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Abstract: Interleukin-37 (IL-37) is an effective anti-inflammatory factor and acts through intracellular
and extracellular pathways, inhibiting the effects of other inflammatory cytokines, such as IL-1β,
IL-6, and tumor necrosis factor-α (TNF-α), thereby exerting powerful anti-inflammatory effects.
In numerous recent studies, the anti-inflammatory effects of IL-37 have been described in many
autoimmune diseases, colitis, and tumors. However, the current research on IL-37 in the field of the
central nervous system (CNS) is not only less, but mainly for clinical research and little discussion of
the mechanism. In this review, the role of IL-37 and its associated inflammatory factors in common
CNS diseases are summarized, and their therapeutic potential in CNS diseases identified.

Keywords: Interleukin-37; central nervous system diseases; inflammatory; anti-inflammatory; cy-
tokines

1. Introduction

Interleukin-37 (IL-37), a novel cytokine which was once considered as a member of
IL-1 family, was reported to be a natural innate immune inhibitor [1]. Similar to other
IL-1 family cytokines, IL-37 is encoded by chromosome 2 [2]. All members of this family
share a common b-trefoil structure that includes 12 β-chains [3]. IL-37 is encoded by
six exons. At present, five subtypes (IL-37a–e) formed by alternative splicing have been
found, among which IL-37b has the largest molecular weight and is the most researched [4].
IL-37b contains five exons except exon 3, and IL-37c and IL-37e are predicted to be non-
functional proteins because they lack one or more exons [5]. Based on the fact that most
of the current research is on the IL-37b subtype, the IL-37 mentioned below in this article
refers to IL-37b. In addition, IL-37a is the only form found in the brain. An unstable
mRNA motif exists in exon 5. IL-37a is generally considered to be the functional subtype,
but little research has been concentrated on this subtype alone [4]. Although IL-37 is
widely expressed in many cell tissues in the human body, the concentration in the blood is
extremely low (100 pg/mL) [6]. In some diseases involving inflammation, IL-37 is elevated
due to inflammatory stimulation [7].

Previous research has shown the function of IL-37 in autoimmune diseases, including
systemic lupus erythematosus [8], colitis [9], sepsis [10], asthma [1,11], and cancer [1,10,12].
However, the function and potential mechanisms of IL-37 in central nervous system (CNS)
diseases have been investigated in only a few reviews. In the present review, current
progress regarding IL-37 in CNS diseases is summarized and its therapeutic potential for
CNS diseases identified.
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2. About IL-37
2.1. Function

IL-37 was found in 2000 by several groups independently [11]; a homologue has not
yet been identified in a mouse [4,7]. IL-37, originally named IL-1F7 [13], is mainly produced
by Toll-like receptor (TLR)-activated macrophages [14]. The precursor of IL-37 (pre-IL-37)
is cleaved by caspase-1 into mature IL-37, of which approximately 20% enters the nucleus,
with the remaining released out of the cell with pre-IL-37 [15]. Many cells in the human
body, including epithelial cells, keratinocytes, renal tubular epithelial cells, monocytes,
activated B cells, plasma cells, dendritic cells (DCs), macrophages, and CD4+ Tregs, express
IL-37 [5,7,16–19]. Reportedly, IL-37 expression is low in unstimulated peripheral blood
mononuclear cells (PBMCs) and M1 macrophages, and IL-37 expression significantly
increases after being activated by lipopolysaccharide (LPS) [20,21]. Human IL-37 precursor
undergoes alternative splicing to form five different subtypes, and the IL-37b subtype has
been the focus in most of the current studies [4]. IL-37 protein exists at low levels in human
PBMCs and can be upregulated by inflammatory stimuli and cytokines, such as IL-1, IL-18,
tumor necrosis factor (TNF), interferons (IFNs), and transforming growth factor (TGF) [7].
In addition, IL-37 is downregulated by IL-4, IL-12, IL-32, and granulocyte macrophage
colony-stimulating factor [6,12].

IL-37 is constitutively expressed at low levels in various tissues, including lymph
nodes, thymus, bone marrow, brain, intestines, airways, adipose, thymus, placenta, uterus,
testis, heart, kidney, bone marrow, prostate, and breast [5,7,12,17–19]. IL-37 has a protective
effect in a variety of diseases. Hui-min Chen et al. reported that compared with wild-type
(WT) mice, IL-37 expression in DCs attenuates the ability of DCs to initiate contact hyper-
sensitivity (CHS) responses in mice transgenic with human IL-37 (IL-37tg), demonstrating
that IL-37 may be an immune tolerance factor [16]. Dov B. Ballak et al. revealed that IL-37
is expressed in human adipose tissue, and IL-37 can reduce diet-induced obesity in IL-37tg
mice. In addition, IL-37 ameliorated diet-induced insulin resistance and improved insulin
sensitivity in IL-37tg mice compared with WT mice, indicating potential as a treatment
for obesity and type 2 diabetes [22]. Jilin Li et al. reported that IL-37 expression in an
old endotoxemic mouse model suppressed myocardial inflammation-associated endotox-
emia and improved left ventricle (LV) function, indicating its protective function in septic
myocarditis [23]. Tianheng Hou et al. proved that IL-37 could reduce Der p1-induced
thymic stromal lymphopoietin (TSLP) overexpression in HaCa T cells, and decreased TSLP
receptors and basophil activation marker CD203c in vitro. In vivo experiments in an atopic
dermatitis mouse model showed alternative depletion of basophils rescued atopic dermati-
tis symptoms and significantly lowered the helper T cell 2 (Th2) and eosinophil populations
in the ear and spleen [24]. In other studies, therapeutic effects of IL-37 on allergic diseases,
autoimmune diseases, and other immune system diseases have been reported [6,25–28].
In addition, IL-37 reportedly exerts tumor-inhibiting effects in a variety of cancers, such
as breast, cervical, melanoma, and non-small cell lung cancer [12,29]; refer to the relevant
review for details.

2.2. Pathway

IL-37 exerts anti-inflammatory effects through intracellular and extracellular path-
ways [6]. In the intracellular pathway, the precursor IL-37 (pro-IL-37) is cleaved by caspase-1
to produce mature IL-37 after activation by lipopolysaccharides(LPS) [30,31]. A possible
cleavage site for caspase-1 is located in exon 1 between the D20 and E21 residues of IL-
37 [32]. However, Ana-Maria Bulau et al. previously demonstrated that caspase-1 inhibitors
only partially inhibit the processing of IL-37, indicating that caspase-1 is not the only en-
zyme responsible for the processing of IL-37 [30]. Human embryonic kidney 293 (HEK
293) or Chinese hamster ovary (CHO) cells transfected with IL-37 precursor release IL-37
from amino acid V46, indicating there is a second cleavage site in the sequence encoded
in exon 2 [33]. In addition to caspase-1, caspase-4 was shown to cleave pro-IL-37 to a
certain extent [32]. IL-37 binds with drosophila mothers against decapentaplegic protein
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3 (Smad3) to form a complex in the cytoplasm; then, the complex enters the nucleus to
regulate the transcription process, such as nuclear factor-κB (NF-κB) and mitogen-activated
protein kinase (MAPK) pathways, thereby inhibiting the transcription process of some
inflammatory cytokines [6,12,34].

In the extracellular pathway, IL-37 binds to IL-18 receptor α chain (IL-18Rα) to exert
an anti-inflammatory effect [35]. IL-37 binds to IL-18Rα to recruit IL-1 receptor 8 (IL-1R8,
also named single Ig IL-1R-related molecule, SIGIRR), to form a trimeric complex (IL-37/IL-
18Rα/IL-1R8) [36]. When adenosine 5′-monophosphate-activated protein kinase (AMPK)
is increased, signal transducer and activator of transcription 3 (STAT3), STAT6, phosphatase
and tensin homologs, and other factors inhibit the inflammatory response induced by IL-18
and downregulate the expression of IFN-γ and transcription factor NF-κB [37]. SIGIRR
is the only receptor containing a TLR domain with a single immunoglobulin domain.
Although SIGIRR has an immunoglobulin domain, it cannot bind to IL-1 or enhance IL-
1-dependent signaling. SIGIRR is a negative regulator of the inflammatory response and
inhibits the inflammation process of IL-1 and IL-18 [38]. Both pro-IL-37 and mature IL-37
can bind to IL18Rα but the binding of the mature form is approximately 5–10-fold stronger
than the immature form [32]. IL-IR8 is necessary for activation of the anti-inflammatory
signal transducer and transcriptional activator STAT3 in splenic DCs and macrophages [36].
However, IL-37 is not a receptor antagonist of IL-18Rα [39]. SIGIRR was shown unstable
in response to IL-37, and IL-37 can mediate the ubiquitination and degradation of SIGIRR
through glycogen synthesis kinase 3β (GSK3β) [40]. See Figure 1 for a summary of the
IL-37 pathway.

Figure 1. Pathway through which Interleukin-37 (IL-37) exerts anti-inflammatory effects. In extracel-
lular pathway, IL-37 binds with IL-18 receptor α chain (IL-18Rα) and IL-1 receptor 8 (IL-1R8) to form
a trimeric complex. The trimeric complex activates adenosine 5′-monophosphate-activated protein
kinase (AMPK), signal transducer and activator of transcription 3 (STAT3), STAT6 and phosphate and
tension homology deleted on chromosome ten (PTEN), and inhibits the pathway of c-Jun N-terminal
kinase (JNK), extracellular regulated protein kinases (ERK) and nuclear factor-κB (NF-κB). At the
same time, PTEN inhibits the PI3K/AKT/mTOR pathway, thereby inhibiting the production of
NF-κB and pro-inflammatory cytokines, including IL-6, tumor necrosis factor-α (TNF-α) and IL-1β.
In intracellular pathway, pro-IL-37 is cleaved by caspase-1 to become IL-37. A part of IL-37 is released
outside the cell, and a part binds to drosophila mothers against decapentaplegic 3 (Smad3) in the
cytoplasm. After entering the nucleus, it inhibits the transcription of other inflammatory cytokines,
such as IL-6 and TNF-α.
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3. IL-37 in CNS Diseases
3.1. Acute Spinal Cord Injury (ASCI)

Acute spinal cord injury (ASCI) is common in serious trauma caused by transport
accidents, low-height falls, and other accidents [41]. The quality of life of ASCI patients is
reduced, the prognosis very poor, and the mortality rate is high [42]. According to survey
results, the mortality rate of individuals over 65 years of age suffering from SCI is 36.5% [43].
Therefore, improving the prognosis and survival rate of ASCI patients is important.

Marina Coll-Miró et al. transferred the human IL-37 gene into mice to produce hIL-
37tg mice. The WT and hIL-37tg mice were subjected to spinal cord contusion injury.
The authors found that compared with WT mice, hIL-37tg mice had more myelin and
neurons preserved, and maintained a lower level of cytokines and chemokines (e.g., an 80%
reduction in IL-6). The authors infused recombinant human IL-37 (rIL-37) into the lesion
site via a glass capillary 5 min after the contusion injury, and found the mice injected with
rIL-37 had a greater extensive movement of the ankle restored and increased their speed
on a treadmill by 50% [44]. An experiment conducted on 148 patients showed that serum
IL-37 levels were significantly higher within 24 h of ASCI compared with the control group
(p < 0.05). Serum IL-37 concentration in patients with SCI is negatively correlated with
American Spinal Cord Injury Association (ASIA) exercise score (p < 0.05) [45]. The above
results indicate IL-37 may be a potential therapeutic target and a biomarker after ASCI.
IL-37 may inhibit the inflammatory response after ASCI to produce neurological protection
and recovery. Jesus Amo-Aparicio et al. used a hIL-37D20ATg transgenic mouse model
lacking the IL-37 intracellular pathway to prove that the neuroprotection role of IL-37 after
SCI does not rely on the intracellular pathway rather than the extracellular pathway. Their
study demonstrated IL-37 exerts an anti-inflammatory effect by binding IL-1R8 [46].

3.2. Demyelinating Disease

Multiple sclerosis (MS) is a chronic, predominantly immune-mediated disease of the
brain and spinal cord, and a common cause of neurological disability in young adults,
affecting more than 2.5 million individuals globally [47,48]. Alba Sánchez-Fernández et al.
used the experimental autoimmune encephalomyelitis (EAE), a murine model of MS,
hypothesizing that IL-37 reduces inflammation and protects against neurological deficits
and myelin loss in EAE mice by combining with IL-1R5/IL-1R8. The authors found that
transgenic expression of IL-37 reduces neurological deficits and inflammation in the spinal
cord of EAE mice. However, in the transgenic homozygote of human IL-37 (hIL-37tg) mice
lacking IL-1R8, the beneficial effects of IL-37 were completely absent in demyelinating
disease of the CNS, indicating IL-37 acts with IL-1R8 [49].

In another study, IL-37 level in a cluster of differentiating CD4+ T cells from MS
patients was decreased in vitro compared with healthy controls based on in silico analy-
sis [50]. IL-37 expression was observed in PBMCs from MS patients during the exacerbation
of the disease [50]. In addition, higher IL-37 levels showed an inhibitory effect on MS
recurrence; however, obvious effects were not observed with IL-1R8 and IL-18R1. Higher
IL-37 levels were associated with younger age and lower Multiple Sclerosis Severity Score
(MSSS) [50]. After testing serum IL-37 levels in 84 MS patients and 75 healthy controls,
Ebrahim Kouchaki et al. found IL-37 levels in MS patients were higher than in the control
group (p < 0.001) [51]. The research by Farrokhi. M et al. of 122 MS patients and 49 healthy
subjects showed the IL-37 levels were higher in the MS patients than in the controls [52].

Guillain-Barré syndrome (GBS) is the most common and severe acute paralytic neu-
ropathy. Globally, approximately 100,000 people develop this disorder annually [53]. GBS
is considered an immune-mediated disease, possibly triggered by a recent infection, and
driven by an immune attack targeting the peripheral nervous system [54]. Approximately
25% of patients have respiratory insufficiency and many patients show signs of autonomic
dysfunction [55]. GBS is the most common cause of acute flaccid paralysis, which leads to
disability and high risk of mortality. The specific pathogenic mechanism of GBS remains
unclear. Some patients have been reported to have an infectious disease before the onset
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of the disease; thus, the disease is hypothetically an immune-mediated disease [54]. Cong
Li et al. measured the IL-37 levels in the cerebrospinal fluid (CF) and plasma of 25 GBS
patients and 20 healthy controls and found the IL-37 levels in the CF and plasma of GBS pa-
tients were significantly higher than in the healthy controls (p = 0.0002 and p < 0.0001) [56].
This result indicates that during the pathogenesis of GBS, pro-inflammatory cytokines may
promote the expression of anti-inflammatory IL-37, thereby downregulating the excessive
inflammatory response, similar to the results of several previous studies [9,57,58].

3.3. Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is a neurodegenerative disease highly correlated with
age [59]. From 1999 to 2018, the number of deaths from AD in the United States in-
creased [60]. Currently, an estimated 6.2 million Americans 65 years of age and older have
AD, and if no effective treatment is found, this number will continue to increase [61]. In
many current studies, the relationship between inflammation and AD is being investi-
gated [62,63]. Aging tissue cells secrete inflammation and immune-related cytokines, such
as interleukins, chemokines, growth factors, and proteases, which constitute senescence-
associated secretory phenotype (SASP) [64]. Astrocytes and microglia surround neuropathic
plaques composed of amyloid β-protein (Aβ) and neurofibrillary tangles [65]. Microglia
release cytokines and cause neuroinflammation [66]. Among them, M1 type microglia,
which are activated by LPS, IFN-γ or TNF-α, secrete classic inflammatory cytokines, such
as IL-1β, TNF-α, STAT3, IL-6, IL-12, and IL-23, and free radicals such as reactive oxygen
species (ROS) [67]. Another M2 anti-inflammatory phenotype promotes tissue remodeling
by releasing high levels of anti-inflammatory cytokines, such as IL-10, IL-4, IL-13 and
transforming growth factor-β, and low levels of pro-inflammatory cytokines/repair and
angiogenesis [67].

In previous studies, a high-fat diet was shown to induce insulin resistance, reduce
the transport of glucose into the brain, and ultimately lead to neuronal stress (elevated
neuronal corticosterone) [68]. The intake of fructose promotes the synthesis of triglyc-
erides, gluconeogenesis and insulin resistance, and ultimately accelerates the progression
of AD [69]. A rat model of AD was established by Mohamed, R.A. et al. with a synergistic
high fat/high fructose diet (HFFH) and LPS injection. The authors found the hippocampal
AD marker Aβ1-42 and the inflammatory marker IL-1β in the mouse model were increased
3.2-fold and 5.6-fold, respectively, compared with the controls [70]. The combined use of
palonosetron and methyllycaconitine (MLA) restored the activity of caspase-1 protein in
AD rats and reduced the reactivity of astrocytes [70].

The role of many cytokines in AD has been elucidated [71]. Tau and Aβ modified
by advanced glycation end products stimulate human neurons to produce IL-6 [72]. IL-
6 can also activate janus kinase (JAK)/STATs, N-methyl-D-aspartate (NMDA) receptor,
and mitogen-activated protein kinase (MAPK)-p38, which are involved in the hyperphos-
phorylation of tau [72]. However, in an in vivo study, IL-6 overexpression induced the
reduction in neuroinflammation at the Aβ level rather than aggravating the pathology of
Aβ plaques [73]. Irina Belaya et al. reported regular exercise can modulate iron homeostasis
in WT mice and in a mouse model of AD via the IL-6/STAT3/JAK1 pathway [74], indicating
that M2 type microglia are mainly activated, which enhances the phagocytic function of
Aβ [73]. The combination of IL-18 and its receptor complex can activate c-Jun N-terminal
kinase (JNK) and MAPK-p38, thereby activating endogenous and exogenous pro-apoptotic
signaling pathways [75]. This effect may be achieved by inducing the expression of p53
and Fas ligand, indicating IL-18 can promote the progression of AD [75,76]. However,
research on the role of IL-37 in AD is limited. Exploring the roles of IL-37 in AD can be a
promising direction for future research because caspase-1 is also an enzyme that cleaves the
precursor of IL-37 and renders it active [31]. In addition, IL-37 has been shown to inhibit
the inflammatory effects of other inflammatory cytokines, such as IL-6 and IL-1β in many
other diseases [77–82]. In a temporomandibular joint study, IL-37 could convert M1 type
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macrophages to M2 type, thus alleviating inflammation [83]. Therefore, future research
should focus on the protective effect of IL-37 on the progression of AD.

3.4. Stroke

Stroke is the second leading cause of death and disability in the world, a non-
communicable disease that seriously endangers the health of Chinese people [84]. In an epi-
demiological survey of 10,926 participants, 602 cases were diagnosed as ischemic stroke (IS),
151 cases as hemorrhagic stroke, and 22 cases as both hemorrhage and IS. The crude preva-
lence rates of total stroke, IS, and hemorrhagic stroke were 6690.5/100,000, 5509.8/100,000,
and 1382.0/100,000, respectively, and the standardized rates were 4903.8/100,000, 4041.7/
100,000, and 990.9/100,000, respectively [85].

Feng Zhang et al. measured the serum IL-37 levels using enzyme-linked immunosor-
bent assay in 152 patients admitted to the hospital due to acute IS, and in 45 healthy
controls. The authors found serum IL-37 levels in IS patients were significantly higher than
in controls (182.26 vs. 97.89 pg/mL, p < 0.001) and associated with the National Institutes
of Health Stroke Scale (NIHSS) scores (r = 0.521, p < 0.0001) and lesion volume (r = 0.442,
p < 0.0001). Notably, elevated plasma IL-37 levels were independently associated with
unfavorable 3-month outcomes (adjusted odds ratio = 1.033, p = 0.001, 95% confidence
interval, CI:1.015–1.056) [86]. In another study, the serum IL-37 levels were measured in
310 IS patients who were followed up for 3 months to determine the relationship between
serum IL-37 and recurrence of IS. The study results showed the median IL-37 serum level
in the IS patients was 344.1 pg/mL (interquartile range, IQR, 284.4–405.3) and 122.3 pg/mL
(IQR, 104.4–1444.0) in the controls, which was significantly lower. The size of the lesion
area observed on magnetic resonance imaging (MRI) positively correlated with serum
IL-37 levels. In that study, 36 patients experienced relapse of IS within 3 months, and their
serum IL-37 levels were higher than in patients who did not relapse (417.0 pg/mL; IQR,
359.3–436.1 vs. 333.3 pg/mL; IQR, 279.0–391.0), indicating IL-37 levels are associated with
the recurrence of IS. Based on receiver operating characteristic (ROC) analysis, the authors
determined the IL-37 level cut-off value to diagnose IS was 193.0 pg/mL, the cut-off value
to diagnose moderate-to-high clinical severity (NIHSS score > 5) was 374.0 pg/mL, and the
cut-off value to predict recurrence was 406.8 pg/mL [87].

To date, research on the relationship between IL-37 and hemorrhagic stroke is scarce.
However, an increase in the white blood cell/lymphocyte ratio in patients with IS was
positively correlated with the probability of hemorrhagic transformation [88], indicat-
ing hemorrhagic transformation, a serious complication of severe IS, may be associated
with inflammation possibly related to the destruction of the blood–brain barrier by neu-
trophils [89,90].

4. Conclusions

IL-37 is a potent endogenous anti-inflammatory factor of the IL-1 family. IL-37 sup-
presses other inflammatory cytokines, thus inhibiting the progression of disease [3]. In an
in vitro experiment, siRNA to IL-37 (siIL-37) was transfected into human PBMCs stimu-
lated by LPS. After IL-37 expression was specifically silenced, the production of IL-6 and
other cytokines increased in a dose-dependent manner [82], indicating IL-37 can inhibit the
inflammatory effect of IL-6 and play an anti-inflammatory role. Irene Tsilioni et al. found
that neuropeptide NT can stimulate human microglia to secrete IL-1β, CXCL8, and other
cytokines that can be inhibited by IL-37 [91]; however, the specific mechanism underlying
this inhibition remains unclear. In 293T cells, overexpression of IL-37 restored the viability
of cells damaged by homocysteine and reduced the release of lactate dehydrogenase, pro-
inflammatory cytokines IL-1β, IL-6, and TNF-α [92]. In liver cancer cells, IL-37 inhibited
IL-6 expression by hindering the STAT3 pathway, thereby inhibiting the inflammatory
response of IL-6 [10]. IL-37 inhibited the expression and phosphorylation of STAT3, thus
hindering the inflammatory effects of TNF-γ and IL-1β mediated by STAT3 [93].
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IL-18, a member of the IL-1 family, was first discovered in 1989 and is an inflammatory
factor [35]. IL-18 is the main inducer of IFN-γ, playing an important role in promoting
the activation of inflammatory helper T cell 1 (Th1) and natural killer (NK) cells [94]. The
IL-37/IL-18Rα complex combines with IL-1R8 to promote anti-inflammatory effects by
activating STAT3 and transmitting inhibitory signals [7,32,36,39]. IL-37 is an endogenous
factor that inhibits IL-18 effects. IL-37 has high homology with IL-18 and IL-18BP binds to
IL-37. IL-18BP is a structural secreted protein with a high affinity for IL-18 [37,95], which
when combined with IL-37 can enhance the ability of IL-18BP to inhibit IL-18-stimulated
ITF-γ induction and inflammation [7,35,37,39]. However, Suzhao Li et al. reported that at
micromolar concentrations, IL-37 binds to IL-18Rα and recruits IL-1R8, which may result
in anti-inflammatory effects. At picomolar concentrations, the IL-37/IL-18Rα complex
may recruit IL-18Rβ and the corresponding IL-18 signal, which may be associated with the
inflammation process [21].

Based on the above studies, IL-37 has significant therapeutic potential through sup-
pressing inflammation by inhibiting the transcription and expression of other inflammatory
factors, including IL-6, IL-1β, IL-18 [6,12,34]. In tumors and some autoimmune diseases,
IL-37 has exhibited its powerful anti-inflammatory ability [12]. Based on that, many CNS
diseases are closely related to inflammation, and future research on CNS diseases may focus
on the anti-inflammation function in some diseases, as well as expound and reveal its anti-
inflammatory effect and mechanism. Due to the lack of research on the a subtype, and as
IL-37a is the only subtype expressed in the brain, future research may focus on the protective
effect of this subtype on the brain and explore the therapeutic and protective effects.
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