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a b s t r a c t 

This detail the economics of Catalytic Hydrothermolysis (CH), 

an approve pathway for sustainable aviation fuel (SAF) pro- 

duction. Techno-economic analysis was conducted with the 

assumption of CH processing facility that process 832 metric 

tonnes per day of feedstock into renewable fuels such as SAF, 

gasoline and diesel. Economic data includes estimation of re- 

newable fuel production plant cost such as capital and oper- 

ating cost; cost benefit analysis model to predict the SAF or 

jet fuel price; regression models to evaluate the cost for co- 

product such as diesel and petroleum in relation to SAF price. 

Estimated SAF, gasoline and diesel cost for the feedstock such 

as carinata oil, soybean oil, yellow grease and brown grease 

feedstock is included in the data. 
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S
pecifications Table 

Subject Economics 

Specific subject area Techno-economic analysis (TEA) of a sustainable aviation fuel production 

pathway. 

Type of data Text, 

Tables, 

Figures, 

Excel Spreadsheet 

How data were acquired Data was acquired from secondary data sources including (i) techno-economic 

analysis studies on renewable fuel productions (ii) publicly available report on 

cost for utilities such as electricity, water and natural gas (iii) US refiner 

petroleum product price (iv) public report on feedstock price such as vegetable 

oil (carinata and soybean oil); yellow grease and brown grease price 

(iv) Experimental study on CH process (v) Employment cost index for total 

compensation for private industry workers by occupational group and industry 

(vi) TEA Evaluation model form the previous studies (vii) Plant design and 

economics for chemical engineers 

Data format Raw 

Analysed 

Parameters for data collection The model considered is a TEA of CH in the cost year 2017. Data required were 

equipment cost for three different processing that includes preconditioning 

unit, conversion unit and hydrotreating and fractionation unit; price of 

vegetable oil such as carinata oil and soybean oil; price of waste greases such 

as yellow grease and brown grease; price for petroleum-based fuel such as 

gasoline, diesel, and jet fuel; cost for the chemicals/catalyst; CH fuel yields; 

Gasoline, diesel and jet fuel density; green field fuel processing plant ratio 

factor based on equipment cost; operating labour cost. 

Description of data collection Equipment cost were estimated using literature data from the process with 

similar process conditions [ 1 , 2 ]. Historic price data for petroleum-based fuels 

such as gasoline, diesel, and jet fuel [3] . Cost of an oil seed processing plant 

for estimating carinata oil cost was adopted from the camelina oil seed 

processing study [4] . Soybean oil and yellow grease price were from U.S. State 

Department of Agriculture [5] . Equipment process conditions, CH process flow, 

fuel yield and fuel cuts for economic analysis were used from the CH 

experimental study [6–8] . Gasoline, diesel and jet fuel density were adopted 

from the technical review report on biodiesel conversion technologies [9] . 

Green field fluid processing plant ratio factor for estimating the capital cost 

based on the delivered equipment cost from Plant design and economics for 

chemical engineers [2] . Chemical plant operating labour cost from [10] . 

Data source location Primary data sources (resources for the secondary data used in this analysis): 

Patent and Experimental article for Catalytic Hydrothermolysis [ 6 , 7 ] 

US Average Annual Industrial Electricity and Natural gas rate [ 11 , 12 ] 

USDA oil crop and yellow grease cost [5] 

Review studies on the biofuel conversion pathways [9] 

Chemical Plant design and economics [ 2 , 10 , 13 ] 

Techno-economic analysis studies on renewable fuel productions [ 1 , 4 , 8 , 10 , 14 ] 

US Refiner Petroleum Product Prices by Sales, Sales for Resale [3] 

Employment Cost Index Historical Listing – Volume III National Compensation 

Survey, Table 5 [15] 

Hydrogen Cost [16] 

Producer Price Index of Commodity Price: Chemicals and Allied Products [17] 

Chemical Engineering Magazine Plant Cost Index [18] 

Data accessibility with the article 

Instructions for accessing these data: 

Supplementary data in related research article: 

https://ars.els- cdn.com/content/image/1- s2.0- S1364032121007954-mmc1.zip 

Related research article Sudha Eswaran, Senthil Subramaniam PhD, Scott Geleynse PhD, Kristin Brandt, 

Michael Wolcott PhD, Xiao Zhang PhD, Techno-economic analysis of catalytic 

hydrothermolysis pathway for jet fuel production. Renewable and Sustainable 

Energy Reviews, 2021. 151: p. 111516, https://doi.org/10.1016/j.rser.2021.111516 . 

https://ars.els-cdn.com/content/image/1-s2.0-S1364032121007954-mmc1.zip
https://doi.org/10.1016/j.rser.2021.111516
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Value of the Data 

• The dataset provides detailed economic data for a chemical plant to perform economic as-

sessment of CH SAF production pathway. The data includes equipment cost for individual

processing units. Model evaluation is automated based on the feedstock chosen. 

• This dataset may be used in future studies and academic review on techno-economic analysis

of SAF pathways, e.g. to estimate the fuel price for the conversion of different oil feedstock

to jet fuel, adopting cost for processing units, evaluating co-product price in relation to jet

fuel price by using regression analysis. 

• Cost benefit analysis is implemented in this TEA worksheet. The model worksheet can be

reused to evaluate TEA with the change of delivered equipment cost and respective operating

cost for any of SAF conversion pathway. Pilot scale and commercial scale production capacity

can be conFig.d and calculate the minimum selling price of SAF for the scaled capacity. 

1. Data Description 

Secondary data from other sources and the primary data or the plant cost estimates used

to build a TEA model of CH SAF pathway for the cost year 2017 is presented in this dataset.

This dataset supports the original research on accessing the economic viability of the CH SAF

pathway for commercial scale production of 832 metric ton per day. 

Table 1 provides the assumed economic parameters for the n 

th plant economic analysis. 

Table 2 provides the information on the Input parameters used for the TEA model. This in-

cludes the price of utilities such as Electricity, Natural gas, and water. Feedstock price per MT

for Soybean oil, carinata oil, yellow grease, and brown grease. Table includes all the configurable

data for the model. 

Operation cost estimated for the model is detailed in the Tables 3, 4, 6 and 7 , this includes

cost estimation for the utilities, chemical and catalyst, fixed operation cost for the plant for one-

year period. 

Equipment cost estimation for the three processing units such as preconditioning, CH conver-

sion and post refining step includes hydrotreating and distillation unit costs. Tables 8, 9, 10 and

11 details the estimated equipment cost based on the model scale for carinata oil feedstock.

Processing waste grease feedstock such as brown grease or yellow grease do not include pre-

conditioning cost. 
Table 1 

Assumed economic parameters for the TEA model. 

Economic parameters Assumed values 

Cost Year 2017 

Feedstock to mill gate (MT/day) 832 

Plant financing 30% equity, 70% loan 

Loan rate 8% 

Loan term 10 years 

Plant life 20 years + 3 years for construction 

Income tax rate 17.2% 

Inflation 2% 

Working capital 20% annual operating costs 

Depreciation schedule 7 years [19] , double declining balance to straight line 

Construction schedule 3 years (8%, 60% and 32% of FCI for years 1,2 and 3, respectively) 

Real discount rate 10% 

Nominal Discount Rate 12.2% 

Operations days/year 329 (90% uptime) [10] 
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Table 2 

Input parameters. 

Item Value Source 

Cost year 2017 

k MT/yr to process 273 

MT/day Feedstock to mill gate 832 

Feedstock Loss (%) 0% 

Days per year 329 [10] (90% up-time) 

Hours per day 24 

Electricity cost ($/kwh) $0.069 [11] 

Natural gas cost ($/k cf) $4.3 [12] 

Natural gas cost ($/MMBtu) $4.18 [12] 

Cooling Water Cost ($/kg) $0.0 0 0 02 [13] 

Inflation Rate 2.0% 

Hydrogen Cost ($/MT) $1,740 [16] 

Hydrocarbon Yield (kg/kg Oil) 0.63 

Oil to CH Crude Yield (kg/kg) 0.85 [7] 

CH Oil to HC Yield (kg/kg) 0.72 [7] 

Jet fuel yield 0.3681 

Jet Fuel Density (kg/L) 0.80 [9] 

Gasoline Density (kg/L) 0.77 [9] 

Gasoline Cut 0.2525 [7] 

Gasoline Price ($/liter) $1.22 Regressed data 

Diesel Density (kg/liter) 0.84 [9] 

Diesel Cut 0.2794 [7] 

Diesel Price ($/liter) $1.34 Regressed data 

Feed stock prices ($/metric ton) 

Carinata Oil $701 

Soybean Oil $791 [5] 

Yellow grease $473 [5] 

Brown Grease $595 Estimated from [5] and [20] 

Plant scenario 20 0,0 0 0 Assumption 

Model scale 20 0,0 0 0 Assumption 

Table 3 

Electricity consumption and Cost per year. 

Unit kW kWh/Yr. Cost ($/Yr.) Source 

Pre-conditioning & CH 2222 17519431 $1,203,497 [21] 

Hydrotreating & Distillation 697.1 5496094 $377,554 [21] 

Table 4 

Cooling water consumption and Cost per year. 

Unit Rate (lb./min) kg/yr. Cost ($/Yr.) Source 

Pre-conditioning & CH 11597.22 2488382556 $41,941 [7] 

Hydrotreating & Distillation 21876 4693804669 $79,112 [22] 

 

d  

i

 

a

 

f

 

f

Capital investment was estimated on the greenfield fluid processing ration factor from Plant

esign and Economics for chemical engineer hand book [2] . Estimated capital cost is presented

n the Table 12 . 

Regression over historic fuel price [3] to evaluate the cost of co-products such as gasoline

nd diesel in relation to jet fuel price. 

Annual production quantity and the estimated jet fuel price per litre and regressed fuel price

or diesel and gasoline based on equation in Fig. 1 is shown in the Table 13 below. 

Estimated gasoline, diesel cost in relation with SAF minimum selling price for four selected

eedstock such as Carinata oil, Soybean oil, Yellow grease and Brown grease is shown in Fig. 2 . 
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Table 5 

Natural gas consumption and Cost per year. 

Unit Rate (BTU/hr.) MMBtu/yr. Cost ($/Yr.) Source 

Hydrotreating and Distillation 162205002 1278824 $5,34 9,16 8 [1] 

Table 6 

Hydrogen and Catalyst cost per year. 

Item Rate (MT/day) MT/yr. $/MT Cost ($/Yr.) Source 

Hydrogen 1.730185052 568 $1,740 $988,956 [7] 

Hydrotreating Catalyst 0.646395412 212.3 $33,200 $7,047,626 [ 1 , 17 ] 

Preconditioning Catalyst 0.075978995 25.0 $1,800 $44,926 [ 23 , 24 ] 

CH Catalyst 0.025326332 8.3 $1,500 $12,480 [ 7 , 24 ] 

Table 7 

Fixed operating cost per year. 

Fixed Operating Costs Cost (MM$/year) Source 

Maintenance $8.8 6% FCI 

Labor + Benefits $2.9 [10] 

Taxes and Insurance $3.7 2.5% FCI 

Table 8 

Preconditioning (Catalytic conjugation & cyclization) Equipment cost for Carinata oil feedstock. 

Equipment Quantity Equipment Cost, 2017$ Scaled Equipment Cost, 2017$ 

Feed Pumps 2 $47,400 $94,800 

Reactors 2 $375,400 $750,800 

Heat Exchanger 2 $124,200 $248,400 

Table 9 

Distillation unit equipment cost. 

Equipment Purchased Cost, 2002$ Scaled Purchased Cost, 2017$ Source 

Distillation unit $80 0,0 0 0 $1,042,690 [2] 

Fig. 1. Regression over historic petroleum-based fuels 



6
 

S.
 E

sw
a

ra
n

,
 S.

 Su
b

ra
m

a
n

ia
m
 a

n
d
 S.

 G
eley

n
se
 et

 a
l.
 /
 D

a
ta
 in

 B
rief

 3
9
 (2

0
2

1
)
 10

7
514

 

Table 10 

Conversion (Catalytic Hydrothermolysis) Equipment cost. Grease cleanup cost is estimated for waste grease processing. 

Equipment Quantity 

Scaling 

stream 

Stream 

flow unit 

Referred 

Equipment 

stream flow New Flow 

Size 

ratio 

Referred 

equipment 

cost 

Base 

Year 

Scaling 

exponent 

Scaled 

equipment cost 

in base year 

Scaled 

equipment cost 

in 2017$ Source 

Clean-up reactor 1 Volume gal 350 278 0.79 $426,275 2014 0.56 $374,526 $368,935 [1] 

Feed pump 2 Feed 

Flow rate 

gal/min 69 139 2.01 $196,819 2014 0.33 $247,929 $488,456 

Heater 2 duty 

mmBtu/hr 

5.2 4.1 0.79 $275,289 2014 0.7 $234,169 $461,347 

Pressure regulator (valve) 3 Feed flow 

rate 

gal/min 138.89 139 1.00 $61,600 2017 0.7 $61,600 $184,799 

Feed Mixer 1 Area ft2 1284 1019.05 0.79 $3,071,695 2014 0.7 $2,612,880 $2,573,875 [1] 

CH Reactor 1 Volume gal 350 278 0.79 $426,275 2014 0.56 $374,526 $368,935 
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Table 11 

Post-refining (Hydrotreating & Distillation). 

Equipment 

Scaling 

stream 

Stream 

flow unit 

Referred 

Equipment 

stream flow 

New 

Flow 

Size 

ratio 

Referred 

equipment 

cost 

Base 

Year 

Scaling 

exponent 

Scaled 

equipment cost 

in base year 

Scaled 

equipment 

cost in 2017$ Source 

Hydrotreater Reactor, vessels, columns Feed 

volume 

gal/min 79.7 139 1.74 $13,904,784 2014 0.75 $21,093,050 $18,878,303 [1] 
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Table 12 

Capital Cost Estimation for Carinata oil feedstock. 

Process Area 

Delivered 

Equipment 

Cost, MM$ 

Total Capital 

Investment, MM$ Source 

Pre-conditioning ISBL $1.2 

Catalytic Hydrothermolysis ISBL $4.5 

Hydrotreating & Distillation ISBL $21.9 

Total Equipment Cost $27.6 

Total Direct Costs (TDC) $106.8 Ratio Factor = 3.87 [ 2 ] 

Fixed Capital Investment (FCI) $146.6 Ratio Factor = 5.31 [ 2 ] 

Total Capital Investment (TCI) $191.0 FCI + WC 

Table 13 

Annual production quantity (MML/ yr.) and fuel cost ($/L) for Carinata oil feedstock. 

Product Annual Product Units Price $/liter 

Jet Fuel 79 MM liter/yr. $1.32 

Gasoline 56 MM liter/yr. $1.22 

Diesel 57 MM liter/yr. $1.34 

Fig. 2. Estimated SAF, Gasoline, Diesel price($/L) for four different feed stock 

2

 

m  

u  

c  

p  

E  

[  

T  
. Experimental Design, Materials and Methods 

The economic feasibility of a biofuel pathway depends on the combination of capital and raw

aterial costs, availability of raw materials as well as other operational costs. Ratio factors were

sed to determine outside battery limits (OSBL) costs from inside battery limits (ISBL) equipment

osts. ISBL equipment is integral to a specific process while OSBL equipment support the core

rocess and include processes like steam generation, waste water treatment and buildings [2] .

quipment scale was estimated and used to scale the cost using the exponential correlation

 1 , 2 ]. This cost was unified to 2017 dollars using the Chemical Engineering Plant Cost Index [18] .

he ratio factor for a greenfield liquid processing plant was applied to the equipment costs, to



S. Eswaran, S. Subramaniam and S. Geleynse et al. / Data in Brief 39 (2021) 107514 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

estimate the direct costs and the fixed capital investment. The total capital investment (TCI) is

the sum of the fixed capital investment (FCI) and the working capital. Working capital, which is

used to cover operating costs when the facility is not able to cover expenses, is assumed to be

20% of the annual operating costs. Land cost is assumed to be 1.5% of the TCI [25] . 

In the analysis, the production plant for CH pathway is assumed to depreciate in 7 years,

following double declining balance to straight line, and the plant life is 20 years. The project is

assumed to be 30% equity financed and 70% loan with loan term for 10 years. For the present

cost analysis, the fixed capital investment is spread over 3 years at a rate of 8%, 60% and 32%

respectively. A cost benefit analysis was used to evaluate the economic feasibility of the CH

process by predicting the minimum selling price (MSP) of SAF. MSP per unit volume of SAF is

defined as the price that has a net present value (NPV) of zero and nominal financial discount

rate of 12.2%. We assume an inflation rate of 2% following the average inflation from 1997 to

2017. The inclusion of inflation in the economic analysis, which combines the real discount rate

of 10% with inflation to determine the nominal discount rate of 12.2%. 
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