Heliyon 10 (2024) e24814

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article ,.)

Check for

Guanidinium and hydrogen carbonate rosette layers: Distance and &=t
degree topological indices, Szeged-type indices, entropies, and
NMR spectral patterns

Micheal Arockiaraj®*, J. Celin Fiona®, Jessie Abraham b Sandi Klavzar %,
Krishnan Balasubramanian ’

 Department of Mathematics, Loyola College, Chennai 600034, India

Y Department of Mathematics, KCG College of Technology, Chennai 600097, India

¢ Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

4 Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

¢ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

T School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA

ARTICLE INFO ABSTRACT
Keywords: Supramolecular chemistry explores non-covalent interactions between molecules, and it has
Supramolecular chemistry facilitated the design of functional materials and understanding of molecular self-assembly

Guanidinium and hydrogen carbonate rosette

: processes. We investigate a captivating class of supramolecular structures, the guanidinium and
ayer

: o hydrogen carbonate rosette layers. These rosette layers are composed of guanidinium cations
Distance-degree based topological indices . e e . . . .
. and carbonate anions, exhibiting intricate hydrogen-bonding networks that lead to their unique
Szeged and degree-type entropies measures R K o ! - X
Proton, 13C, 14N, 170 NMR spectra structural properties. Topological and entropy indices unveil the connectivity and complexity of
the structures, providing valuable insights for diverse applications. We have developed the cut
method technique to deconstruct the guanidinium and hydrogen carbonate rosette layers into
smaller components and obtain the distance, Szeged-type and entropy measures. Subsequently,
we conducted a comparative analysis between topological indices and entropies which contributes
to a deeper understanding of the structural complexity of these intriguing supramolecular
systems. We have derived the degree based topological indices and entropies of the underlying
rosette layers. Furthermore, our computations reveal several isentropic structures associated
with degree and entropy indices. We have employed distance vector sequence-based graph
theoretical techniques in conjunction with symmetry-based combinatorial methods to enumerate
and construct the various NMR spectral patterns which are demonstrated to contrast the isomers
and networks of the rosettes.

1. Introduction

Non-covalent interactions play significant roles in determining the structure, stability, and various mechanisms associated with
biological macromolecules, such as protein folding, DNA replication, ligand-receptor binding, and the associated biochemical pro-
cesses [1-5]. While these interactions are individually weak their cumulative effects can significantly influence the performance and
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Fig. 1. A unit cell of guanidinium carbonate (GC).

properties of these molecular systems. Hydrogen bonds, in particular, are relatively strong compared to other non-covalent interac-
tions and hence these bonds play a significant role in various biological processes [6-8]. As is well known, oxygen and nitrogen,
among other electronegative elements, are often involved in hydrogen bonding due to their ability to form strong partial negative
charges as a consequence of their electronegativity. Supramolecular chemistry is the study of assemblies of molecules or ions based
on non-covalent interactions such as hydrogen bonding, van der Waals forces, = — z stacking, and electrostatic and hydrophobic
interactions [9-12]. Supramolecular assemblies have a wide range of applications, including drug delivery systems, catalysis, nan-
otechnology and the development of molecular machines and switches [13-17]. Many biological processes, such as enzyme-substrate
interactions, antibody-antigen recognition, and DNA base pairing, are based on supramolecular host-guest complexes [18-22]. One
of the most fascinating aspects of supramolecular chemistry is its self-assembly. It explores how molecules with complementary
functional groups tend to spontaneously organize themselves into larger, well-defined structures through non-covalent interactions
[23-25]. This self-organization feature is harnessed in designing complex architectures and functional materials at the nanoscale.
The supramolecular assembly is also observed in nature, for instance, when proteins fold into specific three-dimensional structures
through non-covalent interactions, and when lipid bilayers self-assemble to form cell membranes [26,27]. Similarly, DNA molecules
can self-assemble into intricate nanostructures through complementary base-pairing interactions [28-30]. In recent years mathemat-
ical and artificial intelligence techniques including big data, neural networks, combinatorial, and graph theoretical methods have
been shown to have several applications in drug discovery, dynamic reaction networks and so forth [31-34].

The guanidinium ion, denoted as CHgNg*, is the cationic form of guanidine (NH,C(NH)NH,) and hence contains three amino
groups (NH,), which can take part in the H-bonding due to the available lone pair on the nitrogens. Consequently, the guanidinium
ion plays a significant role in supramolecular chemistry due to strong intramolecular and intermolecular hydrogen bonding with
a variety of molecular species, including anions, polar organic compounds, and water molecules [35,36]. It is often influences
biological and chemical processes such as gene therapy, protein and DNA assmeblies, and protein crystallization. Guanidinium
carbonate consists of guanidinium cations and carbonate anions held together by ionic bonds. A unit cell of guanidinium carbonate,
illustrated in Fig. 1, comprises atoms such as hydrogen, carbon, oxygen, and nitrogen. In contrast, the unit cell of boric acid 2D
sheet is relatively similar to guanidinium carbonate, having only six pendant bonds and atoms of hydrogen, boron, and oxygen.
Furthermore, the degree based bond partitions of the boric acid 2D structure include the bond classes [37] (1,3), (2,2), (2,3), and
(3,3), while guanidinium carbonate has only three classes: (1,3), (2,3), and (3,3). This difference in bond classes results in a high
degree of structural symmetry for guanidinium carbonate. Consequently, the topological studies of these two units exhibit differing
effects.

A rosette layer arrangement in a material refers to a circular or radial pattern, analogous to the petals of a rose flower. In the
context of nanomaterials or molecular assemblies, a rosette layer is comprised of a pattern where certain molecules or molecular
groups are arranged in a flower-like configuration [25]. Guanidinium and hydrogen carbonate rosette layers are white or colorless
crystalline solids formed by a self-assembly of guanidinium carbonate ribbons by joining through hydrogen bonds to form a several
layered sheet like structure with a rosette kind of appearance [38,39]. This assemblage of rosette layers leads to a bitrapezium
shaped structure as shown in Fig. 2. Researchers are exploring its potential applications in various fields, ranging from electronics
and catalysis to energy storage and biomedical applications [40,41].

Chemical graph theory is a branch of theoretical chemistry and mathematics where chemical compounds are represented as
graphs, with atoms as nodes (vertices) and chemical bonds as edges (node connectors). This graph-based representation provides a
mathematical framework for analyzing and modeling the various structural and molecular characteristics. Topological indices are
numerical values associated with a chemical graph that provide significant information about the graph’s underlying connectivity
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Fig. 2. Bi-trapezium type BT-GC(6,4).

with the aid of quantitative structure-activity relationship (QSAR) and quantitative structure property relationship (QSPR) studies
[42-49]. There are numerous types of topological indices based on factors like distance, atomic-bond connectivity, vertex degree,
ring structure, or branching patterns [50,51]. Each index is tailored to capture specific aspects of a molecular structure.

Distance-based topological indices, pioneered by the introduction of the Wiener index, quantify structural characteristics based
on the topological distance between atoms in the molecular graph, and these indices have been widely used to describe the physical
density or compactness of chemical networks [52]. These indices provide quantitative measures of the structural aspects of molecules
and compounds, including their branching patterns. Degree-based topological indices are a class of topological descriptors used
particularly in QSAR studies, cheminformatics, and molecular graph theory. These indices are derived based on the number of edges
connected to a node, which in turn provides valuable information about the connectivity and branching patterns of atoms for further
study [46,53-57]. Information-theoretic entropy, such as Shannon entropy, is a versatile tool that allows researchers to quantify
the structural complexity and uncertainty in chemical networks, making it applicable to a wide range of domains within chemistry,
biology, and data science [58]. In this study, we discuss the different distance and degree-based indices, along with Shannon entropy
and its modified measure of guanidinium and hydrogen carbonate rosette layers, in detail. As various supramolecular assemblies
exhibit complex and intricate networks, it becomes necessary to develop network-based mathematical techniques to contrast closely
related structures. In this study, it is shown that the title networks exhibit both isentropic and isomeric networks. Thus, it becomes
necessary to develop the needed tools to juxtapose their properties, such as spectroscopic properties. We have applied distance degree
vector sequence methods in conjunction with symmetry-based combinatorial methods to generate the various NMR spectral patterns
of these networks, such as proton NMR spectra, !3C NMR spectra, '*N NMR and !0 NMR spectra of these networks.
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2. Computational techniques

To study the distance-based topological indices [59-63] and gain comprehensive insights into the structural traits of guanidinium
carbonate (GC), we depict its two-dimensional layout as a simple, connected chemical graph, taking into account the presence of
hydrogen atoms, typically disregarded in graph theoretical studies. The graphical representation involves organizing the atoms such
as hydrogen, carbon, oxygen, and nitrogen into a distinct assemblage known as the vertex set V' (GC), with the interconnecting bonds
among these atoms forming the edges denoted by the edge set E(GC). For any vertex p; € V' (GC), we define its degree, denoted by
dgc(py), as the number of edges that are linked to p; and the open neighborhood Ng:(p,) encompasses the set of vertices that are
directly connected to vertex p, through edges. Moreover, when considering any two vertices p;,p, € V(GC), we set d;:(p;,p,) to
denote the length of a shortest path between these two vertices, where the length of a path is the number of its edges. The distance
dgc(p1,9192) between the vertex p; and the edge ¢q,q, is defined as min{dgc(p;.q;).dgc(P-42)}, while the distance Dgc(e;,e,)
between two edges e; = p;p, and e, = g4, is min{dgc(p;,e2). dgc(P2. €2)}-

We define the neighborhood vertex elements associated with the terminal vertices of e; = p;p, as follows: N, (;|GC) = {u €
V(GC) @ dge(py-w) < dge(pa,w)} and Ny (e|GC) = {u € V(GC) : dgc(ps,u) < dgc(py,w)}. Let n, (e1]GC) and n,, (e;|GC) be the
number of elements in the sets N, (¢;|GC) and N, (e;|GC), respectively. Similarly, we define the neighborhood edge elements
associated with the terminal vertices of e; as M, (e;|GC) = {uv € E(GC) : dgc(py,uv) < dge(py,uv)} and M, (e,|GC) = {uv €
E(GC) : dge(py,uv) < dge(py,uv)}. Further, m, (e;]GC) and m, (e;]GC) stand for the number of elements in the sets Mp] (e;]GC)
and M, » (e1]GC), respectively.

Recently, there has been an emergence of topological indices tailored for strength-weighted graphs, which have been extensively
explored and discussed in various research papers [37,50,59-61,64,65]. For this purpose, the GC structure was assembled to be
the strength-weighted graph GC,,, = (GC,(w,,s,),s,) where the vertex weight and strength functions are w, : V(GC,,) — R¥,
s, : V(GCy,) = [R(J)r and the edge strength function is s, : E(GC,,) — Rg. The basic graph theoretical terminologies of GC,,, are
relatively connected to GC structure that are defined as follows: Ng¢  (p1) = Ngc(P1); dac,, (P1P2) = dac(P1, p2)s dec,, (P15 49192) =
dec(P1-9192)s Dgc,, (€1, €2) = Dgcl(er, e3), Ny (€11GCy) = Ny, (€,/GC), and M, (e,1GCy,,) = M), (e;|GC). The degree of vertex p; in

GCq,, is defined by the expression dgc  (p) = > s,(p;x). The cardinality of the closeness measures of the edge e; = p;p,
' x€Ngc,,, (P1)
is calculated by n, (e;|GCy,,) = > wyw), m, (e1GCy,,) = > s,(u) + > 5,(uv). The computations of
uGNI,1 (e11GCyy) uENIJl (e1]1GCyy) uveM,Jl (e11GCyy)

n,, (e;|GCy,) and m,, (e;|GCy,,) are carried out analogously.

We introduce the notation TI(GC,,,) to symbolize the distance-based topological indices for the guanidinium and hydrogen
carbonate rosette layers. This notation encompasses vertex and edge-based contributions, including indices such as Wiener, Szeged,
PI, Schultz, Gutman, and Mostar, which are stated below.

* W(GCy,) = Z wy(P])wU(Pz)dGcsw(PpPz)
{p1.p2}EV(GCyy)
* W,(GCy,) = z sp(P1)sy(P2)dge,, (P15p2)  + z se(e1)se(er)Dgc, (1, €2)
{p1p2}CV (GCyyp) {e1,€2)CE(GCyyp)
+ Z Z 5,(p1) sc(ep) dGCm,(pI’el)
p1EV(GCyy,) e EE(GCy,,)
¢ Wo(GCy) = 3 z {w,(pD)s,(p2) + w,(P)s, (P }de,, (P P+ X 2 wypy) sle)) dge,, (prsey)
{p1.p2}CEV (GCyyp) P1EV(GCyy) €] EE(GCyy,)
* S(GCy,,) = )y [Wu(Pz)(dGcw(m) +25,(p) + w,(p)dge,, (p2) +25,(p2) | dec,, (P15 P2)
{p1.p2 1SV (GCyy)
* Gut(GCy,,) = )y (dgc,, (p1) +25,(p1))dgc,, (P2) +25,(P2))doc,,, (P15 P2)
{p1:p2}CV (GCyyp)
: SZU(GCsw) = 2 Se(el)npl (el |Gcsw)np2 (el |Gcsw)
e1=p;p2€E(GCyy)
: Sze(GCsw) = 2 se(el)mpl (el |Gcsw)mp2 (el |Gcsw)
e1=p1P2€E(GCyy)
- PI,(GC,,)= ¥ se(el)[nm(elIGCSW)+nI,Z(e1|GCSw)]
e1=p1 12 €E(GCyy)
- PI,(GC,,)= ¥ se(el)[mpl (€1GCy) +m, () |Gcsw)]
e1=p1p2€E(GCyy)
* Mo,(GC,,) = > se(elny, (e1GCqy,) — 1y, (€11GCyyp)|
e1=p1p2€E(GCy)
* Mo, (GCy,) = > Sc(e )|mp1 (e11GCyy) — m,, (e11GCy)I

e1=p1 P2 €E(GCyy)
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Fig. 3. Two ©*-classes of the unit cell of guanidinium carbonate.

The distance-based topological indices of GC structures can be easily deduced from GC,,, by considering w, =1,s, =0, and
s, = 1. To enhance the efficiency of our computational procedures, we have incorporated the cut method technique [60,61,66,67]
for the calculation of topological indices for hydrogen-bonded guanidinium carbonate structures. A subgraph denoted as H(GC)
within the graph GC is considered isometric when the distances between vertices p; and p, in GC is equal to the distances between
the same vertices in H(GC). Any isometric subgraph of binary hypercubes is called a partial cube, and in the case of GC structures,
it is not a partial cube. Hence, we employ the transitive closure of Djokovi¢-Winkler relation to compute the distance based indices,
the technique that was proposed for the first time in [63] for the case of the Wiener index.

The Djokovié¢-Winkler relation @ is defined by saying that two edges e; = p; p, and e, = q; ¢, of GC are in relation @ if d;:(p;, q;) +
dgc(py,qy) # dgc(p1,ap) + dgc(pa,q1). The transitive closure ©* of © is a reflexive, symmetric, and transitive relation. Let % =
{By,B,,...,B.} be the partition of the edge set of GC induced by the relation ®*, the sets B, are called the ®*-classes. For 1 <i <r,
the quotient graph GC/B; has the connected components of GC — B; as vertices. Two vertices X and Y of GC/B; (that is, components
of GC — B;) are adjacent in GC/B; if there exists an edge xy € B; such that vertex x lies in the component X and y lies in the
component Y.

Let us apply the above concepts to the unit cell of guanidinium carbonate; at the same time we add that the treatment in general
cases is analogous. First, an edge e of an even cycle is in relation © to another edge f of the cycle if and only if e and f are opposite
edges on the cycle. This property remains valid for each 8-cycle and each 12-cycle of the molecular structures considered in this
paper because each of these cycles is an isometric (in fact, even convex) subgraph of the structure. Consider now an arbitrary edge of
the unit cell of guanidinium carbonate that lies on the boundary of two 8-cycles, such as the edge ¢’ in Fig. 3. Then ¢’ is in relation
© to the two respective oposite edges e and ¢’ on the two 8-cycles in which ¢’ lies. Then {e,e’, e’} form the ®*-class (equivalently,
the ©-class) containing e’. Consequently, the quotient graph of this ®*-class is the complete graph on two vertices K,. Consider next
an edge of the unit cell of guanidinium carbonate that simultaneously lies on the boundary of an 8-cycle and a 12-cycle, such as the
edge f' from Fig. 3. On the corresponding 8-cycle f’ is in relation ® with the edge f from the figure, while on the 12-cycle, f’ is
in relation ® with the edge f”’. Further we have f”®f""". We get analogous conclusions for the edges g, g’, g’ and g’ from the
figure. Moreover, since we can easily infer that f is in relation ® with g/, we can conclude that {f, ', f", f"",g.g'.g",g""} form
the ®*-class containing f’. It follows that the quotient graph of this ®*-class is the complete bipartite graph Ky4-

Let T'I denote a generic topological index such as W, W,, W,,, S, Gut, Sz, Sz,, PI,, PI,, Mo,, and Mo,. Then

ev’

TI1(GC) = Y TI(GC/B;, (w),s.),st) (1)

i=1

where

« w :V(GC/B) - R}, wi(A)= Y wya),V A€GC/B,

acA
+ s’ 1 E(GC/B;)— R(*)', si(A) = Y sax)+ ) s,(a), Y A€GC/B,,
ax€eA acA
+ st 1 E(GC/B) — Ry, si(ABy= Y s,(ab),V AB € E(GC/B)).
abeB;
acA, beB

As observed in the preceding discussion on the ® classes of the GC structure, we now discuss the special cases of quotient graphs
where GC/B; reduces to either a complete graph on two vertices K, or a complete bipartite graph K, ,,, as shown in Fig. 4(a-b).
Subsequently, we derive the associated topological formulas utilized in the calculation of distance based indices for the GC structure.
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W)

¢
(W:5))

(a) (b)

Fig. 4. Special cases of strength weighted graphs (a) K, (b) K, .

Let GCiw be the strength weighted graph (Kz,(wl,sl),(wz,sz),se) as shown in Fig. 4a. Then W(GC}W) =W W,, VVe(Gciw) =
5189, Woo(GCL ) = %[w1s2 +51w,], S(GCL )= w,(2s) +5,) + w255 + 5,), Gui(GC! ) = (251 +5,)2s5 + 5,), Sz,(GC. ) = 5,1 w,,
Sz,(GCL ) =1s,5,59, PI,(GC! )=s,(w; +w,), PI(GC! )=s,(s; +55), M0o,(GC. ) = s5,|w; — w;|, and Mo, (GC. )=s,|s; = s,].

Let GC?W be the strength weighted graph (szm, (wy, 81), (Ws, 55), (W3, s3),se) as shown in Fig. 4b. Then,

W(GC?W) = w§m2 + (wyw3 + wowsz — w%)m + 2w w,

W,(GCZ,) = m(s; + 53)s3 + 2(5153) + m(m — 1)s3 + m(s2(m — 1)) + mse(s; + 55) + 2m(m — 1)s,s3

W, (GC2, )= %((2s3w3 +25,03)m? + (W (53 + 5,) + 51 W3 + SyW3 + 53y — 285313 + .1, — 25,Ww3)m + 25wy + 25,10 )

. S(Gwa) = (2dgc,, (w3)w3 +4s3 ws)m? + (dgc,, (wws +dge  (Wy)ws +dge, (w3)wy —2dge  (W3)w3 +251w3+25,w3 + 253005 —
4s3ws + wi(dge,, (W3) +2s3))m + 2dge (W)W +4s 1wy + w2dge, (W) +4s7)

* Gui(GCZ,) = m((dgc,, (03) + 253)((dgc,,
D(dgg,, (w3) +253)

82,(GCL,) = mse((w;w; + W w3 + 2w3)m — 2uw3 + 20w, )

sw

W) + 51) + (dge,,, (W) + 259)) + 2(dgc,, (W)) + 25))(dgc,,, (W) + 25)) + m(m —

sw

Sz,(GC2 )= msg((sl(s3 +5,)+ 553 + 555, + 4535, + 2sg + 2sz)m - ng —4s35, — 2s§ + 2s152)

PI(GC2))=2ms,(w, + wy + mws)

PIe(Gcgw) = 2msg(s1 + 5y +(s3+ se)m)

Mo, (GC2) =ms,(|lw) — wy — 2w; + mw;|+|w, — w) — 2w; + mws])

Moe(GC?w) = mse(lsl — 8y =83 =S, + (53 + 5,)(m—1)|+|sy — 5] — 53 — 5, + (53 + 5,)(m — 1)|)

3. Results and discussion

We examine the various distance based topological and entropy indices for the guanidinium and hydrogen carbonate rosette
layers, as they add a unique platform for understanding self-assembly processes and also provide a powerful toolbox for engineering
complex structures and unlocking innovative solutions to real-world challenges. The arrangement of GC units in varied ways give rise
to different structural pattern of guanidinium carbonate layers in which bi-trapezium shaped structures comprising of large number
of GC units. We denote such structure by BT-GC(m, h), where the base layer of trapezium consists of m units in linear pattern and
the non-parallel sides with 4 units such that m > 2 and h < m. Fig. 2 shows the guanidinium carbonate rosette layers BT-GC(m, h).
The special case of bi-trapezium configuration is deduced by fixing suitable values for m and h [25,38,39]. The linear chain of
guanidinium carbonate is obtained by setting 47 = 1 and denoted by L-GC(m). The hexagonal and parallelogram shaped GC layers are
obtained by setting m =2h — 1 and m = h respectively which are denoted by H-GC(h) and P-GC(h). These three structures—linear,
hexagonal and parallelogram shaped arrangements are shown in Fig. 5(a-c). From the structural pattern of BT-GC(m, h), we have the
number of vertices and edges as 28hm — 14h* 4+ 30h + 2m + 2 and 36Am — 18h? + 36h respectively.

3.1. Distance based topological indices

In this section, we provide the detailed formulations of distance-based topological indices of BT-GC(m, h) in two different cases
by splitting the range of .
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Fig. 5. Special cases of BT-GC(m, h) carbonate rossette (a) Linear chain L-GC(6) (b) Hexagonal layers H-GC(2) (c) Parallelogram layers P-GC(4).

Theorem 1. Let BT-GC be the bi-trapezium type of guanidinium and hydrogen carbonate rosette layers BT-GC(m, h), where h < [%]. Then,

1. W(BT-GC) = 2((1960A2 +280h + 10)m* — (9804 — 65102 — 790h — 40)m> — (2100h* — 490h* — 7250h> — 560h — 40)m — 6861 +
315h% — 1190h3 + 28102 + 76k + 10),



M. Arockiaraj, J. Celin Fiona, J. Abraham et al. Heliyon 10 (2024) e24814

2. W,(BT-GC) = 2(3240h%m’ — (16204 — 8100h% + 200/ + 10)m + (810h* — 1620A° + 6555h* — 410k — 15)m — 1134h° + 405h* -
75h3 + 1680h% — 1461 — 5),

3. W,,(BT-GC) = éh((5040h + 360)m> — (2520h% — 14670h — 700)m? — (3960h% — 1260h% — 14280k — 80)m — 1764h* + 720h> —
1500h% 4+ 4770k — 171),

4. S(BT-GC) = gh((5040h + 360)m> — (2520h2 — 15930h — 790)m? + (1260h> — 5220h% + 16845h + 260)m — 1764h* + 103503 —
2805h% + 6075h — 81),

5. Gui(BT-GC) = 2(12960h>m® — (6480h* — 38880h> + 860h + 20)m” + (3240h* — 12960A° + 390004 — 1800h — 30)m — 4536h° +
3240R% — 660043 + 1308042 — T09h — 10),

6. Sz,(BT-GC) = %h((l 1760h2 +1960h —720)m> — (17640h> —35560h% — 8280h +2020)m? + (8820h* —37310h3 +33900h2 + 11350h —
1780)m — 1470h5 + 9646h* — 20365h3 + 9430h% + 5250h — 426),

7. Sz,(BT-GC) = 2((3888h° — 21642 — 88h)m> — (5832h* — 11124h° +336h% +256h +4)m? — (10692h* —2916h° — 10692A° + 54h% +
220h + 6)m — 486h° + 25921 — 5395h* + 3459h3 + 140h2 — 46h — 2),

8. PI,(BT-GC) = 36h(h —2m —2)(Th® —m — 14hm — 15h — 1),
9. PI,(BT-GC) = 2((648h% — 12h + 4)m> — (648h> — 1260h> + 32h — 6)m + 162h* — 61213 + 624h> — 25h + 2),
10. Mo, (BT-GC) = 2((252h% + 12k + 8)m? + (504h% — 252h3 — 6h + 8)m + T4(—1)"h — 98h — 579h* + 628h> — 161 h* + 844(~1)"h% —
880(—1)"h3 +224(—1)"h*),
11. Mo,(BT-GC) = 2((324h* + 4)m? + (648h% — 324h3 — 28h + 2)m + 8(—1)"h — 38h — 846h> + 828h — 207h* + 1172(=1)"h? —
1152(=1)"h3 + 288(—=1)"h* - 2).

Proof. Due to the symmetry of BT-GC, we consider only the bottom half of vertical bonds from south to north directions. In the
bottom trapezium, we see that there are 2 number of zigzag benzene layers and two consecutive layers linked by bridging back-
to-back bonds. For 1 < j < h, let V'Z; be the O-class consisting of vertical bonds of j™" zigzag layer from south direction. Then the
quotient graph BT-GC/V Z; is a strength weighted graph K, with parameters (BT-GC [V Z;,(14jm —14hj +7 2 +9j —6m+6h —
5,18jm—18hj +9j% 4+ 8j — 10m+ 10h —7),(14hj — 14jm+28hm —7j> — 14h> —9j + 24h +8m+7,18hj — 18jm + 36hm — 9% — 18h* —
10j +8m+28h +6),1).

For 1 <j<h—1,let VB, be the ®*-class consisting of binding bonds between j*" and (j + 1) zigzag layers. Then BT-GC/V B I
is a strength weighted graph K 5,441y With parameters (BT-GC/V B;,(14jm — 14hj +7j* +15j,18jm — 18hj + 92 + 16 —2m +
2h—2),(14hj — 14jm + 28hm — 72 — 14h> — 17j + 32h,18hj — 18,jm + 36hm — 9j% — 18h? — 20; + 38h — 2m — 2),(1,0),1).

Similarly, we extend our analysis to the acute edge classes and again due to the symmetry of BT-GC structure, we consider only
the first h zigzag benzene layers with vertical bonds from north-west to south-east direction. For 1 <j < h, let AZ; be the ®-class
consisting of vertical bonds of j* layer from north-west direction. Then the quotient graph BT-GC/AZ ; is a strength weighted graph
K, with parameters (BT-GC/AZ;,(14hj+7j*—5j —6h+1,18hj +9;% = 10j — 10h +3),(28hm — 14hj —7j% — 14h* + 5/ + 36h + 2m +
1,36hm — 18hj — 92 — 18h* + 8j + 44h — 2), 1).

For 1 <j<h—1,let AB; be the ®*-class, consisting of binding bonds between j™" and (j + 1) zigzag layers. Hence BT-GC/AB l
is a strength weighted graph of K, 5,,., with parameters (BT-GC/AB;, (14hj +7j* + j,18hj +9j* = 2j — 2h), 28hm — 14hj — 14h* —
7j% —3j+28h+2m+2,36hm — 18hj — 18h2 — 9,2 — 2j + 34h),(1,0),1).

After covering ©-class AZ),, there are m —2h + | number of zigzag benzene layers of equal size. For | <j <m—2h+1,let AM Z;
be the ©-class consisting of vertical bonds of zigzag layers. The quotient graph BT-GC/AM Z; is a strength weighted graph K, with
parameters (BT-GC/AM Z;,(28hj +21h* = 11h+2j —1,36hj +27h*> — 20h), (28hm —28hj — 35h* + 41h —2j +2m+3,36hm — 36h —
45h2 +52h),1).

For 1 <j<m-—2h+2, let AMB; be the ®"-class with binding bonds between zigzag benzene layers starting from ABj,_;.
Then BT-GC/AM B; is a strength weighted graph K, 4, with parameters (BT-GC/AM B;, (28hj +21h* +2j —27h —2,36hj +27h* —
40h), (28hm — 28hj — 35h% 4+ 53h — 2j + 2m + 4,36hm — 36hj — 45h* + 68h),(1,0), 1).

To end with, we have 4(h + m + 1) peripheral pendant ®-class, namely PP;, 1 <j <4(h+m+ 1) with quotient graph of K,, with
parameters (BT-GC/PP;,(1,0),(28hm — 14h? + 30h +2m + 1,36hm — 18h? + 36k — 1),1).

With the above discussed structural information based on ®*-parameters of BT-GC(m, h), we can calculate the distance-based
topological indices. []

Theorem 2. Let BT-GC be the bi-trapezium type of guanidinium and hydrogen carbonate rosette layers BT-GC(m, h), where h > [%]. Then,

1. W (BT-GC) = 2((490h — 245)m* — 49m’ + (2240h — 495)m* + (2940h° + 630A° + 3820/ — 495)m” + (5740h> — 3430h* + 1190/ +
2700k — 226)m + 882h5 — 3605h* + 285043 + 670h2 + 608A — 30),
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2.

11.

W, (BT-GC) = 2 ((2430h — 1215)m* — 243m + (9720 — 2500)m* + (14580h* — 4860h° + 14400h — 2670)m” + (34020/° — 17010A* -
10335h2 + 93307 — 1352)m + 4374h% — 18225h* + 19775h% — 5520h2 + 2176 — 210),

. W,,(BT-GC) = L ((3780A — 1890)m* — 378m> + (16200h — 3880)m’ + (22680h° — 1350h” + 25380h — 4080)m’ + (~26460h* +
48600h3 — 3720A2 + 16560k — 2012)m + 680445 — 28080k + 26540k — 2010A2 + 3511k — 300),

. S(BT-GC)= lis ((3780h — 1890)m™* —378m° + (162004 — 3880)m> + (2268043 4+ 2430h2 + 25650h — 4080)m? + (44820h3 — 26460h* +
3975h2 + 17100h — 2012)m + 6804h° — 27135h* + 22625h3 + 1905h% + 37811 — 300),

. Gut(BT-GC) = %((9720}1 — 4860)ym* — 972m° + (38880h — 9940)m> + (58320h3 + 57060h — 10440)m? + (116640h% — 68040h* —

2280h2 +36120h — 5168)m + 17496h% — 68040h* + 59720h% — 228042 + 8029h — 780),

. §z,(BT-GC)= %(14m5 — (140h + 60)m* — (760h — 11760h> — 2520h% + 430)m> — (17640h* — 34440h3 — 9960A2 + 10004 + 700)m? —

(36190h* — 8820h° — 29580h% — 12430h2 + 180h + 384)m — 1470h® + 9198h°> — 17165h* + 6630h> + 4850h% + 1824 — 40),

. §z,(BT-GC)= §((216h — 138)m* — (2052h2 — 11664h3 — 1152k + 560)m® — (17496h* — 36612h% + 5220h2 — 2124h + 768)m* —

(35100n* — 874815 — 36348h3 + 4200h2 — 1740h + 394)m — 145818 + 8640h° — 17001 A% + 11365k — 1194h% + 554h — 48),

. PI,(BT-GC)=36h(h — 2m — 2)(Th* — m — 14hm — 15h — 1),
. PI,(BT-GC)=2(4m> + (648h2 — 36h + 16)m? + (1308h% — 648h3 — 80h + 16)m + 162h* — 644h3 + 672h% — 45h + 4),
10.

Mo, (BT-GC) =2(2m> +(252h% +3(=1)" + 3)m? + (528 h* = 252> = 30h + 11(=1)" — 15)m + 63h* —268h> +321h% = 32h +8(~1)" —
16),

Mo, (BT-GC) = 2((324h2 + 5(=1)" — 1 1)m? + (648h% — 324h3 — 28h + 14(—=1)" — 32)m + 81h* — 324h3 + 366h2 — 30h + 9(—1)" —21).

Proof. To compute the calculation of topological expressions, we use the proof of the case h < [%] with the following minor
modifications.

. Therangeoftheclasses{AZj:lsjsh}and{ABj:lsjsh—l}arechangedinto{AZj:1§j5m—h+1}and{ABj

: 1 <j<m-— h } respectively.

« The range of the classes { AM Z;: 1<j<m-2h+1}into { AM Z;: 1 <j<2h—m-1} with graph theoretical parameters

(BT-GC/AM Z,;,(14jm+Tm* = Th> +9m—h+ 16+ 1,18 jm+9m? —9h* + 8m+ 18 — 1),(28hm — 14jm — Th* — Tm* = Tm+31h —
16j + 1,36hm — 18jm — 9h% — 9m> — 10m + 36h — 18 — 1),1).

* The range of the classes { AMB; : 1 <j<m-2h+2}into { AMB; : 1<j<2h—m} with graph theoretical parameters

(BT-GC/AM B;,(14jm+Tm* —=Th> + m— h+ 16 — 8,18 jm+9m*> — 9h*> = 2m+ 18 — 11),(28hm — 14jm — Th* = Tm* —m+31h—
16j + 8,36hm — 18jm — 9h% — 9m? — 2m + 36h — 18j + 7),(1,0),1). O

In addition, we would like to mention that the above derived expressions hold for special cases of bi-trapezium GC(m, h) rosette
layers, including linear, hexagonal, and parallelogram types of GC rosette layers. The numerical values of the computed indices are
given for parallelogram type GC rosette layers in Table 1.

3.2.

Table 1
Szeged-type indices of P-GC(h).
h 1 2 3 4 5 6 7 8 9 10

TI
Sz, 21690 364152 2288114 9123360 27799530 70800296 158540898 322169040 606789146 1075109976
Sz, 22356 447264 3029472 12612896 39545468 102793856 233758024 480785632 914386276 1633145568
PI, 2592 17568 60480 152928 322560 603072 1034208 1661760 2537568 3719520
PI, 2754 20052 71150 183072 390618 736364 1270662 2051640 3145202 4625028
Mo, 1068 8424 29196 74992 158172 297416 509916 821808 1254732 1842664
Mo, 1242 10216 35898 93160 197530 373224 641658 1037032 1586010 2333416

Szeged-type entropies of GC strutures

Entropy is an essential concept that quantifies the level of disorder, randomness, or uncertainty within a system. In the field
of thermodynamics, it quantifies unusable thermal energy and reflects the system’s tendency to become more disordered. In infor-
mation theory, it measures uncertainty in outcomes, representing information content. In both contexts, entropy describes inherent
randomness and the drive towards greater disorder or uncertainty [68]. Shannon’s entropy serves as a widely-utilized graph measure
that assigns probabilities to components, enabling a more profound comprehension of structural information [69,70]. These entropy-
based methods, valued for their capacity to assess system complexity through user-friendly evaluation procedures, hold a prominent
role in tackling challenges spanning diverse domains such as computational physics, information theory, thermodynamics, chemistry,
statistics, and computer science [71-73].
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Table 2
Shannon Szeged-type entropies of P-GC(h).
h
1 2 3 4 5 6 7 8 9 10
Iy
Sz, 4.544 5.434 5.988 6.403 6.738 7.020 7.264 7.479 7.672 7.846
Sz, 4.468 5.364 5916 6.333 6.670 6.954 7.200 7.418 7.613  7.790
PI, 4.168 5.109 5.715 6.170 6.536 6.843  7.108  7.341 7.550  7.738
PI, 4.159 5.095 5.700 6.155 6.522 6.830 7.096 7.330 7.539 7.727
Mo, 3.442 4734 5376 5862 6.242 6.562 6.835 7.075 7.289  7.482
Mo, 3549 4734 5369 5862 6.238  6.561 6.833 7.075 7.287  7.482
Table 3
Modified Shannon Szeged-type entropies of P-GC(h).
h
N 1 2 3 4 5 6 7 8 9 10
I
Sz, 9.725 12399 14356 15736 16.910 17.846  18.688  19.399  20.062  20.630
Sz, 9.756  12.590  14.627 16.048  17.254  18.209  19.069  19.792  20.450  21.042
PI, 7.722 9.676 10.932 11.871 12.625 13.302 13.802 14.280 14.706 15.091
PI, 7.705  9.701 11.028 11.978 12.763  13.400 13.962 14.443 14.882  15.269
Mo, 6.716  8.795 10.067  11.035 11.799  12.445 12995 13.483 13.920 14.306
Mo, 6.865 8.978 10.266 11.245 12.031 12.666 13.229 13.716 14.145 14.539
Table 4
Normalized Szeged-type indices.
oy 2 3 4 5 6 7 8 9 10
TI
Sz, 20.042  50.288  92.057 145.323  210.063  286.260  373.908  473.000  583.533  705.504
Sz, 20.347 55.732 105926  170.870  250.541 344.927  454.022  577.823  716.326  869.532
PI, 6.928 11.045  14.967 18.815 22.627 26.420 30.199 33.971 37.736 41.497
PI, 7.141 11.800 16.233 20.586 24.900 29.194 33.474 37.746 42.012 46.273
Mo, 4.447 7.649 10.399 13.176 15.845 18.554 21.205 23.889 26.535 29.208
Mo, 4.796 8.423 11.531 14.685 17.707 20.784 23.787 26.836 29.833 32.868

To integrate Shannon’s entropy idea and topological indices, we need to identify the structural information function on the
elements of E(GC). Such a function can be defined by the structural characteristics of GC by the index function g : E(GC) - R,.
Suppose E(GC) = {q;,4,...,q, }, the Shannon entropy topological index of GC connected to g is given by

n

g(q;) < 8(q;) )
1,60 ==Y — 1 . @
g( : 21’:] g(q/') o )y

i=1 j=180d))

=log ( Z 8(a) ) ( e ( [ et ) 3)
i=1

It is highly uncommon to see that the elements of the set {g(q;),2(¢5),...,&(q,)} are distinct, and hence, we rearrange the elements of
the set with frequencies as {(g;,r;) : 1 <i < k} where the index value g; repeated r; times such that r; +r, + ... + r, = n. Therefore,

k k
lg(GC)ZIOg(Zrigi> —Zk;log<ngig"r’>. ()]
i i=1

i=1 i=1"i8i

In recent studies [74,75], the above defined Shannon entropy topological index was modified by incorporating the scalar multi-
plication as defined below:

k

k
1;(GC)=log<2rigi> - +10g<nr,~gigi>. (5)
i=1 Z,:l ri&i i=1

We now conduct a comparative study between Szeged-type topological indices and Shannon entropy Szeged-type indices as well
as with modified entropy indices from Tables 2 and 3. As we see that the numerical values of Szeged-type topological indices are
high compared to entropy indices, therefore, we implement data scaling on the Szeged indices to address this disparity based on the
number of edges, because these indices were computed with their edge contributions. For this purpose, we calculate the normalized
Szeged-type indices for the values in Table 1. This is done by dividing each value by the total number of edges corresponding to its
respective dimension, followed by taking the square root. The results are presented in Table 4.

10
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Table 5
Correlation analysis between Shannon entropy and its modified entropy of P-GC(h).
P-GC(h) Correlation between normalized Szeged Correlation between normalized Szeged
index and Shannon entropy index and modified entropy
h=1 0.84250 0.98590
h=2 0.85817 0.98390
h=3 0.82757 0.98958
h=4 0.80695 0.99044
h=5 0.78208 0.99077
h=6 0.76141 0.99055
h=17 0.73948 0.99104
h=8 0.71970 0.99114
h=9 0.69960 0.99101
h=10 0.68084 0.99119

From Table 5, we observe that the correlation values derived using the modified version of Shannon’s entropy formula, which
incorporates scalar multiplicative indices, demonstrating superior predictive efficacy compared to conventional Shannon’s entropy
measures. This suggests that integrating modified entropies into the regression model enhances its predictive capability for the nor-
malized Szeged index, consequently leading to an improved accuracy in predicting the physicochemical properties of GC structures.

3.3. Degree topological indices

Degree indices are defined according to the degrees of bond ends. The general formulation of degree topological indices of
BT-GC(m, h) is expressed as follows:

xBT-GO= Y x(pip2) 6)
p1P2€E(BT-GC)

where y(p;p,) = y(p,p;). The degree topological indices are obtained by taking y(p,p,) = ¥(dgc(p1), dgc(py)) which received a lot
of interest [76], including,

* Bi—Zagreb BM (dgc(p1): doc(p2) = (dge(p1) + doc(p2) + dge(P1)doc(p2))
Tri~Zagreb T M (dgg(p)). dgc(p2)) = (d2(p)) + d2c(p2) + dac(p)dgc(p2))

Vdac(Pdgc(pr)

dgc(py) + dgc(py)

o Voo e
Geometric—Bi Zagreb GBM (dgc(p1)- doc(P2)) = 3o ros2ac 6 et iaactrs

Geometric—arithmetic GA(dgc(p1), dgc(p2)) =2

- . Vdgc(p1)dge(P2)
Geometric—Tri Zagreb GT M (dgc(p), dge(p))) = e (ﬂ1)+d2G((:P2;+dC:c(;1 Sy
GC GC

Bi Zagreb— Geometric BM G(dgc(p;), dge(po)) = dGC(pl)Jr\(/jj;;?;ﬁ:s;(zl))dGC(m)

2 (p1)+d2(p2)+dgc(p1)dgc(p2)
Vidge(p1)dge(p2)

Tri Zagreb— Geometric T M G(dgc(p1), dgc(p))) =

2
dgc(p)) +doc(pr)

Sombor SO(dge(py): doc(py)) = \/d2e(py) + d2(p2)

+ Atom bond connectivity ABC(dgc(p;), dgc(p2)) = \/

Harmonic H(dgc(p), dgc(pa)) =

doc(py) +dge(py) —2
dec(pdoc(py)

The topological expressions are derived using the edge partition method applied to the BT-GC(m, h) structure, utilizing the degrees
of the endpoints of the edges. The partition of the bond set of BT-GC(m, k) is shown in Table 6. In our topological expressions, we
employ three classes based on the degrees of their endpoints, namely (1, 3), (2, 3) and (3, 3), with respective cardinalities of 4h+4m+4,
24hm — 12h* + 20h — 4m — 4 and 12hm — 6h% + 12h.

Theorem 3. The degree topological indices of BT-GC(m, h) are given by

1. BM(BT-GC(m, h)) = 444hm — 22212 + 428h — 16m — 16,

11
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2. T M(BT-GC(m, h)) = 780hm — 390h? + 756k — 24m — 24,
3. GABT-GC(m, h)) = 2(24\/6hm + 30hm — 12/6h* — 15h* +20\/6h + 5v/3h + 30h — 43/6m + 51/3m — 4/6 + 51/3),

Heliyon 10 (2024) e24814

4. GBM(BT-GC(m, h)) = —= (420\/6hm + 462hm — 210612 — 23112 + 110\/3h + 350/6h + 462k + 110/3m — 70V/6m + 1101/3 —

385

701/6),

5. GTM(BT-GC(m, h)) = == (468/6hm + 494hm — 234+/6h* — 247h% +114v/3h + 390\/6h +494h + 114y/3m — 78\/6m + 1141/3 -

78V/6),

6. BMG(BT—GC(m,h)):%(66\/(_)hm+90hm—33\/6h2—45h2+55\/6h+14\/§h+90h—11\/gm+14\/§m—11 6+ 144/3),

7. TMG®BT-GC(m, h)) = 2(114V/6hm + 162hm — 571/6h> — 818> +95v/6h +26\/3h + 1621 — 19v/6m +261/3m — 19v/6 +261/3),

8. H(BT-GC(m, h)) = %(34hm —17h2 +35h + m+1),

9. SO(BT-GC(m, h)) = 2(18V/2hm+12/13hm—9v/2h% =6/ 1312 + 18V/2h+ 2/ 10h + 10V/13h+2/10m—2v/13m+21/10-2+/13),

10. ABC(BT-GC(m, b)) = g(lsx/ihm + 12hm — 9/2h2 — 612 + 2V/6h + 15V/2h + 12h + 2V/6m — 33/2m + 21/6 — 31/2).

Table 6
Degree bond partition of BT-GC(m, h).

Bond-type dge(X)-dge(Y) Number of occurrences in BT-GC(m, h)

X-Y

O-H 1-3

N—H 1_3 2h+2m+2

O-H 2-3 2

N—H 2.3 12hm — 6h* + 10h —2m -2

0-C 3-3 2

N—C 3_3 6hm —3h* 4+ 6h

Table 7
Degree based entropies of P-GC(h).
h
. 1 2 3 4 5 6 7 8 9 10

Fry
BM 6.282  7.382 8.048 8535 8923 9.245  9.521 9.764 9.979 10.174
™ 6.831 7.943 8611 9.100 9.488 9.810 10.087 10.329  10.544  10.739
GA 3.788 4.861 5.525 6.012 6.380 6.723 7.000 7.241 7.457 7.651
GBM 1.844 3.125 3.872 4402 4814 5152 5.440 5.689 5.910 6.109
GTM 0.739 2293 3.144 3.726 4.169 4.526  4.827 5.086 5.314 5.518
BMG 5389 6.448 7.101 7.582  7.966 8.286  8.561 8.801 9.016 9.209
T™MG 5.947 7.013 7.667 8.148 8.531 8.851 9.125 9.366 9.580 9.773
H 2.727 3.853 4540 5.039 5.433 5759  6.038 6.282 6.499 6.694
SO 5188 6.246 6.899  7.381 7.765  8.085  8.360 8.601 8.816 9.009
ABC 3.455 4.523 5.185 5.672 6.058 6.380 6.656 6.898 7.113 7.307

We now derive the entropy measures associated with those degree based topological indices of GC structure. The numerical values
are given in Table 7, and corresponding 3-D bar plots generated with the MATLAB interface are shown in Fig. 6.

3.4. Existence of isentropic GC structures

In the context of graph theory and molecular chemistry, isentropic structures represent arrangements within molecular systems
or data sets that exhibit a constant level of entropy or information content. They have significance in both thermodynamics and
information theory and can be valuable for understanding the behavior of complex systems in various scientific and engineering

disciplines.

In the computation of degree indices, we encountered that multiple structures exhibited the same number of GC units, vertices,
edges, and edge partitions indicating identical degree topological properties, yet different distance properties. We found several
isentropic structures and described as pair in the following general form: (BT-GC(5m — 4, m), BT-GC(3m — 2,3m — 2)), m > 2. Table 8
provides numerical bond partition values for some isentropic structures, and Fig. 7(a-b) exhibits one such isentropic structures.

12
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Fig. 6. Degree-entropies of P-GC(h).

Table 8
Numerical bond partition values of isentropic structures of BT-GC(m, h).

)B;(ir;d-type dge(X-dge(Y) Isentropic Structures
6,2 &4 (113 (7,7 d6,4 (10,100 (21,5  (13,13)  (26,6)  (16,16)
g:g 1 : g 18 30 42 54 66
g:g ;: g 126 348 678 1116 1662
1(\)1:((:: g : 2 72 189 360 585 864

4. Proton, 13C, 14N, 170 NMR combinatorial spectroscopic patterns for four different supramolecular assemblies of
guanidinium and hydrogen carbonate rosettes

As networks comprised of guanidinium and hydrogen carbonate rosettes, contain different nuclei such as protons, carbons,
nitrogens, and oxygens, once can harness different NMR spectroscopies to contrast closely related networks. As shown in the previous
section, these networks not only exhibit isentropic structures but also isomeric structures. Due to the considerable complexity of these
supramolecular assemblies, there is a clear and compelling need to develop graph-theoretical and combinatorial methods for the
enumeration and construction of different NMR spectral patterns such as proton NMR, '3C NMR, '*N NMR and !0 NMR. Through
the use of such powerful techniques, the isomers and isentropic structures can be experimentally contrasted using a variety of NMR
techniques. Hence, we describe the salient points pertinent to these graph theoretical and combinatorial methods for NMR.

The distance degree sequence vector (DDSV) for a vertex [77] in the supramolecular hydrogen-bonded network of guanidinium
and hydrogen carbonate rosettes is defined as (d;y, d;;,d, ..., d;;, ...) where a vertex v; in GC, d;; is the number of vertices at distance
Jj from v;. The sequence terminates for a vertex v of the graph at ecc(v), where ecc(v) is the eccentricity of the vertex v. We note that in
the usual graph theoretical methods, hydrogens are omitted, but because the supramolecular assemblies of guanidinium and hydrogen
carbonate rosettes are formed with hydrogen bonds, in the ensuing graph theoretical and combinatorial methods, the hydrogens are
explicitly included in graphs. In this method, we use TopoChemie 2020 software [78] to compute the number of vertices at a given
distance from the vertex v;, by making use of the distance matrices generated by the codes. Hence, a vector sequence is generated
for each vertex, including the hydrogens. Such a sequence is of variable length, as the eccentricities of various vertices in the
supramolecular assembly are never the same for all vertices. Then the code analyzes the vector sequence thus generated and assigns
it to each vertex, and if two vertices carry the same DDSV label, then they are assigned to the same equivalence class. Consequently,
the DDSV technique facilitates partitioning to first order the various nuclei of guanidinium and hydrogen carbonate rosettes into
equivalence classes of nuclei. We note that the DDSV-partitions are not isomorphic to the automorphic partitions. However for
guanidinium and hydrogen carbonate rosettes, they provide a starting point to refine the partition classes further. As heteroatoms
are not contrasted with carbons and because hydrogens are also included as vertices in the graph, the DDSV technique at best yields
a starting point for the generation of equivalence classes through further symmetry-based combinatorial refinement. Consequently,
we have invoked further symmetry-based combinatorial techniques that are adequately described elsewhere [79-81] to generate
the various nuclear partitions and thus the NMR spectral patterns of these networks. It is noted that there are large numbers of
nuclei for the supramolecular assemblies considered here, and because each nucleus gives rise to a vector of variable DDSV length,
the process of generating the nuclear partitions becomes cumbersome, and requires machine-algorithms which were implemented.
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Table 9
Machine-generated proton, '3C, '*N, and '70O NMR spectral patterns of four different supramolecular assemblies of guanidinium and hydrogen carbonate rosettes.
BT-GC(m, h) Molecular Proton Classes and 13C Classes and *C NMR 14N Classes and '“N NMR 170 Classes and 70 NMR
Formulas NMR
28[ 14222 12235 12235
BT-GC(6.2) CyH,:N7,05, Li1: s 1:181) 1:1:1:1 1:1 1:1
Fig. 8a oo 2:2:12(22) 2:2: 12035 2:2: 12035
281 1822(] 14234 14234
BT-GC(4,4) CysH N7, 07y Lol 1:1(81) Til:ee:1:18) 1:1:1:1 1:1:1:1
Fig. 8b 2:2::2:2(20) 2:2::2034) 2:2::2034)
630 3666 33612 33612
BT-GC(5,3) Cs4H 59Ny, Og 1:1:-:1(30) Tel:l:1:1:1 T:1:1:2:2:...2(12) 1:1:1:2:2:-:2(12)
Fig. 8c 2:2:2:2:2:2
282 12222 1234 1234
BT-GC(11,1) Cy6H164NgoOgo Ll :1(82) 1:1:2:2::2022) 1:2:2::2(34) 1:2:2:0:2(34)
Fig. 8d

As one can see from Table 9, different NMR spectroscopies offer powerful tools to characterize the various supramolecular as-
semblies of guanidinium and hydrogen carbonate rosettes including isomers. For example, the BT-GC(6, 2) and BT-GC(4,4) structures
shown in Fig. 8a and Fig. 8b, respectively are isomers. Their proton NMR spectral patterns, as inferred from the machine-computed
NMR spectra, are identical for the two isomers yielding 81 proton NMR signals of equal intensity for both isomers. Consequently, the
proton NMR spectroscopy fails to offer any discrimination between the two isomers.

On the other hand, the !3C NMR spectroscopy offers a powerful tool to contrast these two isomers although the '“N and 70 NMR
are predicted to be identical for each of the two isomers, they do offer contrast between the isomers (see Table 9). That is for the
isomer in Fig. 8a, the 1*C NMR four signals of equal unit intensity while there are 22 signals with double the intensity. On the other
hand, the '3C NMR for Fig. 8b is predicted to yield 8 signals of equal unit intensities and 20 signals of double intensity, thereby
offering a contrast between the isomers in Fig. 8a and Fig. 8b. For the last two structures in Table 9, likewise proton and '*C NMR
offer powerful tools to elucidate these structures while 4N and 70 NMR for each structure exhibit the same pattern. This is evidently
a consequence of how the different atoms are networked in the structures resulting in their overall weighted-graph symmetries and
automorphic partitions. Therefore it is concluded that either *N or 170 NMR may be employed to study the various assemblies of
these structures but not both as the two NMR spectroscopies yield the same information. On the other hand, !3C NMR spectroscopy
offers a powerful tool for the elucidation of various assemblies of these structures.

5. Conclusion

In this study, we explored guanidinium and hydrogen carbonate rosette layers, revealing their unique structural properties
through topological indices. We employed the cut method technique to dissect their complex structures and used distance and
degree based topological indices and Szeged-type and degree entropies for analysis. In the correlation analysis, we found that the
modified Shannon entropy exhibits a stronger correlation compared to traditional Shannon entropy. Moreover our studies have re-
vealed the existence of isentropic assemblies and isomeric assemblies in GC structures. Furthermore, we have developed methods
that utilize distance degree vector sequences in combination with symmetry-based combinatorial techniques to produce a diverse
range of NMR spectral patterns for these networks, including proton, 13¢, 14N, and 170 NMR spectra. It is shown that the 13C NMR
is powerful methods that facilitates delineation of closely related isomers of assemblies of these structures. Moreover, 170 and “N
NMR spectra for each of the these assemblies produce identical signal and intensity patterns. This research not only enhances our
comprehension of these intriguing systems but also underscores the pivotal role of supramolecular chemistry in designing functional
materials and advancing molecular self-assembly processes. As we continue to explore the potential of non-covalent interactions,
these findings hold promise for innovative applications across diverse scientific domains.
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