 

𝑛𝑝2
(𝑒1|GC𝑠𝑤) and 𝑚𝑝2

(𝑒1|GC𝑠𝑤) are carried out analogously.
We introduce the notation 𝑇 𝐼(GC𝑠𝑤) to symbolize the distance-based topological indices for the guanidinium and hydrogen 

carbonate rosette layers. This notation encompasses vertex and edge-based contributions, including indices such as Wiener, Szeged, 
PI, Schultz, Gutman, and Mostar, which are stated below.

• 𝑊 (GC𝑠𝑤) =
∑

{𝑝1 ,𝑝2}⊆𝑉 (GC𝑠𝑤)
𝑤𝑣(𝑝1)𝑤𝑣(𝑝2)𝑑GC𝑠𝑤

(𝑝1, 𝑝2)

• 𝑊𝑒(GC𝑠𝑤) =
∑

{𝑝1 ,𝑝2}⊆𝑉 (GC𝑠𝑤)
𝑠𝑣(𝑝1)𝑠𝑣(𝑝2)𝑑GC𝑠𝑤

(𝑝1, 𝑝2) +
∑

{𝑒1 ,𝑒2}⊆𝐸(GC𝑠𝑤)
𝑠𝑒(𝑒1)𝑠𝑒(𝑒2)𝐷GC𝑠𝑤

(𝑒1, 𝑒2)

+
∑

𝑝1∈𝑉 (GC𝑠𝑤)

∑
𝑒1∈𝐸(GC𝑠𝑤)

𝑠𝑣(𝑝1) 𝑠𝑒(𝑒1) 𝑑GC𝑠𝑤
(𝑝1, 𝑒1)

• 𝑊𝑒𝑣(GC𝑠𝑤) =
1
2

[ ∑
{𝑝1 ,𝑝2}⊆𝑉 (GC𝑠𝑤)

{𝑤𝑣(𝑝1)𝑠𝑣(𝑝2) +𝑤𝑣(𝑝2)𝑠𝑣(𝑝1)}𝑑GC𝑠𝑤
(𝑝1, 𝑝2) +

∑
𝑝1∈𝑉 (GC𝑠𝑤)

∑
𝑒1∈𝐸(GC𝑠𝑤)

𝑤𝑣(𝑝1) 𝑠𝑒(𝑒1) 𝑑GC𝑠𝑤
(𝑝1, 𝑒1)

]
• 𝑆(GC𝑠𝑤) =

∑
{𝑝1 ,𝑝2}⊆𝑉 (GC𝑠𝑤)

[
𝑤𝑣(𝑝2)(𝑑GC𝑠𝑤

(𝑝1) + 2𝑠𝑣(𝑝1)) +𝑤𝑣(𝑝1)(𝑑GC𝑠𝑤
(𝑝2) + 2𝑠𝑣(𝑝2))

]
𝑑GC𝑠𝑤

(𝑝1, 𝑝2)

• 𝐺𝑢𝑡(GC𝑠𝑤) =
∑

{𝑝1 ,𝑝2}⊆𝑉 (GC𝑠𝑤)
(𝑑GC𝑠𝑤

(𝑝1) + 2𝑠𝑣(𝑝1))(𝑑GC𝑠𝑤
(𝑝2) + 2𝑠𝑣(𝑝2))𝑑GC𝑠𝑤

(𝑝1, 𝑝2)

• 𝑆𝑧𝑣(GC𝑠𝑤) =
∑

𝑒1=𝑝1𝑝2∈𝐸(GC𝑠𝑤)
𝑠𝑒(𝑒1)𝑛𝑝1

(𝑒1|GC𝑠𝑤)𝑛𝑝2
(𝑒1|GC𝑠𝑤)

• 𝑆𝑧𝑒(GC𝑠𝑤) =
∑

𝑒1=𝑝1𝑝2∈𝐸(GC𝑠𝑤)
𝑠𝑒(𝑒1)𝑚𝑝1

(𝑒1|GC𝑠𝑤)𝑚𝑝2
(𝑒1|GC𝑠𝑤)

• 𝑃𝐼𝑣(GC𝑠𝑤) =
∑

𝑒1=𝑝1𝑝2∈𝐸(GC𝑠𝑤)
𝑠𝑒(𝑒1)

[
𝑛𝑝1

(𝑒1|GC𝑠𝑤) + 𝑛𝑝2
(𝑒1|GC𝑠𝑤)

]
• 𝑃𝐼𝑒(GC𝑠𝑤) =

∑
𝑒1=𝑝1𝑝2∈𝐸(GC𝑠𝑤)

𝑠𝑒(𝑒1)
[
𝑚𝑝1

(𝑒1|GC𝑠𝑤) +𝑚𝑝2
(𝑒1|GC𝑠𝑤)

]
• 𝑀𝑜𝑣(GC𝑠𝑤) =

∑
𝑒1=𝑝1𝑝2∈𝐸(GC𝑠𝑤)

𝑠𝑒(𝑒1)|𝑛𝑝1
(𝑒1|GC𝑠𝑤) − 𝑛𝑝2

(𝑒1|GC𝑠𝑤)|∑

4

• 𝑀𝑜𝑒(GC𝑠𝑤) =
𝑒1=𝑝1𝑝2∈𝐸(GC𝑠𝑤)

𝑠𝑒(𝑒1)|𝑚𝑝1
(𝑒1|GC𝑠𝑤) −𝑚𝑝2

(𝑒1|GC𝑠𝑤)|
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Fig. 3. Two Θ∗-classes of the unit cell of guanidinium carbonate.

The distance-based topological indices of GC structures can be easily deduced from GC𝑠𝑤 by considering 𝑤𝑣 = 1, 𝑠𝑣 = 0, and 
𝑠𝑒 = 1. To enhance the efficiency of our computational procedures, we have incorporated the cut method technique [60,61,66,67]
for the calculation of topological indices for hydrogen-bonded guanidinium carbonate structures. A subgraph denoted as 𝐻(GC)
within the graph GC is considered isometric when the distances between vertices 𝑝1 and 𝑝2 in GC is equal to the distances between 
the same vertices in 𝐻(GC). Any isometric subgraph of binary hypercubes is called a partial cube, and in the case of GC structures, 
it is not a partial cube. Hence, we employ the transitive closure of Djoković-Winkler relation to compute the distance based indices, 
the technique that was proposed for the first time in [63] for the case of the Wiener index.

The Djoković-Winkler relation Θ is defined by saying that two edges 𝑒1 = 𝑝1𝑝2 and 𝑒2 = 𝑞1𝑞2 of GC are in relation Θ if 𝑑GC(𝑝1, 𝑞1) +
𝑑GC(𝑝2, 𝑞2) ≠ 𝑑GC(𝑝1, 𝑞2) + 𝑑GC(𝑝2, 𝑞1). The transitive closure Θ∗ of Θ is a reflexive, symmetric, and transitive relation. Let ℬ =
{𝐵1, 𝐵2, … , 𝐵𝑟} be the partition of the edge set of GC induced by the relation Θ∗, the sets 𝐵𝑖 are called the Θ∗-classes. For 1 ≤ 𝑖 ≤ 𝑟, 
the quotient graph GC∕𝐵𝑖 has the connected components of GC−𝐵𝑖 as vertices. Two vertices 𝑋 and 𝑌 of GC∕𝐵𝑖 (that is, components 
of GC − 𝐵𝑖) are adjacent in GC∕𝐵𝑖 if there exists an edge 𝑥𝑦 ∈ 𝐵𝑖 such that vertex 𝑥 lies in the component 𝑋 and 𝑦 lies in the 
component 𝑌 .

Let us apply the above concepts to the unit cell of guanidinium carbonate; at the same time we add that the treatment in general 
cases is analogous. First, an edge 𝑒 of an even cycle is in relation Θ to another edge 𝑓 of the cycle if and only if 𝑒 and 𝑓 are opposite 
edges on the cycle. This property remains valid for each 8-cycle and each 12-cycle of the molecular structures considered in this 
paper because each of these cycles is an isometric (in fact, even convex) subgraph of the structure. Consider now an arbitrary edge of 
the unit cell of guanidinium carbonate that lies on the boundary of two 8-cycles, such as the edge 𝑒′ in Fig. 3. Then 𝑒′ is in relation 
Θ to the two respective oposite edges 𝑒 and 𝑒′′ on the two 8-cycles in which 𝑒′ lies. Then {𝑒, 𝑒′, 𝑒′′} form the Θ∗-class (equivalently, 
the Θ-class) containing 𝑒′. Consequently, the quotient graph of this Θ∗-class is the complete graph on two vertices K2. Consider next 
an edge of the unit cell of guanidinium carbonate that simultaneously lies on the boundary of an 8-cycle and a 12-cycle, such as the 
edge 𝑓 ′ from Fig. 3. On the corresponding 8-cycle 𝑓 ′ is in relation Θ with the edge 𝑓 from the figure, while on the 12-cycle, 𝑓 ′ is 
in relation Θ with the edge 𝑓 ′′. Further we have 𝑓 ′′Θ𝑓 ′′′. We get analogous conclusions for the edges 𝑔, 𝑔′, 𝑔′′ and 𝑔′′′ from the 
figure. Moreover, since we can easily infer that 𝑓 is in relation Θ with 𝑔′′, we can conclude that {𝑓, 𝑓 ′, 𝑓 ′′, 𝑓 ′′′, 𝑔, 𝑔′, 𝑔′′, 𝑔′′′} form 
the Θ∗-class containing 𝑓 ′. It follows that the quotient graph of this Θ∗-class is the complete bipartite graph K2,4.

Let 𝑇 𝐼 denote a generic topological index such as 𝑊 , 𝑊𝑒, 𝑊𝑒𝑣, 𝑆 , 𝐺𝑢𝑡, 𝑆𝑧𝑣, 𝑆𝑧𝑒, 𝑃𝐼𝑣, 𝑃𝐼𝑒, 𝑀𝑜𝑣, and 𝑀𝑜𝑒. Then

𝑇 𝐼(GC) =
𝑟∑

𝑖=1
𝑇 𝐼(GC∕𝐵𝑖, (𝑤𝑖

𝑣
, 𝑠𝑖

𝑣
), 𝑠𝑖

𝑒
) (1)

where

∙ 𝑤𝑖
𝑣
∶ 𝑉 (GC∕𝐵𝑖) →ℝ+

0 , 𝑤𝑖
𝑣
(𝐴) =

∑
𝑎∈𝐴

𝑤𝑣(𝑎), ∀ 𝐴 ∈ GC∕𝐵𝑖,

∙ 𝑠𝑖
𝑣
∶ 𝐸(GC∕𝐵𝑖) →ℝ+

0 , 𝑠𝑖
𝑣
(𝐴) =

∑
𝑎𝑥∈𝐴

𝑠𝑒(𝑎𝑥) +
∑

𝑎∈𝐴

𝑠𝑣(𝑎), ∀ 𝐴 ∈ GC∕𝐵𝑖,

∙ 𝑠𝑖
𝑒
∶ 𝐸(GC∕𝐵𝑖) →ℝ+

0 , 𝑠𝑖
𝑒
(𝐴𝐵) =

∑
𝑎𝑏∈𝐵𝑖

𝑎∈𝐴, 𝑏∈𝐵

𝑠𝑒(𝑎𝑏), ∀ 𝐴𝐵 ∈ 𝐸(GC∕𝐵𝑖).

As observed in the preceding discussion on the Θ classes of the GC structure, we now discuss the special cases of quotient graphs 
where GC/𝐵𝑖 reduces to either a complete graph on two vertices K2 or a complete bipartite graph K2,𝑚, as shown in Fig. 4(a-b). 
5

Subsequently, we derive the associated topological formulas utilized in the calculation of distance based indices for the GC structure.
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Fig. 4. Special cases of strength weighted graphs (a) 𝐾2 (b) 𝐾2,𝑚 .

Let GC1
𝑠𝑤

be the strength weighted graph 
(
K2, (𝑤1, 𝑠1), (𝑤2, 𝑠2), 𝑠𝑒

)
as shown in Fig. 4a. Then 𝑊 (GC1

𝑠𝑤
) = 𝑤1𝑤2, 𝑊𝑒(GC1

𝑠𝑤
) =

𝑠1𝑠2, 𝑊𝑒𝑣(GC1
𝑠𝑤
) = 1

2 [𝑤1𝑠2 + 𝑠1𝑤2], 𝑆(GC1
𝑠𝑤
) = 𝑤2(2𝑠1 + 𝑠𝑒) + 𝑤1(2𝑠2 + 𝑠𝑒), 𝐺𝑢𝑡(GC1

𝑠𝑤
) = (2𝑠1 + 𝑠𝑒)(2𝑠2 + 𝑠𝑒), 𝑆𝑧𝑣(GC1

𝑠𝑤
) = 𝑠𝑒𝑤1𝑤2, 

𝑆𝑧𝑒(GC1
𝑠𝑤
) = 𝑠𝑒𝑠1𝑠2, 𝑃𝐼𝑣(GC1

𝑠𝑤
) = 𝑠𝑒(𝑤1 +𝑤2), 𝑃𝐼𝑒(GC1

𝑠𝑤
) = 𝑠𝑒(𝑠1 + 𝑠2), 𝑀𝑜𝑣(GC1

𝑠𝑤
) = 𝑠𝑒|𝑤1 −𝑤2|, and 𝑀𝑜𝑒(GC1

𝑠𝑤
) = 𝑠𝑒|𝑠1 − 𝑠2|.

Let GC2
𝑠𝑤

be the strength weighted graph 
(
K2,𝑚, (𝑤1, 𝑠1), (𝑤2, 𝑠2), (𝑤3, 𝑠3), 𝑠𝑒

)
as shown in Fig. 4b. Then,

• 𝑊 (GC2
𝑠𝑤
) = 𝑤2

3𝑚
2 + (𝑤1𝑤3 +𝑤2𝑤3 −𝑤2

3)𝑚 + 2𝑤1𝑤2

• 𝑊𝑒(GC2
𝑠𝑤
) = 𝑚(𝑠1 + 𝑠2)𝑠3 + 2(𝑠1𝑠2) +𝑚(𝑚 − 1)𝑠23 +𝑚(𝑠2

𝑒
(𝑚 − 1)) +𝑚𝑠𝑒(𝑠1 + 𝑠2) + 2𝑚(𝑚 − 1)𝑠𝑒𝑠3

• 𝑊𝑒𝑣(GC2
𝑠𝑤
) = 1

2

(
(2𝑠3𝑤3 + 2𝑠𝑒𝑤3)𝑚2 + (𝑤1(𝑠3 + 𝑠𝑒) + 𝑠1𝑤3 + 𝑠2𝑤3 + 𝑠3𝑤2 − 2𝑠3𝑤3 + 𝑠𝑒𝑤2 − 2𝑠𝑒𝑤3)𝑚 + 2𝑠1𝑤2 + 2𝑠2𝑤1

)
• 𝑆(GC2

𝑠𝑤
) = (2𝑑GC𝑠𝑤

(𝑤3)𝑤3 +4𝑠3𝑤3)𝑚2 +(𝑑GC𝑠𝑤
(𝑤1)𝑤3 +𝑑GC𝑠𝑤

(𝑤2)𝑤3 +𝑑GC𝑠𝑤
(𝑤3)𝑤2 −2𝑑GC𝑠𝑤

(𝑤3)𝑤3 +2𝑠1𝑤3 +2𝑠2𝑤3 +2𝑠3𝑤2 −
4𝑠3𝑤3 +𝑤1(𝑑GC𝑠𝑤

(𝑤3) + 2𝑠3))𝑚 + 2𝑑GC𝑠𝑤
(𝑤1)𝑤2 + 4𝑠1𝑤2 +𝑤1(2𝑑GC𝑠𝑤

(𝑤2) + 4𝑠2)

• 𝐺𝑢𝑡(GC2
𝑠𝑤
) = 𝑚((𝑑GC𝑠𝑤

(𝑤3) + 2𝑠3)((𝑑GC𝑠𝑤
(𝑤1) + 𝑠1) + (𝑑GC𝑠𝑤

(𝑤2) + 2𝑠2))) + 2((𝑑GC𝑠𝑤
(𝑤1) + 2𝑠1)(𝑑GC𝑠𝑤

(𝑤2) + 2𝑠2)) + 𝑚(𝑚 −
1)(𝑑GC𝑠𝑤

(𝑤3) + 2𝑠3)2

• 𝑆𝑧𝑣(GC2
𝑠𝑤
) = 𝑚𝑠𝑒

(
(𝑤1𝑤3 +𝑤2𝑤3 + 2𝑤2

3)𝑚 − 2𝑤2
3 + 2𝑤1𝑤2

)
• 𝑆𝑧𝑒(GC2

𝑠𝑤
) = 𝑚𝑠𝑒

(
(𝑠1(𝑠3 + 𝑠𝑒) + 𝑠2𝑠3 + 𝑠2𝑠𝑒 + 4𝑠3𝑠𝑒 + 2𝑠23 + 2𝑠2

𝑒
)𝑚 − 2𝑠23 − 4𝑠3𝑠𝑒 − 2𝑠2

𝑒
+ 2𝑠1𝑠2

)
• 𝑃𝐼𝑣(GC2

𝑠𝑤
) = 2𝑚𝑠𝑒

(
𝑤1 +𝑤2 +𝑚𝑤3

)
• 𝑃𝐼𝑒(GC2

𝑠𝑤
) = 2𝑚𝑠𝑒

(
𝑠1 + 𝑠2 + (𝑠3 + 𝑠𝑒)𝑚

)
• 𝑀𝑜𝑣(GC2

𝑠𝑤
) = 𝑚𝑠𝑒

(|𝑤1 −𝑤2 − 2𝑤3 +𝑚𝑤3|+|𝑤2 −𝑤1 − 2𝑤3 +𝑚𝑤3|)
• 𝑀𝑜𝑒(GC2

𝑠𝑤
) = 𝑚𝑠𝑒

(|𝑠1 − 𝑠2 − 𝑠3 − 𝑠𝑒 + (𝑠3 + 𝑠𝑒)(𝑚 − 1)|+|𝑠2 − 𝑠1 − 𝑠3 − 𝑠𝑒 + (𝑠3 + 𝑠𝑒)(𝑚 − 1)|)
3. Results and discussion

We examine the various distance based topological and entropy indices for the guanidinium and hydrogen carbonate rosette 
layers, as they add a unique platform for understanding self-assembly processes and also provide a powerful toolbox for engineering 
complex structures and unlocking innovative solutions to real-world challenges. The arrangement of GC units in varied ways give rise 
to different structural pattern of guanidinium carbonate layers in which bi-trapezium shaped structures comprising of large number 
of GC units. We denote such structure by BT-GC(𝑚, ℎ), where the base layer of trapezium consists of 𝑚 units in linear pattern and 
the non-parallel sides with ℎ units such that 𝑚 ≥ 2 and ℎ ≤ 𝑚. Fig. 2 shows the guanidinium carbonate rosette layers BT-GC(𝑚, ℎ). 
The special case of bi-trapezium configuration is deduced by fixing suitable values for 𝑚 and ℎ [25,38,39]. The linear chain of 
guanidinium carbonate is obtained by setting ℎ = 1 and denoted by L-GC(𝑚). The hexagonal and parallelogram shaped GC layers are 
obtained by setting 𝑚 = 2ℎ − 1 and 𝑚 = ℎ respectively which are denoted by H-GC(ℎ) and P-GC(ℎ). These three structures−linear, 
hexagonal and parallelogram shaped arrangements are shown in Fig. 5(a-c). From the structural pattern of BT-GC(𝑚, ℎ), we have the 
number of vertices and edges as 28ℎ𝑚 − 14ℎ2 + 30ℎ + 2𝑚 + 2 and 36ℎ𝑚 − 18ℎ2 + 36ℎ respectively.

3.1. Distance based topological indices

In this section, we provide the detailed formulations of distance-based topological indices of BT-GC(𝑚, ℎ) in two different cases 
6

by splitting the range of ℎ.
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Fig. 5. Special cases of BT-GC(𝑚,ℎ) carbonate rossette (a) Linear chain L-GC(6) (b) Hexagonal layers H-GC(2) (c) Parallelogram layers P-GC(4).

Theorem 1. Let BT-GC be the bi-trapezium type of guanidinium and hydrogen carbonate rosette layers BT-GC(𝑚,ℎ), where ℎ ≤ ⌈𝑚

2 ⌉. Then,

1. 𝑊 (BT-GC) = 2
5 ((1960ℎ

2 + 280ℎ +10)𝑚3 − (980ℎ3 − 6510ℎ2 − 790ℎ −40)𝑚2 − (2100ℎ3 − 490ℎ4 − 7250ℎ2 − 560ℎ −40)𝑚 −686ℎ5 +
315ℎ4 − 1190ℎ3 + 2810ℎ2 + 76ℎ + 10),
7
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2. 𝑊𝑒(BT-GC) = 2
5 (3240ℎ

2𝑚3 − (1620ℎ3 − 8100ℎ2 + 200ℎ + 10)𝑚2 + (810ℎ4 − 1620ℎ3 + 6555ℎ2 − 410ℎ − 15)𝑚 − 1134ℎ5 + 405ℎ4 −
75ℎ3 + 1680ℎ2 − 146ℎ − 5),

3. 𝑊𝑒𝑣(BT-GC) = 1
5ℎ((5040ℎ + 360)𝑚3 − (2520ℎ2 − 14670ℎ − 700)𝑚2 − (3960ℎ2 − 1260ℎ3 − 14280ℎ − 80)𝑚 − 1764ℎ4 + 720ℎ3 −

1500ℎ2 + 4770ℎ − 171),

4. 𝑆(BT-GC) = 4
5ℎ((5040ℎ + 360)𝑚3 − (2520ℎ2 − 15930ℎ − 790)𝑚2 + (1260ℎ3 − 5220ℎ2 + 16845ℎ + 260)𝑚 − 1764ℎ4 + 1035ℎ3 −

2805ℎ2 + 6075ℎ − 81),

5. 𝐺𝑢𝑡(BT-GC) = 2
5 (12960ℎ

2𝑚3 − (6480ℎ3 − 38880ℎ2 + 860ℎ + 20)𝑚2 + (3240ℎ4 − 12960ℎ3 + 39000ℎ2 − 1800ℎ − 30)𝑚 − 4536ℎ5 +
3240ℎ4 − 6600ℎ3 + 13080ℎ2 − 709ℎ − 10),

6. 𝑆𝑧𝑣(BT-GC) = 2
5ℎ((11760ℎ2+1960ℎ −720)𝑚3−(17640ℎ3−35560ℎ2−8280ℎ +2020)𝑚2+(8820ℎ4−37310ℎ3+33900ℎ2+11350ℎ −

1780)𝑚 − 1470ℎ5 + 9646ℎ4 − 20365ℎ3 + 9430ℎ2 + 5250ℎ − 426),

7. 𝑆𝑧𝑒(BT-GC) = 2((3888ℎ3 −216ℎ2 −88ℎ)𝑚3 − (5832ℎ4 −11124ℎ3 +336ℎ2 +256ℎ +4)𝑚2 − (10692ℎ4 −2916ℎ5 −10692ℎ3 +54ℎ2 +
220ℎ + 6)𝑚 − 486ℎ6 + 2592ℎ5 − 5395ℎ4 + 3459ℎ3 + 140ℎ2 − 46ℎ − 2),

8. 𝑃𝐼𝑣(BT-GC) = 36ℎ(ℎ − 2𝑚 − 2)(7ℎ2 −𝑚 − 14ℎ𝑚 − 15ℎ − 1),

9. 𝑃𝐼𝑒(BT-GC) = 2((648ℎ2 − 12ℎ + 4)𝑚2 − (648ℎ3 − 1260ℎ2 + 32ℎ − 6)𝑚 + 162ℎ4 − 612ℎ3 + 624ℎ2 − 25ℎ + 2),

10. 𝑀𝑜𝑣(BT-GC) = 2((252ℎ2 + 12ℎ + 8)𝑚2 + (504ℎ2 − 252ℎ3 − 6ℎ + 8)𝑚 + 74(−1)𝑚ℎ − 98ℎ − 579ℎ2 + 628ℎ3 − 161ℎ4 + 844(−1)𝑚ℎ2 −
880(−1)𝑚ℎ3 + 224(−1)𝑚ℎ4),

11. 𝑀𝑜𝑒(BT-GC) = 2((324ℎ2 + 4)𝑚2 + (648ℎ2 − 324ℎ3 − 28ℎ + 2)𝑚 + 8(−1)𝑚ℎ − 38ℎ − 846ℎ2 + 828ℎ3 − 207ℎ4 + 1172(−1)𝑚ℎ2 −
1152(−1)𝑚ℎ3 + 288(−1)𝑚ℎ4 − 2).

Proof. Due to the symmetry of BT-GC, we consider only the bottom half of vertical bonds from south to north directions. In the 
bottom trapezium, we see that there are ℎ number of zigzag benzene layers and two consecutive layers linked by bridging back-
to-back bonds. For 1 ≤ 𝑗 ≤ ℎ, let 𝑉 𝑍𝑗 be the Θ-class consisting of vertical bonds of 𝑗𝑡ℎ zigzag layer from south direction. Then the 
quotient graph BT-GC∕𝑉 𝑍𝑗 is a strength weighted graph K2 with parameters 

(
BT-GC∕𝑉 𝑍𝑗, (14𝑗𝑚 − 14ℎ𝑗 + 7𝑗2 + 9𝑗 − 6𝑚 + 6ℎ −

5, 18𝑗𝑚 −18ℎ𝑗 +9𝑗2 +8𝑗 −10𝑚 +10ℎ −7), (14ℎ𝑗−14𝑗𝑚 +28ℎ𝑚 −7𝑗2 −14ℎ2 −9𝑗 +24ℎ +8𝑚 +7, 18ℎ𝑗−18𝑗𝑚 +36ℎ𝑚 −9𝑗2 −18ℎ2 −
10𝑗 + 8𝑚 + 28ℎ + 6), 1

)
.

For 1 ≤ 𝑗 ≤ ℎ − 1, let 𝑉 𝐵𝑗 be the Θ∗-class consisting of binding bonds between 𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ zigzag layers. Then BT-GC∕𝑉 𝐵𝑗

is a strength weighted graph K2,2(𝑚−ℎ+𝑗+1) with parameters 
(
BT-GC∕𝑉 𝐵𝑗, (14𝑗𝑚 − 14ℎ𝑗 + 7𝑗2 + 15𝑗, 18𝑗𝑚 − 18ℎ𝑗 + 9𝑗2 + 16𝑗 − 2𝑚 +

2ℎ − 2), (14ℎ𝑗 − 14𝑗𝑚 + 28ℎ𝑚 − 7𝑗2 − 14ℎ2 − 17𝑗 + 32ℎ, 18ℎ𝑗 − 18𝑗𝑚 + 36ℎ𝑚 − 9𝑗2 − 18ℎ2 − 20𝑗 + 38ℎ − 2𝑚 − 2), (1, 0), 1
)
.

Similarly, we extend our analysis to the acute edge classes and again due to the symmetry of BT-GC structure, we consider only 
the first ℎ zigzag benzene layers with vertical bonds from north-west to south-east direction. For 1 ≤ 𝑗 ≤ ℎ, let 𝐴𝑍𝑗 be the Θ-class 
consisting of vertical bonds of 𝑗𝑡ℎ layer from north-west direction. Then the quotient graph BT-GC/𝐴𝑍𝑗 is a strength weighted graph 
K2 with parameters 

(
BT-GC∕𝐴𝑍𝑗, (14ℎ𝑗 +7𝑗2 − 5𝑗 −6ℎ +1, 18ℎ𝑗 +9𝑗2 − 10𝑗 −10ℎ +3), (28ℎ𝑚 −14ℎ𝑗 −7𝑗2 − 14ℎ2 + 5𝑗 +36ℎ +2𝑚 +

1, 36ℎ𝑚 − 18ℎ𝑗 − 9𝑗2 − 18ℎ2 + 8𝑗 + 44ℎ − 2), 1
)
.

For 1 ≤ 𝑗 ≤ ℎ −1, let 𝐴𝐵𝑗 be the Θ∗-class, consisting of binding bonds between 𝑗𝑡ℎ and (𝑗 +1)𝑡ℎ zigzag layers. Hence BT-GC∕𝐴𝐵𝑗

is a strength weighted graph of K2,2(ℎ+𝑗) with parameters 
(
BT-GC∕𝐴𝐵𝑗, (14ℎ𝑗 +7𝑗2 + 𝑗, 18ℎ𝑗 +9𝑗2 − 2𝑗 −2ℎ), (28ℎ𝑚 −14ℎ𝑗 −14ℎ2 −

7𝑗2 − 3𝑗 + 28ℎ + 2𝑚 + 2, 36ℎ𝑚 − 18ℎ𝑗 − 18ℎ2 − 9𝑗2 − 2𝑗 + 34ℎ), (1, 0), 1
)
.

After covering Θ-class 𝐴𝑍ℎ, there are 𝑚 −2ℎ +1 number of zigzag benzene layers of equal size. For 1 ≤ 𝑗 ≤ 𝑚 −2ℎ +1, let 𝐴𝑀𝑍𝑗

be the Θ-class consisting of vertical bonds of zigzag layers. The quotient graph BT-GC∕𝐴𝑀𝑍𝑗 is a strength weighted graph K2 with 
parameters 

(
BT-GC∕𝐴𝑀𝑍𝑗, (28ℎ𝑗 +21ℎ2 −11ℎ +2𝑗−1, 36ℎ𝑗 +27ℎ2 −20ℎ), (28ℎ𝑚 −28ℎ𝑗 −35ℎ2 +41ℎ −2𝑗 +2𝑚 +3, 36ℎ𝑚 −36ℎ𝑗−

45ℎ2 + 52ℎ), 1
)
.

For 1 ≤ 𝑗 ≤ 𝑚 − 2ℎ + 2, let 𝐴𝑀𝐵𝑗 be the Θ∗-class with binding bonds between zigzag benzene layers starting from 𝐴𝐵ℎ−1. 
Then BT-GC∕𝐴𝑀𝐵𝑗 is a strength weighted graph K2,4ℎ with parameters 

(
BT-GC∕𝐴𝑀𝐵𝑗, (28ℎ𝑗 + 21ℎ2 + 2𝑗 − 27ℎ − 2, 36ℎ𝑗 + 27ℎ2 −

40ℎ), (28ℎ𝑚 − 28ℎ𝑗 − 35ℎ2 + 53ℎ − 2𝑗 + 2𝑚 + 4, 36ℎ𝑚 − 36ℎ𝑗 − 45ℎ2 + 68ℎ), (1, 0), 1
)
.

To end with, we have 4(ℎ +𝑚 + 1) peripheral pendant Θ-class, namely 𝑃𝑃𝑗 , 1 ≤ 𝑗 ≤ 4(ℎ +𝑚 + 1) with quotient graph of K2, with 
parameters 

(
BT-GC∕𝑃𝑃𝑗 , (1, 0), (28ℎ𝑚 − 14ℎ2 + 30ℎ + 2𝑚 + 1, 36ℎ𝑚 − 18ℎ2 + 36ℎ − 1), 1

)
.

With the above discussed structural information based on Θ∗-parameters of BT-GC(𝑚, ℎ), we can calculate the distance-based 
topological indices. □

Theorem 2. Let BT-GC be the bi-trapezium type of guanidinium and hydrogen carbonate rosette layers BT-GC(𝑚,ℎ), where ℎ > ⌈𝑚

2 ⌉. Then,

1. 𝑊 (BT-GC)= 2
5 ((490ℎ − 245)𝑚4 − 49𝑚5 + (2240ℎ − 495)𝑚3 + (2940ℎ3 + 630ℎ2 + 3820ℎ − 495)𝑚2 + (5740ℎ3 − 3430ℎ4 + 1190ℎ2 +

2700ℎ − 226)𝑚 + 882ℎ5 − 3605ℎ4 + 2850ℎ3 + 670ℎ2 + 608ℎ − 30),
8
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2. 𝑊𝑒(BT-GC)= 2
15 ((2430ℎ −1215)𝑚4 −243𝑚5 +(9720ℎ −2500)𝑚3 +(14580ℎ3 −4860ℎ2 +14400ℎ −2670)𝑚2 +(34020ℎ3 −17010ℎ4 −

10335ℎ2 + 9330ℎ − 1352)𝑚 + 4374ℎ5 − 18225ℎ4 + 19775ℎ3 − 5520ℎ2 + 2176ℎ − 210),

3. 𝑊𝑒𝑣(BT-GC)= 1
15 ((3780ℎ − 1890)𝑚4 − 378𝑚5 + (16200ℎ − 3880)𝑚3 + (22680ℎ3 − 1350ℎ2 + 25380ℎ − 4080)𝑚2 + (−26460ℎ4 +

48600ℎ3 − 3720ℎ2 + 16560ℎ − 2012)𝑚 + 6804ℎ5 − 28080ℎ4 + 26540ℎ3 − 2010ℎ2 + 3511ℎ − 300),

4. 𝑆(BT-GC)= 4
15 ((3780ℎ −1890)𝑚4 −378𝑚5 +(16200ℎ −3880)𝑚3 +(22680ℎ3 +2430ℎ2 +25650ℎ −4080)𝑚2 +(44820ℎ3 −26460ℎ4 +

3975ℎ2 + 17100ℎ − 2012)𝑚 + 6804ℎ5 − 27135ℎ4 + 22625ℎ3 + 1905ℎ2 + 3781ℎ − 300),

5. 𝐺𝑢𝑡(BT-GC)= 2
15 ((9720ℎ − 4860)𝑚4 − 972𝑚5 + (38880ℎ − 9940)𝑚3 + (58320ℎ3 + 57060ℎ − 10440)𝑚2 + (116640ℎ3 − 68040ℎ4 −

2280ℎ2 + 36120ℎ − 5168)𝑚 + 17496ℎ5 − 68040ℎ4 + 59720ℎ3 − 2280ℎ2 + 8029ℎ − 780),

6. 𝑆𝑧𝑣(BT-GC)= 2
5 (14𝑚

5 − (140ℎ +60)𝑚4 − (760ℎ −11760ℎ3 −2520ℎ2 +430)𝑚3 − (17640ℎ4 −34440ℎ3 −9960ℎ2 +1000ℎ +700)𝑚2 −
(36190ℎ4 − 8820ℎ5 − 29580ℎ3 − 12430ℎ2 + 180ℎ + 384)𝑚 − 1470ℎ6 + 9198ℎ5 − 17165ℎ4 + 6630ℎ3 + 4850ℎ2 + 182ℎ − 40),

7. 𝑆𝑧𝑒(BT-GC)= 2
3 ((216ℎ − 138)𝑚4 − (2052ℎ2 − 11664ℎ3 − 1152ℎ + 560)𝑚3 − (17496ℎ4 − 36612ℎ3 + 5220ℎ2 − 2124ℎ + 768)𝑚2 −

(35100ℎ4 − 8748ℎ5 − 36348ℎ3 + 4200ℎ2 − 1740ℎ + 394)𝑚 − 1458ℎ6 + 8640ℎ5 − 17001ℎ4 + 11365ℎ3 − 1194ℎ2 + 554ℎ − 48),

8. 𝑃𝐼𝑣(BT-GC)=36ℎ(ℎ − 2𝑚 − 2)(7ℎ2 −𝑚 − 14ℎ𝑚 − 15ℎ − 1),

9. 𝑃𝐼𝑒(BT-GC)=2(4𝑚3 + (648ℎ2 − 36ℎ + 16)𝑚2 + (1308ℎ2 − 648ℎ3 − 80ℎ + 16)𝑚 + 162ℎ4 − 644ℎ3 + 672ℎ2 − 45ℎ + 4),

10. 𝑀𝑜𝑣(BT-GC)=2(2𝑚3 +(252ℎ2 +3(−1)𝑚+3)𝑚2 +(528ℎ2 −252ℎ3 −30ℎ +11(−1)𝑚−15)𝑚 +63ℎ4 −268ℎ3 +321ℎ2 −32ℎ +8(−1)𝑚−
16),

11. 𝑀𝑜𝑒(BT-GC)=2((324ℎ2 +5(−1)𝑚 −11)𝑚2 + (648ℎ2 −324ℎ3 −28ℎ +14(−1)𝑚 −32)𝑚 +81ℎ4 −324ℎ3 +366ℎ2 −30ℎ +9(−1)𝑚 −21).

Proof. To compute the calculation of topological expressions, we use the proof of the case ℎ ≤ ⌈𝑚

2 ⌉ with the following minor 
modifications.

• The range of the classes { 𝐴𝑍𝑗 : 1 ≤ 𝑗 ≤ ℎ } and { 𝐴𝐵𝑗 : 1 ≤ 𝑗 ≤ ℎ − 1 } are changed into { 𝐴𝑍𝑗 : 1 ≤ 𝑗 ≤ 𝑚 − ℎ + 1 } and { 𝐴𝐵𝑗

: 1 ≤ 𝑗 ≤ 𝑚 − ℎ } respectively.

• The range of the classes { 𝐴𝑀𝑍𝑗 : 1 ≤ 𝑗 ≤ 𝑚 − 2ℎ + 1 } into { 𝐴𝑀𝑍𝑗 : 1 ≤ 𝑗 ≤ 2ℎ − 𝑚 − 1 } with graph theoretical parameters (
BT-GC∕𝐴𝑀𝑍𝑗, (14𝑗𝑚 +7𝑚2 −7ℎ2 +9𝑚 −ℎ +16𝑗 +1, 18𝑗𝑚 +9𝑚2 −9ℎ2 +8𝑚 +18𝑗 −1), (28ℎ𝑚 −14𝑗𝑚 −7ℎ2 −7𝑚2 −7𝑚 +31ℎ −
16𝑗 + 1, 36ℎ𝑚 − 18𝑗𝑚 − 9ℎ2 − 9𝑚2 − 10𝑚 + 36ℎ − 18𝑗 − 1), 1

)
.

• The range of the classes { 𝐴𝑀𝐵𝑗 : 1 ≤ 𝑗 ≤ 𝑚 − 2ℎ + 2 } into { 𝐴𝑀𝐵𝑗 : 1 ≤ 𝑗 ≤ 2ℎ − 𝑚 } with graph theoretical parameters (
BT-GC∕𝐴𝑀𝐵𝑗, (14𝑗𝑚 +7𝑚2 − 7ℎ2 +𝑚 −ℎ +16𝑗 −8, 18𝑗𝑚 +9𝑚2 − 9ℎ2 − 2𝑚 +18𝑗 −11), (28ℎ𝑚 −14𝑗𝑚 −7ℎ2 − 7𝑚2 −𝑚 +31ℎ −
16𝑗 + 8, 36ℎ𝑚 − 18𝑗𝑚 − 9ℎ2 − 9𝑚2 − 2𝑚 + 36ℎ − 18𝑗 + 7), (1, 0), 1

)
. □

In addition, we would like to mention that the above derived expressions hold for special cases of bi-trapezium GC(𝑚, ℎ) rosette 
layers, including linear, hexagonal, and parallelogram types of GC rosette layers. The numerical values of the computed indices are 
given for parallelogram type GC rosette layers in Table 1.

Table 1

Szeged-type indices of P-GC(ℎ).

TI
h

1 2 3 4 5 6 7 8 9 10

Sz𝑣 21690 364152 2288114 9123360 27799530 70800296 158540898 322169040 606789146 1075109976
Sz𝑒 22356 447264 3029472 12612896 39545468 102793856 233758024 480785632 914386276 1633145568
PI𝑣 2592 17568 60480 152928 322560 603072 1034208 1661760 2537568 3719520
PI𝑒 2754 20052 71150 183072 390618 736364 1270662 2051640 3145202 4625028
Mo𝑣 1068 8424 29196 74992 158172 297416 509916 821808 1254732 1842664
Mo𝑒 1242 10216 35898 93160 197530 373224 641658 1037032 1586010 2333416

3.2. Szeged-type entropies of GC strutures

Entropy is an essential concept that quantifies the level of disorder, randomness, or uncertainty within a system. In the field 
of thermodynamics, it quantifies unusable thermal energy and reflects the system’s tendency to become more disordered. In infor-
mation theory, it measures uncertainty in outcomes, representing information content. In both contexts, entropy describes inherent 
randomness and the drive towards greater disorder or uncertainty [68]. Shannon’s entropy serves as a widely-utilized graph measure 
that assigns probabilities to components, enabling a more profound comprehension of structural information [69,70]. These entropy-
based methods, valued for their capacity to assess system complexity through user-friendly evaluation procedures, hold a prominent 
role in tackling challenges spanning diverse domains such as computational physics, information theory, thermodynamics, chemistry, 
9

statistics, and computer science [71–73].
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Table 2

Shannon Szeged-type entropies of P-GC(ℎ).

ITI

h
1 2 3 4 5 6 7 8 9 10

Sz𝑣 4.544 5.434 5.988 6.403 6.738 7.020 7.264 7.479 7.672 7.846
Sz𝑒 4.468 5.364 5.916 6.333 6.670 6.954 7.200 7.418 7.613 7.790
PI𝑣 4.168 5.109 5.715 6.170 6.536 6.843 7.108 7.341 7.550 7.738
PI𝑒 4.159 5.095 5.700 6.155 6.522 6.830 7.096 7.330 7.539 7.727
Mo𝑣 3.442 4.734 5.376 5.862 6.242 6.562 6.835 7.075 7.289 7.482
Mo𝑒 3.549 4.734 5.369 5.862 6.238 6.561 6.833 7.075 7.287 7.482

Table 3

Modified Shannon Szeged-type entropies of P-GC(ℎ).

I∗TI

h
1 2 3 4 5 6 7 8 9 10

Sz𝑣 9.725 12.399 14.356 15.736 16.910 17.846 18.688 19.399 20.062 20.630
Sz𝑒 9.756 12.590 14.627 16.048 17.254 18.209 19.069 19.792 20.450 21.042
PI𝑣 7.722 9.676 10.932 11.871 12.625 13.302 13.802 14.280 14.706 15.091
PI𝑒 7.705 9.701 11.028 11.978 12.763 13.400 13.962 14.443 14.882 15.269
Mo𝑣 6.716 8.795 10.067 11.035 11.799 12.445 12.995 13.483 13.920 14.306
Mo𝑒 6.865 8.978 10.266 11.245 12.031 12.666 13.229 13.716 14.145 14.539

Table 4

Normalized Szeged-type indices.

TI
h

1 2 3 4 5 6 7 8 9 10

Sz𝑣 20.042 50.288 92.057 145.323 210.063 286.260 373.908 473.000 583.533 705.504
Sz𝑒 20.347 55.732 105.926 170.870 250.541 344.927 454.022 577.823 716.326 869.532
PI𝑣 6.928 11.045 14.967 18.815 22.627 26.420 30.199 33.971 37.736 41.497
PI𝑒 7.141 11.800 16.233 20.586 24.900 29.194 33.474 37.746 42.012 46.273
Mo𝑣 4.447 7.649 10.399 13.176 15.845 18.554 21.205 23.889 26.535 29.208
Mo𝑒 4.796 8.423 11.531 14.685 17.707 20.784 23.787 26.836 29.833 32.868

To integrate Shannon’s entropy idea and topological indices, we need to identify the structural information function on the 
elements of 𝐸(GC). Such a function can be defined by the structural characteristics of GC by the index function 𝑔 ∶ 𝐸(GC) → ℝ+. 
Suppose 𝐸(GC) = {𝑞1, 𝑞2, ..., 𝑞𝑛}, the Shannon entropy topological index of GC connected to 𝑔 is given by

𝐼𝑔(GC) = −
𝑛∑

𝑖=1

𝑔(𝑞𝑖)∑𝑛

𝑗=1 𝑔(𝑞𝑗 )
log

(
𝑔(𝑞𝑖)∑𝑛

𝑗=1 𝑔(𝑞𝑗 )

)
(2)

= log
( 𝑛∑

𝑖=1
𝑔(𝑞𝑖)

)
− 1∑𝑛

𝑖=1 𝑔(𝑞𝑖)
log

( 𝑛∏
𝑖=1

𝑔(𝑞𝑖)𝑔(𝑞𝑖)
)

. (3)

It is highly uncommon to see that the elements of the set {𝑔(𝑞1), 𝑔(𝑞2), ..., 𝑔(𝑞𝑛)} are distinct, and hence, we rearrange the elements of 
the set with frequencies as {(𝑔𝑖, 𝑟𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑘} where the index value 𝑔𝑖 repeated 𝑟𝑖 times such that 𝑟1 + 𝑟2 + ... + 𝑟𝑘 = 𝑛. Therefore,

𝐼𝑔(GC) = log
( 𝑘∑

𝑖=1
𝑟𝑖𝑔𝑖

)
− 1∑𝑘

𝑖=1 𝑟𝑖𝑔𝑖

log
( 𝑘∏

𝑖=1
𝑔𝑖

𝑔𝑖 𝑟𝑖

)
. (4)

In recent studies [74,75], the above defined Shannon entropy topological index was modified by incorporating the scalar multi-
plication as defined below:

𝐼∗
𝑔
(GC) = log

( 𝑘∑
𝑖=1

𝑟𝑖𝑔𝑖

)
− 1∑𝑘

𝑖=1 𝑟𝑖𝑔𝑖

log
( 𝑘∏

𝑖=1
𝑟𝑖𝑔𝑖

𝑔𝑖

)
. (5)

We now conduct a comparative study between Szeged-type topological indices and Shannon entropy Szeged-type indices as well 
as with modified entropy indices from Tables 2 and 3. As we see that the numerical values of Szeged-type topological indices are 
high compared to entropy indices, therefore, we implement data scaling on the Szeged indices to address this disparity based on the 
number of edges, because these indices were computed with their edge contributions. For this purpose, we calculate the normalized 
Szeged-type indices for the values in Table 1. This is done by dividing each value by the total number of edges corresponding to its 
10

respective dimension, followed by taking the square root. The results are presented in Table 4.
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Table 5

Correlation analysis between Shannon entropy and its modified entropy of P-GC(ℎ).

P-GC(ℎ) Correlation between normalized Szeged 
index and Shannon entropy

Correlation between normalized Szeged 
index and modified entropy

ℎ = 1 0.84250 0.98590
ℎ = 2 0.85817 0.98390
ℎ = 3 0.82757 0.98958
ℎ = 4 0.80695 0.99044
ℎ = 5 0.78208 0.99077
ℎ = 6 0.76141 0.99055
ℎ = 7 0.73948 0.99104
ℎ = 8 0.71970 0.99114
ℎ = 9 0.69960 0.99101
ℎ = 10 0.68084 0.99119

From Table 5, we observe that the correlation values derived using the modified version of Shannon’s entropy formula, which 
incorporates scalar multiplicative indices, demonstrating superior predictive efficacy compared to conventional Shannon’s entropy 
measures. This suggests that integrating modified entropies into the regression model enhances its predictive capability for the nor-
malized Szeged index, consequently leading to an improved accuracy in predicting the physicochemical properties of GC structures.

3.3. Degree topological indices

Degree indices are defined according to the degrees of bond ends. The general formulation of degree topological indices of 
BT-GC(𝑚, ℎ) is expressed as follows:

𝜒(BT-GC) =
∑

𝑝1𝑝2∈𝐸(BT-GC)
𝜒(𝑝1𝑝2) (6)

where 𝜒(𝑝1𝑝2) = 𝜒(𝑝2𝑝1). The degree topological indices are obtained by taking 𝜒(𝑝1𝑝2) = 𝜒(𝑑GC(𝑝1), 𝑑GC(𝑝2)) which received a lot 
of interest [76], including,

• Bi−Zagreb 𝐵𝑀(𝑑GC(𝑝1), 𝑑GC(𝑝2)) = (𝑑GC(𝑝1) + 𝑑GC(𝑝2) + 𝑑GC(𝑝1)𝑑GC(𝑝2))

• Tri−Zagreb 𝑇 𝑀(𝑑GC(𝑝1), 𝑑GC(𝑝2)) = (𝑑2
GC(𝑝1) + 𝑑2

GC(𝑝2) + 𝑑GC(𝑝1)𝑑GC(𝑝2))

• Geometric−arithmetic 𝐺𝐴(𝑑GC(𝑝1), 𝑑GC(𝑝2)) = 2
√

𝑑GC(𝑝1)𝑑GC(𝑝1)
𝑑GC(𝑝1) + 𝑑GC(𝑝2)

• Geometric−Bi Zagreb 𝐺𝐵𝑀(𝑑GC(𝑝1), 𝑑GC(𝑝2)) =
√

𝑑GC(𝑝1)𝑑GC(𝑝2)
𝑑GC(𝑝1)+𝑑GC(𝑝2)+𝑑GC(𝑝1)𝑑GC(𝑝2)

• Geometric−Tri Zagreb 𝐺𝑇 𝑀(𝑑GC(𝑝1), 𝑑GC(𝑝2)) =
√

𝑑GC(𝑝1)𝑑GC(𝑝2)
𝑑2GC(𝑝1)+𝑑2GC(𝑝2)+𝑑GC(𝑝1)𝑑GC(𝑝2)

• Bi Zagreb− Geometric 𝐵𝑀𝐺(𝑑GC(𝑝1), 𝑑GC(𝑝2)) =
𝑑GC(𝑝1)+𝑑GC(𝑝2)+𝑑GC(𝑝1)𝑑GC(𝑝2)√

𝑑GC(𝑝1)𝑑GC(𝑝2)

• Tri Zagreb− Geometric 𝑇 𝑀𝐺(𝑑GC(𝑝1), 𝑑GC(𝑝2)) =
𝑑2GC(𝑝1)+𝑑2GC(𝑝2)+𝑑GC(𝑝1)𝑑GC(𝑝2)√

𝑑GC(𝑝1)𝑑GC(𝑝2)

• Harmonic 𝐻(𝑑GC(𝑝1), 𝑑GC(𝑝2)) =
2

𝑑GC(𝑝1) + 𝑑GC(𝑝2)

• Sombor 𝑆𝑂(𝑑GC(𝑝1), 𝑑GC(𝑝2)) =
√

𝑑2
GC(𝑝1) + 𝑑2

GC(𝑝2)

• Atom bond connectivity 𝐴𝐵𝐶(𝑑GC(𝑝1), 𝑑GC(𝑝2)) =

√
𝑑GC(𝑝1) + 𝑑GC(𝑝2) − 2

𝑑GC(𝑝1)𝑑GC(𝑝2)

The topological expressions are derived using the edge partition method applied to the BT-GC(𝑚, ℎ) structure, utilizing the degrees 
of the endpoints of the edges. The partition of the bond set of BT-GC(𝑚, ℎ) is shown in Table 6. In our topological expressions, we 
employ three classes based on the degrees of their endpoints, namely (1, 3), (2, 3) and (3, 3), with respective cardinalities of 4ℎ +4𝑚 +4, 
24ℎ𝑚 − 12ℎ2 + 20ℎ − 4𝑚 − 4 and 12ℎ𝑚 − 6ℎ2 + 12ℎ.

Theorem 3. The degree topological indices of BT-GC(𝑚, ℎ) are given by

1. 𝐵𝑀(BT-GC(𝑚, ℎ)) = 444ℎ𝑚 − 222ℎ2 + 428ℎ − 16𝑚 − 16,
11
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2. 𝑇 𝑀(BT-GC(𝑚, ℎ)) = 780ℎ𝑚 − 390ℎ2 + 756ℎ − 24𝑚 − 24,

3. 𝐺𝐴(BT-GC(𝑚, ℎ)) = 2
5 (24

√
6ℎ𝑚 + 30ℎ𝑚 − 12

√
6ℎ2 − 15ℎ2 + 20

√
6ℎ + 5

√
3ℎ + 30ℎ − 4

√
6𝑚 + 5

√
3𝑚 − 4

√
6 + 5

√
3),

4. 𝐺𝐵𝑀(BT-GC(𝑚, ℎ)) = 2
385 (420

√
6ℎ𝑚 +462ℎ𝑚 −210

√
6ℎ2 − 231ℎ2 + 110

√
3ℎ +350

√
6ℎ +462ℎ +110

√
3𝑚 −70

√
6𝑚 +110

√
3−

70
√
6),

5. 𝐺𝑇 𝑀(BT-GC(𝑚, ℎ)) = 2
741 (468

√
6ℎ𝑚 +494ℎ𝑚 −234

√
6ℎ2 − 247ℎ2 + 114

√
3ℎ +390

√
6ℎ +494ℎ +114

√
3𝑚 −78

√
6𝑚 +114

√
3−

78
√
6),

6. 𝐵𝑀𝐺(BT-GC(𝑚, ℎ)) = 2
3 (66

√
6ℎ𝑚 + 90ℎ𝑚 − 33

√
6ℎ2 − 45ℎ2 + 55

√
6ℎ + 14

√
3ℎ + 90ℎ − 11

√
6𝑚 + 14

√
3𝑚 − 11

√
6 + 14

√
3),

7. 𝑇 𝑀𝐺(BT-GC(𝑚, ℎ)) = 2
3 (114

√
6ℎ𝑚 +162ℎ𝑚 −57

√
6ℎ2 − 81ℎ2 + 95

√
6ℎ +26

√
3ℎ +162ℎ −19

√
6𝑚 +26

√
3𝑚 −19

√
6+ 26

√
3),

8. 𝐻(BT-GC(𝑚, ℎ)) = 2
5 (34ℎ𝑚 − 17ℎ2 + 35ℎ +𝑚 + 1),

9. 𝑆𝑂(BT-GC(𝑚, ℎ)) = 2(18
√
2ℎ𝑚 +12

√
13ℎ𝑚 −9

√
2ℎ2−6

√
13ℎ2+18

√
2ℎ +2

√
10ℎ +10

√
13ℎ +2

√
10𝑚 −2

√
13𝑚 +2

√
10−2

√
13),

10. 𝐴𝐵𝐶(BT-GC(𝑚, ℎ)) = 2
3 (18

√
2ℎ𝑚 + 12ℎ𝑚 − 9

√
2ℎ2 − 6ℎ2 + 2

√
6ℎ + 15

√
2ℎ + 12ℎ + 2

√
6𝑚 − 3

√
2𝑚 + 2

√
6 − 3

√
2).

Table 6

Degree bond partition of BT-GC(𝑚, ℎ).
Bond-type 
X−Y

𝑑𝐺𝐶 (𝑋)-𝑑𝐺𝐶 (𝑌 ) Number of occurrences in BT-GC(𝑚,ℎ)

O−H 1 − 3 2ℎ+ 2𝑚+ 2
N−H 1 − 3

O−H 2 − 3 12ℎ𝑚− 6ℎ2 + 10ℎ− 2𝑚− 2
N−H 2 − 3

O−C 3 − 3 6ℎ𝑚− 3ℎ2 + 6ℎ
N−C 3 − 3

Table 7

Degree based entropies of P-GC(ℎ).

I∗
𝑻 𝑰

h
1 2 3 4 5 6 7 8 9 10

BM 6.282 7.382 8.048 8.535 8.923 9.245 9.521 9.764 9.979 10.174
TM 6.831 7.943 8.611 9.100 9.488 9.810 10.087 10.329 10.544 10.739
GA 3.788 4.861 5.525 6.012 6.380 6.723 7.000 7.241 7.457 7.651
GBM 1.844 3.125 3.872 4.402 4.814 5.152 5.440 5.689 5.910 6.109
GTM 0.739 2.293 3.144 3.726 4.169 4.526 4.827 5.086 5.314 5.518
BMG 5.389 6.448 7.101 7.582 7.966 8.286 8.561 8.801 9.016 9.209
TMG 5.947 7.013 7.667 8.148 8.531 8.851 9.125 9.366 9.580 9.773
H 2.727 3.853 4.540 5.039 5.433 5.759 6.038 6.282 6.499 6.694
SO 5.188 6.246 6.899 7.381 7.765 8.085 8.360 8.601 8.816 9.009
ABC 3.455 4.523 5.185 5.672 6.058 6.380 6.656 6.898 7.113 7.307

We now derive the entropy measures associated with those degree based topological indices of GC structure. The numerical values 
are given in Table 7, and corresponding 3-D bar plots generated with the MATLAB interface are shown in Fig. 6.

3.4. Existence of isentropic GC structures

In the context of graph theory and molecular chemistry, isentropic structures represent arrangements within molecular systems 
or data sets that exhibit a constant level of entropy or information content. They have significance in both thermodynamics and 
information theory and can be valuable for understanding the behavior of complex systems in various scientific and engineering 
disciplines.

In the computation of degree indices, we encountered that multiple structures exhibited the same number of GC units, vertices, 
edges, and edge partitions indicating identical degree topological properties, yet different distance properties. We found several 
isentropic structures and described as pair in the following general form: (BT-GC(5𝑚 − 4, 𝑚), BT-GC(3𝑚 − 2, 3𝑚 − 2)), 𝑚 ≥ 2. Table 8
12

provides numerical bond partition values for some isentropic structures, and Fig. 7(a-b) exhibits one such isentropic structures.
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Fig. 6. Degree-entropies of P-GC(ℎ).

Table 8

Numerical bond partition values of isentropic structures of BT-GC(𝑚, ℎ).
Bond-type 
X−Y

𝑑𝐺𝐶 (𝑋)-𝑑𝐺𝐶 (𝑌 ) Isentropic Structures

(6,2) (4,4) (11,3) (7,7) (16,4) (10,10) (21,5) (13,13) (26,6) (16,16)

O−H 1 − 3 18 30 42 54 66
N−H 1 − 3

O−H 2 − 3 126 348 678 1116 1662
N−H 2 − 3

O−C 3 − 3 72 189 360 585 864
N−C 3 − 3

4. Proton, 𝟏𝟑C, 𝟏𝟒N, 𝟏𝟕O NMR combinatorial spectroscopic patterns for four different supramolecular assemblies of 
guanidinium and hydrogen carbonate rosettes

As networks comprised of guanidinium and hydrogen carbonate rosettes, contain different nuclei such as protons, carbons, 
nitrogens, and oxygens, once can harness different NMR spectroscopies to contrast closely related networks. As shown in the previous 
section, these networks not only exhibit isentropic structures but also isomeric structures. Due to the considerable complexity of these 
supramolecular assemblies, there is a clear and compelling need to develop graph-theoretical and combinatorial methods for the 
enumeration and construction of different NMR spectral patterns such as proton NMR, 13C NMR, 14N NMR and 17O NMR. Through 
the use of such powerful techniques, the isomers and isentropic structures can be experimentally contrasted using a variety of NMR 
techniques. Hence, we describe the salient points pertinent to these graph theoretical and combinatorial methods for NMR.

The distance degree sequence vector (DDSV) for a vertex [77] in the supramolecular hydrogen-bonded network of guanidinium 
and hydrogen carbonate rosettes is defined as (𝑑𝑖0, 𝑑𝑖1, 𝑑𝑖2, … , 𝑑𝑖𝑗 , …) where a vertex 𝑣𝑖 in GC, 𝑑𝑖𝑗 is the number of vertices at distance 
𝑗 from 𝑣𝑖. The sequence terminates for a vertex 𝑣 of the graph at 𝑒𝑐𝑐(𝑣), where 𝑒𝑐𝑐(𝑣) is the eccentricity of the vertex 𝑣. We note that in 
the usual graph theoretical methods, hydrogens are omitted, but because the supramolecular assemblies of guanidinium and hydrogen 
carbonate rosettes are formed with hydrogen bonds, in the ensuing graph theoretical and combinatorial methods, the hydrogens are 
explicitly included in graphs. In this method, we use TopoChemie 2020 software [78] to compute the number of vertices at a given 
distance from the vertex 𝑣𝑖, by making use of the distance matrices generated by the codes. Hence, a vector sequence is generated 
for each vertex, including the hydrogens. Such a sequence is of variable length, as the eccentricities of various vertices in the 
supramolecular assembly are never the same for all vertices. Then the code analyzes the vector sequence thus generated and assigns 
it to each vertex, and if two vertices carry the same DDSV label, then they are assigned to the same equivalence class. Consequently, 
the DDSV technique facilitates partitioning to first order the various nuclei of guanidinium and hydrogen carbonate rosettes into 
equivalence classes of nuclei. We note that the DDSV-partitions are not isomorphic to the automorphic partitions. However for 
guanidinium and hydrogen carbonate rosettes, they provide a starting point to refine the partition classes further. As heteroatoms 
are not contrasted with carbons and because hydrogens are also included as vertices in the graph, the DDSV technique at best yields 
a starting point for the generation of equivalence classes through further symmetry-based combinatorial refinement. Consequently, 
we have invoked further symmetry-based combinatorial techniques that are adequately described elsewhere [79–81] to generate 
the various nuclear partitions and thus the NMR spectral patterns of these networks. It is noted that there are large numbers of 
nuclei for the supramolecular assemblies considered here, and because each nucleus gives rise to a vector of variable DDSV length, 
13

the process of generating the nuclear partitions becomes cumbersome, and requires machine-algorithms which were implemented. 
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Fig. 7. Isentropic structures (a) BT-GC(11,3) (b) BT-GC(7,7).

Such algorithms are part of the TopoChemie-2020 package [78] which was also employed to validate the expressions obtained for all 
topological indices and entropies considered in this study. We have computed the machine-generated nuclear equivalence classes and 
the NMR intensity and signal patterns for the proton, 13C, 14N, and 17O of four structures supramolecular assemblies of guanidinium 
14

and hydrogen carbonate rosettes, which are shown in Fig. 8(a-d).
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Fig. 8. Four GC structures (a) BT-GC(6, 2) (b) BT-GC(4, 4) (c) BT-GC(5, 3) (d) BT-GC(11, 1). The first two structures are isomers. Their machine-generated NMR patterns 
are displayed in Table 9.
15
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Table 9

Machine-generated proton, 13C, 14N, and 17O NMR spectral patterns of four different supramolecular assemblies of guanidinium and hydrogen carbonate rosettes.

BT-GC(𝑚,ℎ) Molecular 
Formulas

Proton Classes and 
NMR

13C Classes and 13C NMR 14N Classes and 14N NMR 17O Classes and 17O NMR

BT-GC(6, 2)
Fig. 8a

C48H162N72O72
281
1 ∶ 1 ∶⋯ ∶ 1 ∶ 1(81)

14222
1 ∶ 1 ∶ 1 ∶ 1
2 ∶ 2 ∶⋯ ∶ 2(22)

12235
1 ∶ 1
2 ∶ 2 ∶⋯ ∶ 2(35)

12235
1 ∶ 1
2 ∶ 2 ∶⋯ ∶ 2(35)

BT-GC(4, 4)
Fig. 8b

C48H162N72O72

281
1 ∶ 1 ∶⋯ ∶ 1 ∶ 1(81)

18220
1 ∶ 1 ∶⋯ ∶ 1 ∶ 1(8)
2 ∶ 2 ∶⋯ ∶ 2 ∶ 2(20)

14234
1 ∶ 1 ∶ 1 ∶ 1
2 ∶ 2 ∶⋯ ∶ 2(34)

14234
1 ∶ 1 ∶ 1 ∶ 1
2 ∶ 2 ∶⋯ ∶ 2(34)

BT-GC(5, 3)
Fig. 8c

C54H180N81O81

630
1 ∶ 1 ∶⋯ ∶ 1(30)

3666
1 ∶ 1 ∶ 1 ∶ 1 ∶ 1 ∶ 1
2 ∶ 2 ∶ 2 ∶ 2 ∶ 2 ∶ 2

33612
1 ∶ 1 ∶ 1 ∶ 2 ∶ 2 ∶… 2(12)

33612
1 ∶ 1 ∶ 1 ∶ 2 ∶ 2 ∶⋯ ∶ 2(12)

BT-GC(11, 1)
Fig. 8d

C46H164N69O69

282
1 ∶ 1 ∶⋯ ∶ 1(82)

12222
1 ∶ 1 ∶ 2 ∶ 2 ∶⋯ ∶ 2(22)

1 234
1 ∶ 2 ∶ 2 ∶⋯ ∶ 2(34)

1 234
1 ∶ 2 ∶ 2 ∶⋯ ∶ 2(34)

As one can see from Table 9, different NMR spectroscopies offer powerful tools to characterize the various supramolecular as-
semblies of guanidinium and hydrogen carbonate rosettes including isomers. For example, the BT-GC(6, 2) and BT-GC(4, 4) structures 
shown in Fig. 8a and Fig. 8b, respectively are isomers. Their proton NMR spectral patterns, as inferred from the machine-computed 
NMR spectra, are identical for the two isomers yielding 81 proton NMR signals of equal intensity for both isomers. Consequently, the 
proton NMR spectroscopy fails to offer any discrimination between the two isomers.

On the other hand, the 13C NMR spectroscopy offers a powerful tool to contrast these two isomers although the 14N and 17O NMR 
are predicted to be identical for each of the two isomers, they do offer contrast between the isomers (see Table 9). That is for the 
isomer in Fig. 8a, the 13C NMR four signals of equal unit intensity while there are 22 signals with double the intensity. On the other 
hand, the 13C NMR for Fig. 8b is predicted to yield 8 signals of equal unit intensities and 20 signals of double intensity, thereby 
offering a contrast between the isomers in Fig. 8a and Fig. 8b. For the last two structures in Table 9, likewise proton and 13C NMR 
offer powerful tools to elucidate these structures while 14N and 17O NMR for each structure exhibit the same pattern. This is evidently 
a consequence of how the different atoms are networked in the structures resulting in their overall weighted-graph symmetries and 
automorphic partitions. Therefore it is concluded that either 14N or 17O NMR may be employed to study the various assemblies of 
these structures but not both as the two NMR spectroscopies yield the same information. On the other hand, 13C NMR spectroscopy 
offers a powerful tool for the elucidation of various assemblies of these structures.

5. Conclusion

In this study, we explored guanidinium and hydrogen carbonate rosette layers, revealing their unique structural properties 
through topological indices. We employed the cut method technique to dissect their complex structures and used distance and 
degree based topological indices and Szeged-type and degree entropies for analysis. In the correlation analysis, we found that the 
modified Shannon entropy exhibits a stronger correlation compared to traditional Shannon entropy. Moreover our studies have re-
vealed the existence of isentropic assemblies and isomeric assemblies in GC structures. Furthermore, we have developed methods 
that utilize distance degree vector sequences in combination with symmetry-based combinatorial techniques to produce a diverse 
range of NMR spectral patterns for these networks, including proton, 13C, 14N, and 17O NMR spectra. It is shown that the 13C NMR 
is powerful methods that facilitates delineation of closely related isomers of assemblies of these structures. Moreover, 17O and 14N 
NMR spectra for each of the these assemblies produce identical signal and intensity patterns. This research not only enhances our 
comprehension of these intriguing systems but also underscores the pivotal role of supramolecular chemistry in designing functional 
materials and advancing molecular self-assembly processes. As we continue to explore the potential of non-covalent interactions, 
these findings hold promise for innovative applications across diverse scientific domains.
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