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Convolutional neural networks (CNNs) have demonstrated exceptional results in the analysis 
of time- series data when used for Human Activity Recognition (HAR). The manual design 
of such neural architectures is an error-prone and time-consuming process. The search for 
optimal CNN architectures is considered a revolution in the design of neural networks. By means 
of Neural Architecture Search (NAS), network architectures can be designed and optimized 
automatically. Thus, the optimal CNN architecture representation can be found automatically 
because of its ability to overcome the limitations of human experience and thinking modes. 
Evolution algorithms, which are derived from evolutionary mechanisms such as natural selection 
and genetics, have been widely employed to develop and optimize NAS because they can handle 
a blackbox optimization process for designing appropriate solution representations and search 
paradigms without explicit mathematical formulations or gradient information. The Genetic 
optimization algorithm (GA) is widely used to find optimal or near-optimal solutions for difficult 
problems. Considering these characteristics, an efficient human activity recognition architecture 
(AUTO-HAR) is presented in this study. Using the evolutionary GA to select the optimal CNN 
architecture, the current study proposes a novel encoding schema structure and a novel search 
space with a much broader range of operations to effectively search for the best architectures for 
HAR tasks. In addition, the proposed search space provides a reasonable degree of depth because 
it does not limit the maximum length of the devised task architecture. To test the effectiveness 
of the proposed framework for HAR tasks, three datasets were utilized: UCI-HAR, Opportunity, 
and DAPHNET. Based on the results of this study, it has been found that the proposed method 
can efficiently recognize human activity with an average accuracy of 98.5% (∓1.1), 98.3%, and 
99.14% (∓0.8) for UCI-HAR, Opportunity, and DAPHNET, respectively.
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0. Introduction

Human activity recognition (HAR) involves analyzing video or sensor data to determine human behavior [1,2]. It is becoming 
increasingly important to analyze human behavior, human-computer interaction, and human behavioral monitoring systems. Several 
human behaviors, including walking, sitting, riding a bike, jogging, eating, reading, and washing, are considered static or dynamic 
[3]. Training data for HAR are primarily derived from nonvisual wearable sensors and ambient assisted cameras (visual sensors) and 
a combination of both [4,5].

Over the last few years, deep learning (DL) has been widely used to aid in the analysis of sensor-collected data and recognition 
of patterns. Since the introduction of deep learning in recent years, convolutional neural networks (CNNs) have gained considerable 
attention in many computer vision applications owing to their established theory and high performance in modeling and classifying 
collected data [2,6]. Recommendation systems, medical image analysis, and natural language processing are areas in which CNNs 
are utilized [7–9]. CNNs have been demonstrated to produce outstanding results in time-series data analysis [10,11]. However, it is 
generally accepted that deep learning approaches, especially CNNs, are characterized by a large number of trainable parameters, a 
large amount of training data, extensive parameter tuning, and a high level of resource exhaustion during training and inference [12]. 
In addition, practitioners of deep learning encounter difficulty when it comes to manually building deep models and determining 
suitable configurations (e.g., model layers and operation types) through trial and error. Various steps are involved in feeding domain 
knowledge into DL, including Feature Engineering (FE) [13], model generation [14], and model deployment [15,16]. Because CNNs 
are based on layers, they allow the flexibility of adding or removing layers based on the training phase, which is then used in 
inference (classification) to classify the data. It may not be necessary to use the entire architecture from the training phase in the 
inference phase, as most of the data can be correctly classified using only the first few layers [17,18]. Consequently, if classification 
can be performed using only an optimum portion of the network at a time, we can avoid redundant operations in the CNN, leading 
to the enhancement of the classification/prediction abilities for a given application. Additionally, the challenge is to define the set of 
constraints of CNN layers that will result in an effective and reliable performance. The set of constraints may include the time limit, 
number of inputs, model depth, maximum number of neurons, and number of filters. Owing to the difficulty of acquiring expert 
knowledge to define all such constraints, the development of a CNN is challenging, and its configuration can greatly influence the 
classification/prediction efficiency and performance [9,6,12].

The Neural Architecture Search (NAS) technique, which automates the design of deep learning networks, has been shown to 
perform equally well or better than manually designed architectures in a variety of computer vision tasks compared to conventional 
deep learning techniques that rely heavily on expert or domain knowledge [19,59]. Therefore, several different search strategies 
have been proposed, including evolutionary deep learning (EDL) [12], random search methods [20], gradient-based methods [21], 
and Bayesian optimization methods [22] Another factor to consider in architectural search is the scope of the search space. Two 
search spaces are available: the entire architecture for a given set of inputs and outputs [20,23], or the inner structure (operations 
and connections) of a fixed macro architecture [24,25], which is not optimized during the architecture search and functions as 
an exoskeleton. Although these innovative search spaces display a combination of innovation and efficiency, they are difficult 
to comprehend, design, and train. However, the models can be designed structurally efficiently [12,26] and their size reduced 
by removing unnecessary inner structure parameters. Process optimization is largely driven by evolutionary mechanisms. The 
family of Evolutionary Algorithms (EAs) is a robust and flexible heuristic that may be considered when there is a problem that 
is difficult to solve but for which evaluating solutions is easy [27,17]. EDL may therefore be used to identify the most accurate and 
efficient configurations of deep models through evolutionary optimization. Human activity recognition is achieved through EDL by 
automatically designing a deep model through an evolutionary process [23,28] to provide an easy-to-use human activity learning tool. 
Therefore, the model configuration is viewed as an individual, and the goal of the model is viewed as the performance of the model. 
Based on the analysis above, EDL tries to improve the adaptability of a deep model to learning tasks by automating construction 
(from a DL viewpoint) and striving to generate the best model possible within the set restrictions or objectives (from an evolutionary 
computation viewpoint). Mainly, our research aims to develop and evaluate an Automated CNN (AUTO-CNN) evolutionary model for 
the design of a CNN-based architecture for human activity recognition purposes by addressing the previously discussed limitations. 
AUTO-CNN applies a Genetic Algorithm (GA) to identify the performant topology constraints for CNN-based classification algorithms; 
however, it is easy to evaluate its quality (though perhaps computationally challenging). There is no requirement for users to have any 
previous knowledge of CNN design and dataset parameter selection before they can generate many different architectures, analyze 
their effectiveness, and select the best-fitting architecture. The proposed algorithm can be used to directly analyze any activity 
without recomposition, preprocessing, or postprocessing if new activities are to be examined. Additionally, AUTO-CNN will use an 
efficient layer-based CNN architecture through the proposed novel variable-length encoding scheme and incorporate a crossover 
operator and a mutation operator integrated into a GA to search for the optimal depth of the CNN. The proposed algorithm achieves 
impressive performance, yet users are not expected to be experts in these design building blocks to use it. The contribution can be 
summarized as follows:

1. A new framework, Automatic HAR (AutoHAR), is proposed for human activity recognition from streaming movies. AutoHAR 
will evaluate the performance of Evolutionary Algorithms (EA) in the context of CNN architecture search to recognize human 
activity.

2. A new algorithm, AUTO-CNN, is developed and evaluated to choose the best CNN architecture for human activity recognition 
tasks through an effective variable-length encoding strategy. In the AUTO-CNN algorithm, the optimal CNN architecture is 
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established with sufficient depth, without defining the maximum length of the architecture.
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3. A series of experiments are conducted to assess the efficiency and accuracy of the proposed method to automatically design CNN 
architectures compared to current state-of-the-art CNN-based approaches. Three datasets are used: the first dataset is obtained 
from UCI; the second dataset is formed from the opportunity dataset, and the third dataset is the DAPHNET dataset. According to 
the results of the experiments, the proposed approach is correct and effective. Furthermore, the method has a significantly higher 
classification accuracy than state-of-the-art, CNN-based models that are built manually, non-evolutionary, or evolutionary-based 
models.

Other sections of the paper are organized as follows: Background information is presented in section 1. Documentation of the 
proposed algorithm can be found in section 2. The experimental environment design and numerical results are presented in Section 3

and Section 4. An overview of the conclusions reached and the work to be undertaken in the future can be found in 5.

1. Related work

Researchers have been experimenting with DL based methods to develop tools for detecting normal or abnormal human 
movements using sensor-collected data or images [41]. The literature varies in its categorization of human actions based on whether 
they are produced by handwork (conventional-based) [29] or algorithmic recognition (artificial intelligence) using Deep neural 
networks (DNNs) [18] or other techniques [30]. DNNs and their main types have received a vast amount of effort for computer 
vision problems. In [31], an automatic lab annotation generation algorithm based on deep learning (DL) was utilized using a CNN 
with an average recognition rate of 95.58%. The framework starts its work by modeling the characteristics of human body motion. 
Subsequently, an efficient DL algorithm that can automatically generate the dance spectrum platform is proposed. In [32], the 
application area was changed to recognize the human actions from the collected data using the promising performance of the CNN 
network. The authors trained a 3D convolutional neural network to train the model over frames of data. Wang et al. [33] utilized a 
spatiotemporal CNN to segment the human-collected videos into subactivities.

In [34], the authors proposed a hybrid model using a DNN for the recognition and prediction of human actions. Their model 
consists of four pretrained hybrid layers: AlexNet [35], VGG-16 [35], GoogleNet [36], and ResNet [37]. Additionally, the GA is 
utilized to approximate optimum feature selection. Their model achieved approximately 98.5%. Using dynamic Bayesian networks 
with domain knowledge, Zeng and Ji [22] proposed solutions for human action recognition. This approach presents generic Bayesian 
dynamic network models for human activity classification and models that incorporate multiple features. In this context, the authors 
propose a framework for learning domain knowledge using Deep Belief Networks (DBNs). With the proposed framework, the authors 
claim to not have to consider insufficient training data for human action recognition. Despite the great performance achieved through 
deep learning models, the architecture of such models still greatly affects the performance and final prediction accuracy. Many 
attempts have been made to enhance the architecture design as follows: the weights of the architecture initialization and selection, 
such as greedy layerwise [38] and fast learning algorithms and neural network training [39–41]. Moreover, different techniques 
have been conducted to improve architecture generalization [42,43]. Leong et al. [44] employed a fusion of ResNets [70], DenseNets 
[45], and VGGNets [46] with skip connections between individuals to learn the spatio-temporal features more efficiently for video 
action recognition. An important goal is to develop an early stopping to avoid deep neural network overfitting or adding randomly 
dropping neural units during training [47,48]. Additionally, unsupervised pretraining was employed to initialize the weights in 
deep neural networks [49]. Recently, researchers have conducted a variety of methods to initialize a well-designed architecture, 
including randomly chosen traits, grid search, and manual search [48,49]. Each method can effectively confirm a search, and certain 
methods provide a less/more promising configuration space for hyperparameter optimization [48,49]. In the current work, we 
address these challenges through the use of evolutionary algorithms GAs for the selection of the best convolution neural network 
structure. Researchers have used the GAs to enhance neural network performance from different perspectives, including feature 
selection optimization [50,51], topology selection [4,52], or parameter weight selection [53,26].

GA are based on the idea of multidimensional convolution. The initial value and threshold of block-based neural networks are 
adjusted and optimized using state-of-the-art architecture to arrive at the optimal solution and to reduce the redundancy rate in 
behavior recognition [54,26]. The authors in [54] employed a GAs to train their network by optimizing the learning weight of 
the autoencoder. By combining genetic algorithms with a multidimensional convolution method, the authors in [54] proposed a 
model that can more accurately and quickly identify and predict human behavior, with calculations that are basically consistent 
with the actual requirements. The proposed model starts its work by clustering the redundant data by a genetic algorithm to produce 
fragments of data. Afterward, the genetic algorithm clusters the data to form subgenetic particles with different dimensions and 
performs conevolution and optimal location sharing. Researchers have emphasized the importance of Neural Architecture Search 
(NAS) methods, which will be used to reduce the search space and automate the design of CNN architectures by transforming it into 
a complex optimization problem [55,56].

A fog-assisted cloud computing architecture proposed in [4] that is able to recognize human activity from cloud data. A hybrid 
algorithm is used to solve the activity recognition problem by combining the benefits of YOLOv3 [57] and GA. YOLOv3 is used to 
detect the changes in the frames using an accelerated GAs paradigm on the generated subblocks. To ensure the highest degree of 
accuracy, GAs parameters are randomly selected with the aim of reducing the response time and accuracy.

In [20], a chain neural network structure is used to identify the block that constructs the architecture in sequence, which optimizes 
the architecture parameters, sequence of construction, and depth of the network model. Additionally, to reduce the amount of 
3

computational resources required to train the architecture generations, a random forest-based performance predictor is utilized.
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Fig. 1. The Proposed AUTO-HAR Deep Learning Architecture.

Loni et al. [53] reduced the search space by limiting the range of convolutional hyperparameters (such as the number and size 
of convolutional layers, the filter size, and the activation function) and by using a multiobjective search with NSGA-II to balance 
network accuracy with network size.

In a study by Zhang et al. [58], nine different types of interactions among nodes were analyzed to identify connections and 
computations. When the architecture is generated, the efficient building units of the architecture can ensure its efficacy, so the 
algorithm can identify an architecture with good performance.

Parkr et al. [59] introduced Once-For-All (OFA), a NAS technique in which GAs are used in order to find the optimal CNN 
architecture. The network is designed to consider diverse layers (i.e., depth), input image channels and kernel sizes in multiple units.

In Baldominos et al. [60] an activity recognition task is conducted by proposing a DL CNN. By using a grammatical evolution 
method, a topology is calculated based on an evolutionary algorithm. Based on the GE’s definition of a grammar in normal form, each 
network design is derived. An efficient variable-length, genetic coding strategy was developed in AE-CNN [23] and CNN-GA [28] to 
adaptively search for the optimal depth of CNNs. The above models utilized search methods using a block-based search algorithms 
that enable skip connections for training deep architectures.

In this work, inspired by the great ability of the GAs in current research environments to simultaneously optimize both weights 
and topology, we propose a new approach for selecting the best topology of a convolutional neural network classifier by exploiting 
the efficient global and local search abilities of the GAs for the prediction of human actions. The AUTO-CNN utilized in this work 
selects and optimizes a very broad number of features for the estimation and selection of an appropriate CNN architectural design. 
These features, including the number of output channels, CNN kernel size, model building components, activation function selection, 
fully connected layer parameters, and dropout rate, are incorporated into state-of-the art models. The novelty of our work is therefore 
in modeling convolutional neural network topologies as a GA chromosome to expedite the search for finding the optimum parameters 
in a given search space, which will help overcome the limitation of fixed-based classifier topologies. Table 1 compares the most recent 
research on NAS. Based on this review, the following can be inferred as the primary limitation of the present literature.

• Most investigations have concentrated on a rigid encoding strategy for the devised CNN architecture, which has a limited 
architectural search space. In this study, a novel variable-length encoding schema for a CNN was devised.

• Studies have focused on the use of graphics processing units (GPUs), which can be expensive to implement on devices with 
limited resources. However, the devised method is very light and can be implemented in a limited-resource environment.

• Numerous studies have focused on improving a small number of model parameters; however, we addressed this problem by 
focusing on all parameters.

• Earlier research focused on the application of enhancement processes to image datasets to obtain the desired results. However, 
in this study, we used acceleration data related to human activity detection.

2. Proposed framework

In this work, we present an automatic architecture, AUTO-HAR, for human action recognition by designing an optimized CNN 
architecture. The proposed architecture is illustrated in Fig. 1. The framework consists of four main phases. The process starts 
with parameter identification, design of the CNN architecture, model training and optimization and a final evaluation phase. The 
framework begins its work by preprocessing video-based or sensor-collected data. The user should select the parameters pertaining 
to the search space, including the training parameters and termination criteria. As the performance of a trained classifier depends 
4

heavily on its initial parameter weights, in the second section, the design of the convolution and fully connected layers of the CNN 
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Table 1

Overview of the Neural Architecture Search State-of-the art related works. ISAR: the space target inverse synthetic aperture radar, PSO: Particle Swarm Optimization, 
AMBO: Adaptive Monarch Butterfly Optimization.

Ref Task Model Interpretations Limitations

[52] Human 
Activity 
Recognition

A Search strategy for an architecture 
combining CNNs and LSTM networks 
using the non-dominated sorting 
genetic algorithm (NSGA-II).

A lightweight and fast algorithm has 
been used to eliminate the need for 
manual effort in the network 
architecture search process.

There is an increase in complexity of the model 
as well as a rise in memory access costs as the 
number of channels increases.

[20] Images 
object 
recognition

Automated design strategy for CNN 
architectures based on an evolutionary 
algorithm while using a random 
forest-based performance predictor, 
with a triplet attention mechanism.

By incorporating a random forest-based 
evaluation into the fitness function, the 
classification performance of the 
devised architecture is significantly 
improved.

The encoding strategy used for the devised CNN 
architecture has reduced the search space of the 
architecture, which prevents the structure from 
expressing the diversity of the assigned tasks.

[15] Human 
Activity 
Recognition

A simple grid search algorithm has been 
explored how to optimize the models’ 
hyper-parameters.

To achieve a good trade-off between 
classification score and memory 
occupancy, a combination of sub-byte 
and mixed precision quantization was 
used.

Applying this strategy to CNNs with several 
layers (more than 10) would need the use of a 
NAS tool, which is not feasible.

[61] Human 
Activity 
Recognition

A PSO based CNN architecture search 
methodology.

The use of global and local exploration 
capabilities of PSO and gradient descent 
back-propogation has improved the 
classification accuracy efficiently.

The algorithm fails to recognize various 
activities, such as WALKING_UPSTAIRS, 
WALKING, LAYING, and SITTING, due to an 
insufficient amount of training data.

[13] Face 
Recognition

An evolutionary discriminant feature 
extraction algorithm based on a 
combination of GA and subspace 
analysis over a static-based CNN.

The use of the Convolution search 
paradigm results in a reduction in the 
complexity of the search space and an 
improved classification method.

There is a greater difficulty in developing an 
individually optimized architecture due to the 
static CNN configuration.

[62] ISAR image 
recognition

The generation of incremental 
architecture using Random Forest 
Learning (RL) based methods.

The use of Random Forest- based 
Learning framework makes the 
proposed model applicable for effective 
diagnosis of HAR.

Considering the large state/action space 
involved, substantial computational resources 
are required. Furthermore, there are many 
hyperparameters associated with each RL-based 
NAS.

[21] Remote 
Sensing 
Image.

The generation of neural architecture 
using gradient-based algorithms.

By treating NAS problems as 
continuously differentiable problems 
and not discrete, the model is able to 
efficiently search architectures with 
appropriate weight parameters.

The gradient-based algorithms require the 
update of a large number of parameters, which 
will significantly increase the GPU costs.

[14] Human 
Activity 
Recognition

Three optimization search algorithms 
are used: PSO, Greedy,and Genetic 
algorithms with KNN classifier.

The model achieved excellent 
classification results based on 
smartphone embedded sensors to 
recognize six basic human activities.

This process involves pruning a portion of a 
large network randomly, retraining it, and 
repeating the process until it reaches its optimal 
performance.

[63] Human 
Activity 
Recognition

AMBO is employed to enhance the 
performance of traditional deep 
learning algorithms.

The AMBO algorithm significantly 
improves recognition accuracy by 
providing the best error rate and the 
highest level of performance accuracy.

Optimization algorithms are used to determine 
only the optimal hyperparameters weights for 
the predefined network structure.

[16] Human 
Activity 
Recognition

An adaptive CNN architecture that uses 
an output block predictor to select 
portions of the baseline architecture 
based on statistical features.

A novel adaptive architecture that 
selects a portion of the baseline 
architecture for inference based on an 
output block predictor

When the earlier layer misclassifies a segment 
with a higher degree of certainty than the 
baseline design, such systems may suffer from 
performance loss. In addition,it is important to 
ensure that less frequent knowledge is not 
forgotten and those early classifiers are 
correctly initialized.

is developed. Due to the limited computational resources, preliminary experiments revealed that a CNN-Convolutional (𝐶𝑁) Layer 
with 4 layers followed by a dropout layer and Fully Connected (𝐹𝐶) layer could produce a better overall sensitivity. We used two 
FC layers and a softmax layer with random dropout. The details of these CNN blocks are described in Subsection 2.2. Note that 
it may be possible for the classification results to be obtained by millions of CNN parameter constraints for the collected set of 
data in each application. Therefore, selecting the best topological constraints for the CNN following static or predefined values may 
yield a solution that is stuck in a local minimum. Therefore, the third step involves estimation and selection of an appropriate CNN 
architecture, including the output channels, CNN kernel size, block number, activation functions, 𝐹𝐶 layer features, and dropout rate

(more details will be given in Subsection 2.3). In this phase, the effective search capability implementations of genetic algorithms 
were utilized in the human action recognition processes. The GA population of the proposed algorithm will be the CNN structure, 
followed by the fitness evaluation step, in which the chromosome is decoded to initialize the topology of a CNN classifier. The 
5

selected structure is tested and evaluated. In the upcoming sections, we will explain each part of the proposed model in detail.
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Fig. 2. Basic CNN Architecture.

2.1. CNN classifier for human action recognition

CNNs are a class of Artificial Neural Networks (ANNs) that were developed in the 1980s to address visual pattern recognition tasks; 
they were modeled on the visual cortex of vertebrates [64]. The CNN structure (shown in Fig. 2) can be considered a two-dimensional 
matrix of pixels represented as a set of L - main blocks located between convolutional part 𝐶𝑛 and classification part 𝐶𝑙 and as set 
of their P-parameters, 𝑆(𝐶𝑛(𝐿𝐶𝑛, 𝐶𝐶𝑛, 𝑃𝐶𝑛), 𝐶𝑙(𝐿𝐶𝑙, 𝐶𝐶𝑙, 𝑃𝐶𝑙)). The model structures for these double parts are described using Keras 
neural network libraries [65]. The CNN structure employed in the current study follows the same basic architecture S with the 
search space of the main blocks for the convolution part 𝐶𝑛, including combinations of Conv1D, Pool, AveragePoooling2D, and ReLU 
layers with different activations and counts of filters. A convolution layer 𝐶𝑙 defines a function 𝑓 ∶𝑅𝑎 →𝑅𝑏 to map the given input 
matrix to 𝐾 “kernels” or “filters” [64], where 0 < 𝑘 < 𝑘𝑏 − 1 with dimensions 𝑎×ℎ′×𝑤′, with ℎ′ ⩽ ℎ and 𝑤′ ⩽𝑤 (where ℎ′ =𝑤 as an 
integer odd positive number). Furthermore, convolution layers can be characterized by a number of parameters, such as “stride” and 
“dilation”; we use a stride of 1 and a dilation of 0 in our implementation. A dense layer with different activations and numbers of 
neuron combinations forms the main block search space for the classification part (Cl). We initialized all activation functions in Keras 
while employing the same set of possible connection layers for both 𝐶𝑙 and 𝐶𝑛 with dropout layers, which means that no additional 
layers between the main building blocks are needed. For convolution layers, kernel sizes are set to 3 × 3, and strides are set to 1 ×
1. To avoid overfitting, the CNN classifier is trained using a backpropagation algorithm for a relatively small number of epochs (𝑝1).

The CNN structure can be represented by several neurons represented numerous layers. Therefore, encoding the best structure 
CNN should define a number of 𝑇 constraints to pertain to an optimal classification result as this condition is satisfied. Otherwise, 
a CNN’s architecture may be arbitrary and could adversely affect classification performance. The set of constraints may include 
the time limit, number of inputs that it must have to attach to a neuron, model depth, maximal number of neurons, and 
number of filters. In the current study, the CNN structure identification, its encoding, training, and optimization are demonstrated 
in Fig. 3. Mathematical-based model optimization can be conducted; however, such models are restricted and do not allow a 
complete examination of the selected structures included in the model search space. EAs, as metaheuristic methods, are based 
on smart-exploration techniques, which can handle a wider range of constraints [19]. Furthermore, EAs facilitate representation of 
the solution.

2.2. AUTO-CNN search space

A search space is a collection of all possible solutions that can be searched for a specific problem. Several hyperparameters, such 
as feature maps and convolutions size, must be defined in each CNN architecture design. Having a relatively small search space may 
reduce the time that is required for the algorithm to construct a satisfactory CNN model, but the limited number of models within 
this space may cause the algorithm to become overly constrained. In addition to being more time-consuming, a larger search space 
requires more computational power. The majority of the previous works do not include the number of blocks (depth of network) in 
their search space. A part of the search space in our experiments was:

• The number of input feature maps in each block.

• Activation function type.

• Pooling type.

• The number of output feature maps in each CN.

• The inclusion of batch normalization layer.

• Layer number.

The default search space for our experiments is described in Table 2. Hyperparameters are listed in the left column, and their possible 
6

values are listed in the right column.



Heliyon 9 (2023) e13636W.N. Ismail, H.A. Alsalamah, M.M. Hassan et al.

Fig. 3. AUTO-CNN architecture design and optimization.

Table 2

Search space parameters and their possible values.

Parameters Values

nb_filters [32, 64, 128, 256, 512]

nb_blocks [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

Activation [‘relu’, ‘elu’, ‘tanh’, ‘sigmoid’]

Optimizer [‘adam’, ‘adamax’, ‘nadam’]

Padding [‘same’, ‘valid’]

Alpha [0.01 - 0.5]

Fig. 4. Addition of a basic block to a fixed FC part.

The convolution part Cn is based on a block named CBL. The CBL block includes three layers: Conv1D (conv), BatchNormalization 
(batch) and LeakyReLU(ReLU) layers. The fully connected part FC includes a flatten layer and a dense layer with a softmax activation 
function.

GAs use encoding to model real-world problems to be directly solved by GAs. The first step in employing GAs is to figure out what 
encoding strategy to use. The selected encoding strategy is based on the problem itself. This approach seeks to develop an effective 
way to model CNN with different architectures by devising a new encoding strategy.

There is a strong correlation between the performance of a CNN and its depth; therefore, the CBL block is automatically repeated 
using GAs, and then the fixed FC part is added to the best-selected blocks, as illustrated in Fig. 4. In the selected CBL basic block, the 
7

configuration of state-of-the-art CNNs, number of filters, padding and activation function are set according to Table 2. The kernel 
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Fig. 5. Example of encoding CNN architecture with a depth of two.

Table 3

AUTO-CNN Algorithm Symbols and Their Descriptions.

Name Purpose

Block CNN Subnetwork Topology.

Gene Specifies the convolution and fully connected part constraints, including (similar to the kernel size 
of a convolutional block).

Genomes Sequence of gene parameters (CNN topology description) that can be converted to a new individual 
following the “crossover” value. To avoid the computation complexity of such a calculation, these 
values are cached for each genome. Therefore, if the same topology reappears in the current or next 
generation, we do not have to recalculate it.

Mutation Changing the parameters of a current CNN topology to a new genome.

Population Collection of CNNs of genomes.

size of conv is 3 x 3, and the stride is set as the step size to 1x1. In addition, the ReLU layers used in the proposed encoding strategy 
alpha parameter are set to random numbers between [0.01, 0.5]. The parameter encoded in a batch layer is only 0 or 1 (exist or do 
not exist). Fig. 5 illustrates how the proposed encoding strategy is used to encode a CNN. There are two CBL blocks in this CNN, one 
flat layer and one dense layer. An entire CNN can be represented as a string of sequentially connected codes. For the CNN shown in 
this example, where the layers’ codes are listed above each other, the total CNN code is “32 - 0 - 3 - 1 - 0.1 - 64 - 1 - 3 - 1 - 0.15” to 
represent a CNN with two blocks in addition to the FC fixed blocks.

2.3. Automated CNN architecture selection

Algorithm 1 illustrates the scheme for searching the best CNN architectures using the GAs with the symbols mentioned in Table 3. 
Genetic algorithms are heuristic search methods that are based on evolutionary principles proposed by Darwin [66]. The evolutionary 
ideas are based on natural selection and genetics considering a population’s survival of the fittest (survival of the fittest). A candidate 
solution consists of GAs chromosome selection, crossover, and mutation that occur as a result of selection. Changing the chromosomes 
to create a modified set at the end of the process. At the end of every GA cycle. During each GA cycle, the GAs chromosome that 
captures the system characteristics and a quality measure of the solution (fitness function) is calculated to be improved successively 
over multiple generations of chromosomes. A curious user may refer to [67] for more details. In the current study, the algorithm will 
search the dataset after defining the search space and loading the layers pool. At the first iteration, for the selected population, the 
CNN structure will be randomly generated. Additionally, any pretrained architecture can be initialized to improve the convergence of 
the search process. Subsequently, the main parameters of the GA algorithm, including crossover and mutation operators, are used to 
refine the defined architecture. Crossover is used to combine perspective parts by permuting between two solutions, while mutation 
is used to explore a new direction of the search space. In the testing process, every individual represents a CNN architecture, which 
is then transformed into the Keras framework. The fitness function of the evolutionary algorithms is applied to describe how well an 
individual adapts to new conditions related to the specified problem in question. Using the predicted values of a test sample, a new 
CNN model is fit to a new training sample and evaluated using selected metrics. It is more likely that the offspring of a person who 
has adapted well to his environment will also be able to thrive in it. The GAs require a method for generating a solution without the 
need for gradient evaluation as part of its search procedure. A problem relating to the design of neural networks specifically requires 
this advantage. A parallel algorithm can also be utilized to accelerate the evaluation of solutions in a population. The mutation 
and crossover operators are used in the CNN structure design to randomly generate the convolution or fully connected part of the 
network; therefore, the mutation process will replace the network parts with the new part.

The searched space is denoted as 𝐺 by training the model as outlined in Algorithm 1, and the first phase will train G for several 
epochs. For each training iteration, AUTO-CNN will generate a random CNN architecture (Line 2-3, Algorithm 1). Starting from the 
first generation of CNN individuals to generation 100 (note: the maximum number of generations is 100). The algorithm then checks 
whether the number of the current generation reaches a predetermined number of generations or whether we are still in the initial 
generations (Line 4-7, Algorithm 1), such as checking whether the current generation exceeds the maximum number. (Line 8-17, 
Algorithm 1), the Make POPULATION function is called and returns a two-dimensional array with a size equal to the number of 
initial populations. A candidate architecture will be sampled, and a set of linear feature outputs will be selected for each dataset as 
the initial population. The remaining topological selection parameters, including the input channels, fully connected layer, activation 
8

functions, kernel sizes, and dropout rates, are randomly selected from [32; 64; 128; 256], [tanh; relu; leakyRelu], [3; 5; 7], [0:1; 0:2; 
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Algorithm 1 An algorithm to search for the optimal the CNN architecture.

Ensure: gene = 0, stage = 0; Input shape, CNN-shapes

Ensure: I_In->input_shapes

Ensure: L_out -> layer output shapes ⊳ for each upcoming Gene

1: 𝐺← 𝑔𝑒𝑛𝑒

2: while (𝐺 ≤ 100) do

3: 𝑡𝑟𝑎𝑖𝑛(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟)
4: if (𝐺% ← 0) then

5: Save the best architecture

6: 𝑠𝑡𝑎𝑔𝑒 ← 𝑠𝑡𝑎𝑔𝑒𝑠 + 1
7: end if

8: if (𝐹𝐿𝐴𝐺 is True) then

9: 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁 = 𝑛𝑒𝑤(𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁) ⊳ by calling Function: Make POPULATION

10: 𝐹𝐿𝐴𝐺← 𝐹𝑎𝑙𝑠𝑒

11: end if

12: for (index 𝐼 in CNN-shapes indices) do

13: if (𝑖𝑛𝑑𝑒𝑥 = 1) then

14: 𝐶𝑁𝑁 − 𝑠ℎ𝑎𝑝𝑒𝑠 ← 𝐼_𝐼𝑛[𝐼]
15: else𝐼_𝑖𝑛 ←𝐿_𝑜𝑢𝑡[𝐼]
16: end if

17: end for

18: Define Block_val ← the convolution layer’s specific parameters

19: Block.val [I] ← I_in

20: Block[i] ← Block_val

21: for 𝐼 do

22: Create new block[i]

23: block[i].output_indices ← out_indices

24: block[i].out_feature depth ← out_feature_depth

25: block[i].Tail ← a layer that pools global averages followed by fully connected layers

26: Initialize the weights of the fully-connected layer

27: 𝐼𝑡𝑒𝑟𝑠 ← 𝐼𝑡𝑒𝑟𝑠 + 1
28: end for

29: end while

0:3; 0:5]., respectively. After completing training iterations, the best architecture design (with the highest classification results) will 
be selected (Line 18-20, Algorithm 1). A new architectural design search of the next stage will be started (Line 21-28, Algorithm 1). 
Note that a new architecture CNN will not be reinitialized until the training of the current generation is completed.

Algorithm 2 Function: Make POPULATION.

Ensure: 𝐼𝑛_𝑠ℎ𝑎𝑝𝑒, 𝑂𝑢𝑡_𝑠ℎ𝑎𝑝𝑒, 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑒𝑡, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑡, 𝑚𝑜𝑑𝑒𝑙ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
Ensure: 𝑖𝑡𝑒𝑟𝑠 ← 0
Ensure: 𝑖𝑛𝑑𝑒𝑥 ← 0
Ensure: 𝐹 𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒

Ensure: 𝑔𝑒𝑛𝑜𝑚𝑒𝑠 => 𝑎𝑟𝑟𝑎𝑦

1: for (each 𝑔𝑒𝑛𝑜𝑚𝑒 in 𝐺𝑒𝑛𝑜𝑚𝑒𝑠) do

2: 𝑔𝑒𝑛𝑜𝑚𝑒 = new Genomes [𝑖𝑛_𝑠ℎ𝑎𝑝𝑒, 𝑜𝑢𝑡_𝑠ℎ𝑎𝑝𝑒, ℎ𝑦𝑝𝑒𝑟_𝑚𝑖𝑛, ℎ𝑦𝑝𝑒𝑟_𝑚𝑎𝑥, 𝑛_𝑔𝑒𝑛𝑒𝑠]
3: Evaluate the population fitness function using (𝑀𝐸𝐴𝑁(𝑙𝑜𝑠𝑠𝑒𝑠), 𝑆𝑇𝐴𝑁𝐷𝐴𝑅𝐷−𝐷𝐸𝑉 𝐼(𝑙𝑜𝑠𝑠𝑒𝑠), 𝑛_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

4: if (𝐺𝑒𝑛𝑜𝑚𝑒𝑠[𝑖] is the best) then

5: Flag ← True

6: end if

7: end for

8: return (𝐹 𝑙𝑎𝑔, 𝐺𝑒𝑛𝑜𝑚𝑒𝑠[𝑖], 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑒𝑡, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑡, ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

Evaluate all current generation members (CNN model under this setting) against the given fitness function (Lines 1-3, 
Algorithm 2), with the cross-entropy loss with a lower value indicating higher fitness. Depending on which criteria are met (i.e., 
the training loss mean and standard deviation drop below a threshold, a dynamic FLAG is set to True, and the AUTO-CNN training 
process is immediately terminated. Otherwise, the fittest individuals of the previous generation are selected to form a new population 
by applying genetic operators. If the given prediction accuracy (called a fit threshold as defined by the lack of improvement in fitness 
over a certain number of generations) of the current population is the best, then terminate and return the current architecture 
(Lines 4-6, Algorithm 2). Alternatively, if the conditions are not met, breed a new generation of CNN architecture from the current 
generation and the newly bred generation and repeat step 2.

3. The experimental setting

The purpose of this study is to find the optimal CNN architecture in the designed space automatically for the task of human 
activity recognition. It is necessary to maintain a good classification accuracy while using a full automated architecture design. A 
9

number of experiments are designed and compared against state-of-the-art peer competitors in order to quantify the performance of 
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the suggested method using three datasets. In the upcoming section we will go through each dataset and the overall experimental 
analysis.

The parameter values of Auto-CNN are based on empirical conventions to ensure the effectiveness of the construction blocks and 
training. The population size in evolutionary progress is set to 100, the number of evolutionary generations is set to 100, mutation 
probability is 0.003, and The initial generation’s minimum number of Genes in each randomly generated Genome are set to 10:15. 
Mean and Standard deviation threshold is 0.2, and 0.02 respectively. In this study, experiments were conducted using the Google 
CoLab platform and the Intel Core i7 9900 kf processor. The software programming environment is Python 3:7, the framework is 
TensorFlow.

3.1. Our peer competitors

To illustrate the superiority of the proposed AUTO-CNN, we compare its performance to different peer competitors that have 
been incorporated and implemented with the standard mentioned public datasets. The peer competitors were chosen from different 
categories. The first covers hand-crafted architectures that have been widely adopted in HAR with extensive domain expertise 
(Manual), including: AlexNet [68], GoogleNet [69], ResNet-152 [70] and VGGNet [46].

The second set represents the ensemble-based classifiers’ architecture design that achieve high performance (accuracy) in HAR 
task without using any evolutionary (Non-evolutionary) neural network search algorithms, including CNN [71], CNN_LSTM [72], a 
conventional Vanilla- LSTM [73], Stacked-LSTM [73], Bi_LSTM [74], and iSPLInception [73].

The third category includes deep learning algorithms with evolutionary neural network search (Evolutionary), Neuroevolutionary 
[60], AE-CNN [23], and CNN-GA [28].

3.2. Benchmark datasets

The dataset used in this study to model human activity is collected from different sources including UCI-HAR, Daphnet

and Opportunity. As benchmark datasets in the experiment, we used three publicly available datasets that are utilized in many 
state-of-the-art CNNs architectural design algorithms for human activity recognition.

3.2.1. UCI dataset

Anguita et al. [75] propose that the UCI dataset is derived from 30-person video recordings of participants performing basic 
physical activities with an inertial sensor-enabled smartphone mounted on their waist. As part of this dataset, there are three static 
postures (Standing, Sitting, Lying), as well as three dynamic activities (Walking, Walking downstairs, and Walking upstairs). 
A total of 128 readings were taken in sliding windows with a fixed width of 2.56 seconds and 50% overlap. The noise was reduced 
by applying a median filter and a Butterworth filter with a cutoff frequency of 20 Hz. The acceleration signal was divided into body 
acceleration and gravity signals using a Butterworth lowpass filter.

3.2.2. Opportunity dataset

Roggen et al. [76] propose the Opportunity dataset, which contains naturalistic activities that were collected using 72 body and 
environmental and body sensors in an environment with rich sensor information. 12 subjects have been recorded using 15 networked 
sensory systems that contain 72 sensors of 10 modalities. During our analysis, only data from inertial measurement units that are 
included in columns 38 to 134 were taken into account. A triaxial accelerometer, a gyroscope, a magnetometer, as well as other 
measurements were used, but the quaternion measurements were excluded. Thus, we were able to receive 77 signals (channels) as 
input. A 30-Hz sampling rate was used to sample the data, and a 3-second window was extracted that consisted of 90 samples per 
window. A multiclass classification problem was originally posed on the Opportunity dataset with 18 classes, but we excluded the 
null class, adding a new label, and therefore used 17 classes instead. There is a disparity in the distribution of data amongst the 
classes in this dataset, which leads to an imbalance in the dataset.

3.2.3. DAPHNET dataset

In an article published in 2010, Bachlin et al. [77] proposed a dataset, Daphnet Freezing of Gait (Daphnet). In this dataset, 
automatic algorithms are benchmarked against wearable acceleration sensors placed on the thighs and hips for the detection of 
gait freeze. Freezing of Gait (FOG) is a sudden and transient inability to walk that affects approximately half of the patients with 
Parkinson’s Disease (PD). Falling is often the result of this condition, it interferes with everyday activities, and it has a significant 
negative impact on quality of life. There has been an increased interest in nonpharmacological treatments for gait deficits in patients 
suffering from Parkinson’s disease (PD) due to their resistance to pharmacological treatment. The team developed an innovative 
wearable system that detects fog in real-time and automatically provides a sound of signaling until it walks again. An evaluation 
of this wearable assistive technology was performed with 10 patients with Parkinson’s disease. Two activities are contained in this 
dataset (freeze and No Freeze). Based on the sampling rate of 64 Hz, the data was sampled in 3-second sliding windows with a 50% 
overlap, resulting in 192 readings per window. It is apparent from this dataset that there is a significant imbalance between the No 
10

Freeze and Freeze classes due to the disparity in percentages.
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Fig. 6. The performance of the proposed model for 25-generations of UCI dataset (a) loss and (b) mean accuracy.

3.3. Evaluation metrics

For evaluating the proposed AUTO-CNN algorithm, we used 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (Recall), 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 (True Negative Rate), 𝐹𝐷𝑅

(False Discovery Rate), and 𝐹 − 𝑠𝑐𝑜𝑟𝑒 measures. The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 value reflects the proportion of samples that were correctly classified 
to the total number of samples. The 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 indicates the percentage of records correctly identified in relation to the total number 
of activities. A 𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 calculated by dividing the total number of correctly classified activities by the percentage of such activities 
records in the dataset 𝐹𝐷𝑅 measures the probability that an activity that has been classified as significant is actually null. The 
𝐹 − 𝑠𝑐𝑜𝑟𝑒 parameter is the balanced weight of the precision and recalls values of the tested data. The equations (1), (2), (3), (4), and 
(5) illustrate how these evaluation metrics were calculated as shown below. Where, 𝑇𝑃 is true positive, 𝑇𝑁 is true negative, 𝐹𝑃 is 
false positive and 𝐹𝑁 is false negative.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)
(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)

(1)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦= 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
(2)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦= 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 )
(3)

𝐹𝐷𝑅 = 𝐹𝑃

(𝐹𝑃 + 𝑇𝑃 )
(4)

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = (2 ∗ 𝑇𝑃 )
(2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

(5)

4. Experimental results and discussion

Using the proposed CNN architecture design and the AUTO-CNN algorithm, the experiment is designed to verify whether it is 
feasible to achieve promising performance on the classification task of Human Activity Recognition. In this section, as a first step, we 
will introduce the proposed model performance using three datasets, followed by a comparison of the peers’ performance versus the 
proposed algorithm. The three used datasets are splitted into 70% for training and 30% for testing. To test scalability, cross-validation 
methods were used with a ten-fold increase in the learning rate, with one-third (40%) of the data being used for validation and the 
remainder being used for training. The data split occurred only once for each dataset with a fixed seed number (random state = 2) 
to ensure that different subjects participated in the classification process with different activities. Furthermore, there was no overlap 
among the selected activities.

4.1. UCI dataset experiments

As we used the AUTO-CNN algorithms to address HAR classification problem, it should illustrate whether they have converged 
or not when they terminate. As a result, the evolutionary curve of the proposed algorithm in terms of the investigated benchmark 
datasets is discussed and explained.

A statistical analysis is conducted for each individual in each generation by recording their classification accuracy. Fig. 6 (a) 
illustrates the evolutionary curve of the proposed algorithm on UCI dataset, where the vertical axis represents the mean 
11

accuracy (mean accuracy of the individuals in the same generation) of test set and the horizontal axis represents the generation 
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Fig. 7. Accuracy for 50 epochs from UCI dataset.

Fig. 8. Loss for 50 epochs from UCI dataset.

number. Fig. 6(b) shows the loss of the proposed AUTO-CNN through 25 generations, where the vertical axis donates the 
sparse_categorical_crossentropy loss and horizontal axis is generation number.

We can observe from Fig. 6(a) that, from the 1st to the 5th generation, the mean classification accuracy increases sharply; and 
then increased bit by bit as during evolution process until the 19th generation. Finally, the mean classification accuracy of the 
proposed algorithm converges in steady state when it terminates.

From Fig. 6(a), it can be observed that the mean classification accuracy in the first two generations is 89%, this due to the 
randomly initialized architecture cannot run because of the out-of-memory problem; As a result of their noncompetitive fitness, 
individuals with out-of-memory architectures will be eliminated from the population in the third generation, resulting in a steady 
increase in classification accuracy until the algorithm has been terminated.

After obtaining the best architecture of CNN for UCI dataset using AUTO-CNN, we can illustrate the performance of the best CNN 
architecture of the training and validation accuracy and loss for AUTO-CNN in Fig. 7 and Fig. 8. In order to reduce the learning rate 
iteratively when the training plateaus, the model was trained for 50 epochs and used a learning rate of 0.001.

In Fig. 9, we demonstrate that our model performs better at separating the different classes based on the confusion matrices. 
Where the classes are labeled from 0 to 5 to represent the six classes ‘laying’, ‘walking’, ‘walking_upstairs’, ‘walking_downstairs’, 
‘sitting’, ‘standing’ respectively. Although the [sitting] and [standing] classes are easily confused due to their similarities, 
AUTO-CNN overcomes this and classifies them apart with more precision, where it achieves 97.3% for setting and 87.3% for standing 
class.

Additionally, we evaluated the performance of AUTO-CNN in the recognition of each activity in the UCI-HAR dataset using 10-fold 
cross-validation with a number of evaluation metrics, such as accuracy, loss, precision, sensitivity, specificity, and false discovery 
rate (FDR). A comparison of the FDR and specificity is shown in Figs. 10 and 11. Tables 4 and 5 show the sensitivity and precision of 
the AUTO-CNN model trained on the UCI-HAR dataset. It is clear from both tables that the average precision and sensitivity for the 
10-fold comparison were 98.5% and 98.6%, respectively. The sensitivities for sitting and standing were 96% and 95.7%, respectively. 
Additionally, the sensitivity for all activities was 100%, while that for sitting and standing was 95.0% and 96.8%, respectively. We 
can conclude that, with the exception of the two confused classes of sitting and standing, the Auto-CNN model achieves an average 
accuracy is 98.5% (∓ 0.8) for all activities. This is because standing and sitting classes have a number of characteristics in common, 
which makes them easily mixed. This misclassification is caused by the sensor’s placement on the waist, which causes the signals 
12

obtained from those actions to be quite similar.
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Fig. 9. Confusion matrix for UCI dataset of proposed model.

Fig. 10. 𝑈𝐶𝐼_𝐻𝐴𝑅 10-Fold False Discovery Rate.
13

Fig. 11. 𝑈𝐶𝐼_𝐻𝐴𝑅 Specificity.
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Table 4

UCI_HAR 6-activities 10-Fold cross validation (Precision).

Activity Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Average

Laying 1 1 1 1 1 1 1 1 1 1 1

Walking 1 1 1 1 1 1 1 1 1 1 1

Upstairs 1 1 1 1 1 1 1 1 1 1 1

downstairs 0.985 1 1 1 1 1 1 1 1 1 0.998

Sitting 0.923 0.901 0.932 0.958 0.961 0.994 1 0.966 1 0.963 0.959

Standing 0.856 0.947 0.949 0.964 0.982 0.964 0.980 0.975 0.965 0.982 0.956

Average 0.960 0.974 0.980 0.987 0.990 0.993 0.996 0.990 0.994 0.991 0.985

Table 5

UCI_HAR 6-activities 10-Fold cross-validation (Sensitivity).

Activity Fold#1 Fold#2 Fold#3 Fold#4 Fold#5 Fold#6 Fold#7 Fold#8 Fold#9 Fold#10 Average

laying 1 1 1 1 1 1 1 1 1 1 1

Walking 0.989 1 0.993 1 1 1 1 1 1 1 0.998

Upstairs 1 1 1 1 1 1 1 1 1 1 1

downstairs 1 1 1 1 1 1 1 1 1 1 1

Sitting 0.804 0.939 0.958 0.985 0.962 0.975 0.971 0.968 0.983 0.949 0.95

Standing 0.945 0.913 0.969 0.955 0.994 1 0.970 1 0.960 0.967 0.968

Average 0.956 0.975 0.986 0.990 0.992 0.996 0.990 0.995 0.990 0.986 0.986

Table 6

Comparison of performance of the AUTO-CNN and the peer competitors on UCI dataset.

Category Model Accuracy Loss F1-Score

Manual AlexNet [68] 90.6 0.3201 86.6

Manual ResNet-152 [70] 93.4 0.2985 93

Manual VGGNet [46] 87.6 0.4005 82.4

Manual GoogleNet [69] 88.8 0.4236 84.8

Non-evolutionary CNN [71] 91.67 0.2977 92

Non-evolutionary CNN-LSTM [72] 94.48 0.2137 94

Non-evolutionary Vanilla- LSTM [73] 90.80 0.3296 91

Non-evolutionary Stacked-LSTM [73] 91.82 0.3995 92

Non-evolutionary BiLSTM [74] 93.91 0.2777 94

Non-evolutionary iSPLInception [73]. 95.09 0.1761 95

Evolutionary Neuroevolutionary [60] - - -

Evolutionary AE-CNN [23] 95.3 0.1912 95

Evolutionary CNN-GA [28] 96.02 0.1661 96

Evolutionary Proposed model 96.8 0.1485 96

Table 6 shows the results of a comparison of the suggested algorithm with peer competitors using the UCI dataset. The first 
column lists the many types of architectures. The names of the architectures are listed in the second column. The third, fourth, and 
fifth columns pertain to the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝐿𝑜𝑠𝑠, and 𝐹1 − 𝑆𝑐𝑜𝑟𝑒, respectively. All of the competitors’ results in the table are taken from 
their published papers and compared with AUTO-CNN with the implementation of AE-CNN, and CNN-GA considering UCI dataset.

AUTO-CNN gets the highest test accuracy of 96.8% and F1 score of 97% compared with the other models. Table 6 illustrates 
the obtained results of the different models for the UCI dataset. The iSPLInception and the CNN-GA models results are close to 
AUTO-CNN. Where iSPLInception achieves a 1.71% lower accuracy and 95% F1 score. The 𝑠𝑝𝑎𝑟𝑠𝑒_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 loss for 
AUTO-CNN is 0.1485 which is better than the best of either the evolutionary-based models (CNN-GA) that achieves 0.1661, or 
non-evolutionary models. AUTO-CNN gets highly significant improve where its test accuracy of 96.8% and F1 score of 97% compared 
with the handcrafted CNN models. It is observed that the worst model is VGGNet handcrafted model that gets loss of 0.4005. The 
ResNet-152 follows AUTO-CNN. Where ResNet-152 achieves a 3.4% lower accuracy and 93% F1 score. For evolutionarily based 
algorithms, AE-CNN, and CNN-GA which utilize an efficient building blocks in their design space, the proposed method outperforms 
the classification accuracy results and F1-Score when compared to these techniques on UCI, by 1.08% and 1.8%, respectively.

4.2. Opportunity dataset experiments

After obtaining the best architecture of CNN for Opportunity dataset using AUTO-CNN, we can illustrate the performance of the 
best CNN architecture of the training and validation accuracy and loss for AUTO-CNN. In this model, the learning rate is 0.001 for 
14

100 epochs, which is iteratively reduced as the training progresses.
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Table 7

Comparison of performance of AUTO-CNN and the peer competitors on Opportunity dataset.

Category Model Accuracy Loss F1-Score

Manual AlexNet [68] - - -

Manual ResNet-152 [70] - - -

Manual VGGNet [46] - - -

Manual GoogleNet [69] - - -

Nonevolutionary CNN [71] 80.24 0.8037 80

Nonevolutionary CNN-LSTM [72] 81.41 0.5734 81

Nonevolutionary Vanilla- LSTM [73] 76.79 0.7988 77

Nonevolutionary Stacked-LSTM [73] 80.82 0.6405 81

Nonevolutionary BiLSTM [74] 79.90 0.6559 80

Nonevolutionary iSPLInception [73] 88.14 0.4790 88

Evolutionary Neuroevolutionary [60] 93 0.91250 0.9047 - 0.9271

Evolutionary AECNN [23] 98.8 0.1112 99

Evolutionary CNNGA [28] 96.3 0.1531 96

Evolutionary Proposed model 98.3 0.1405 98

Fig. 12. Confusion matrix for Opportunity dataset of proposed model.

Table 7 summarizes the obtained results of the different models for the Opportunity dataset. The first column lists the many types 
of architectures. The names of the architectures are listed in the second column. The third, fourth, and fifth columns pertain to the 
Accuracy, Loss, and F1-Score, respectively. All of the competitors’ results in the table are taken from their published papers except 
the evolutionary-based models which are implemented and evaluated based on Opportunity dataset, and ‘-’ indicate that no results 
published with the mentioned model based on Opportunity dataset.

AUTO-CNN gets highly significant improve on this dataset compared to other models. AUTO-CNN gets accuracy of 98.3% and 
F1-score of 98%. However its performance results was lower than 𝐴𝐸 − 𝐶𝑁𝑁 by 0.5% on Opportunity HAR. The non-evolutionary

𝑖𝑆𝑃𝐿𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 models come after 𝐴𝑈𝑇𝑂 −𝐶𝑁𝑁 . Where 𝑖𝑆𝑃𝐿𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 achieves a 10.16% lower accuracy and 88% F1 score.

In Fig. 12, the confusion matrices AUTO-CNN show that the proposed model performs better in distinguish the different classes 
apart. The classes are labeled from 0 to 4 to represent the five highest-level classes of the Opportunity dataset, which include (lie, 
relax), (stand, coffee time), (walk, early morning), (sit, clean up), and (sandwich time).

4.3. Daphnet dataset experiments

To further test the effectiveness of the classification accomplished by the automatic CNN design, in this section we apply our 
AUTO-CNN architecture on Daphnet dataset. The performance of the best CNN architecture of the training and validation accuracy 
for AUTO-CNN is illustrated in Fig. 13. It achieved high performance where test accuracy of 94.8%. In Fig. 14, the confusion matrix 
of AUTO-CNN shows that however, Daphnet is imbalanced dataset, the proposed model performs better in distinguish its different 
classes apart. Table 8 and 9 illustrate how the model recognizes the two activities of the Daphnet dataset using sensitivity and 
precision metrics and a 10-fold cross-validation process. The AUTO-CNN architecture increased average precision and sensitivity 
by 10-folds, to 98.4% and 98.2%, respectively. The precision for the freeze activity (99.4%) is higher than that for the no-freeze 
activity (97.3%). Furthermore, the sensitivity for freezing was 99.6%, which is higher than no-freeze activity at 96.7%. Fig. 15 and 
16 illustrate the FDR and specificity of each activity, respectively. We found that the proposed model could accurately identify the 
15

behavior of both Daphnet activities with an accuracy of 99.14% (∓1.2) and a loss of 0.052.
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Fig. 13. Accuracy of AUTO-CNN on Daphnet dataset.

Fig. 14. Confusion matrix for Daphnet dataset of proposed model.

Table 8

Cross-validation of Daphnet 2-activities by 10-fold (sensitivity).

Activity Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Average

Freeze 0.793 0.950 0.981 0.987 0.990 0.993 0.985 1 1 0.990 0.967

No-freeze 0.986 0.987 0.995 0.997 0.997 0.998 0.999 0.998 0.998 0.999 0.996

Average 0.889 0.969 0.988 0.992 0.994 0.996 0.992 0.999 0.999 0.994 0.982

Table 9

Cross-validation of Daphnet 2-activities by 10-fold (Precision).

Activity Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Average

Freeze 0.909 0.923 0.972 0.982 0.984 0.993 0.995 0.988 0.987 0.995 0.973

No-freeze 0.964 0.992 0.996 0.998 0.998 0.998 0.997 1 1 0.998 0.994

Average 0.937 0.958 0.984 0.990 0.991 0.996 0.996 0.994 0.994 0.996 0.983

Table 10 summarizes the obtained results of the different models for the Daphnet dataset while implementing and evaluating the 
evolutionary based models (AUTO-CNN, CNN-GA).

The first column lists the many types of architecture. The names of the architectures are listed in the second column. The third, 
fourth, and fifth columns pertain to the Accuracy, Loss, and F1-Score, respectively. ‘-’ indicate that no results published with the 
mentioned model based on Daphnet dataset. AUTO-CNN gets highly significant improve on classification accuracy using this dataset 
compared to other models. AUTO-CNN gets accuracy of 94.8% and F1-score of 95%. AUTO-CNN is better than CNN-GA model which 
16

achieves a 0.78% lower accuracy and 94% F1 score.
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Fig. 15. 𝐷𝑎𝑝ℎ𝑛𝑒𝑡 10-Fold False Discovery Rate.

Fig. 16. 𝐷𝑎𝑝ℎ𝑛𝑒𝑡 Specificity.

Table 10

Comparison of performance of the proposed model and the peer competitors on Daphnet dataset.

Category Model Accuracy Loss F1-Score

Manual AlexNet [68] - - -

Manual ResNet-152 [70] - - -

Manual VGGNet [46] - - -

Manual GoogleNet [69] - - -

Non-evolutionary CNN [71] 92.97 0.2768 93

Non-evolutionary CNN-LSTM [72] 92.97 0.2558 93

Non-evolutionary Vanilla- LSTM [73] 93.22 0.2392 93

Non-evolutionary Stacked-LSTM [73] 87.65 0.2969 88

Non-evolutionary BiLSTM [74] 92.41 0.2479 92

Non-evolutionary iSPLInception [73] 93.52 0.2771 94

Evolutionary Neuroevolutionary [60] - - -

Evolutionary AE-CNN [23] 93.9 0. 2269 94

Evolutionary CNN-GA [28] 94.02 0. 2012 94

Evolutionary Our model 94.80 0. 1889 95

4.4. The designed architectures

Fig. 17 and Fig. 18 illustrates the best searched architectures discovered by the proposed algorithm for two datasets. The best 
CNN architecture for UCI dataset consists of four convolutional blocks, whereas the best CNN architecture designed on the Daphnet 
17

dataset consists of seven convolutional blocks. In contrast to UCI, Daphnet’s architecture has three more convolutional blocks, 
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Fig. 17. The best architecture for UCI dataset.

Fig. 18. The best architecture for Daphnet dataset.

indicating its more complex nature. Therefore, the proposed algorithm is capable of identifying the number and parameters of 
network building-blocks as well as estimating architectures according to the complexity of each task.

5. Conclusion

In this paper, we propose an efficient AUTO-HAR framework that can be used to design CNN architectures automatically and 
efficiently for the task of human activity recognition. Considering the used datasets, a large number of labeled observations are 
collected from heterogeneous sensors (ambient, wearable, and object sensors). The use of traditional machine learning techniques will 
have many obstacles because of the variety of ranges and mixed frequencies. Additionally, various dimensionality, heterogeneity, and 
features numbers must be selected and adjusted. Considering all the mentioned complexity of the selected datasets, the AUTO-CNN 
method for selecting the best CNN architecture is proven to be successful in the classification of human activities recognition process. 
By designing a CNN-based building blocks and designing the evolutionary operators corresponding to them which reduce the search 
space of the architectures. The application of the proposed approach to real-world problems has quite a lot of potential. AUTO-HAR 
can be used to develop practical applications with higher complexity, and it can be modified based on specific tasks, such as vehicle 
reidentification or trajectory prediction.

6. Limitations and challenges for future work

We highlight a few key aspects that require continued efforts in order to make AUTO-CNN more competitive than state-of-the-art 
CNN-based models:

• One of the key drawbacks of the suggested AUTO-CNN in this work is that the initial CNN architecture must be pre-defined using 
best state-of-the-art architecture, which implies that the structure of CNN models cannot be changed after the GA has begun 
searching for the optimal answer. Moreover, the best design found for each dataset in this study may not perform well when 
applied to a problem with a different sensor configuration. Therefore, deep learning can be applied to a wide range of domains 
and concerns by using a system that can infer optimal topologies automatically.

• Another point is the mutation operation, where AUTO-CNN utilized a greedy strategy to shift the order of Convolution layer 
output dimensions in ascending order. We are doing this because we are dedicated to achieving a promising result as quickly as 
possible. In many cases, with adequate processing power, the maximum generation can be set to more than 100 layers at a time. 
Future work should improve the accuracy of performance predictions by improving the fitness evaluation and the search space 
algorithm efficiency

• A further direction for future research would be to incorporate an efficiency measure (FLOPs [78] or estimated GPU time [20]) 
to find an optimal model that balances accuracy and latency.

• In addition, it is necessary to have mathematical methods for calculating the complexity of the problem domain and setting 
18

appropriate evolutionary conditions.
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