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	 Background:	 Osteosarcoma (OS), an aggressive malignant neoplasm, is the most common primary bone cancer mainly 
in adolescents and young adults. Differentially expressed modules tend to distinguish differences integrally. 
Identifying modules individually has been crucial for understanding OS mechanisms and applications of cus-
tom therapeutic decisions in the future.

	 Material/Methods:	 Samples came from individuals were used from control group (n=15) and OS group (n=84). Based on clique-
merging, module-identification algorithm was used to identify modules from OS PPI networks. A novel ap-
proach – the individualized module aberrance score (iMAS) was performed to distinguish differences, making 
special use of accumulated normal samples (ANS). We performed biological process ontology to classify func-
tionally modules. Then Support Vector Machine (SVM) was used to test distribution results of normal and OS 
group with screened modules.

	 Results:	 We identified 83 modules containing 2084 genes from PPI network in which 61 modules were significantly 
different. Cluster analysis of OS using the iMAS method identified 5 modules clusters. Specificity=1.00 and 
Sensitivity=1.00 proved the distribution outcomes of screened modules were mainly consistent with that of 
total data, which suggested the efficiency of 61 modules.

	 Conclusions:	 We conclude that a novel pipeline that identified the dysregulated modules in individuals of OS. The construct-
ed process is expected to aid in personalized health care, which may present fruitful strategies for medical 
therapy.
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al class scoring; FDR – false discovery rate; FN – false-negatives; FP – false-positives; GEO – gene ex-
pression omnibus; GO – gene ontology; iMAS – individualized module aberrance score; iPAS – individu-
alized pathway aberrance score; LIMMA – Linear Models for Microarray Data; OS – osteosarcoma; 
PPI – protein-protein interaction; RMA – robust multi-array average; SD – standard deviation; 
STRING – Retrieval of Interacting Genes; SVM – Support Vector Machine; TN – true-negatives; 
TP – true-positives
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Background

Osteosarcoma (OS), an aggressive malignant neoplasm, is the 
most common primary bone cancer mainly in adolescents and 
young adults [1,2]. Though the survival state has been improved 
after the introduction of neoadjuvant chemotherapy, the 5-year 
survival rate of OS patients with metastases at diagnosis is less 
than 30% [3,4]. Thus, it is significant that identifying potential 
therapeutic targets in the insights of molecular mechanisms.

As the high-throughput microarray experiments have been 
used in many fields, detection of expression level is an effi-
cient approach to find useful genomic alteration in OS patients. 
Recently, it has been reported that there are many important 
differently expressed genes (DEG) and pathways in OS [5–8].

There are abundant genes and pathways related to OS in da-
tabases. Critical to implicating novel genes is the identifica-
tion of core modules containing dysregulated pathways and 
complexes. A straightforward way was performed with identi-
fication and comparison of modules across normal and cancer 
tissue conditions by integrating PPI map and gene expression 
data [9]. Detecting deregulated pathways between disease and 
normal groups appears to be hotspot in recent years. The meth-
od individualized module aberrance score (iMAS) is designed 
to compare the expression profiles of a single patient with co-
hort data to detect molecular aberrances that are particular to 
the disease [10]. We use iMAS on account of the comparison 
of one OS patient with a lot of accumulated normal samples 
(ANS). This is a biologically intuitive guideline to interpret an 
individual disease that even lacks vast data, which is abso-
lutely different from the traditional gene expression analysis. 
The new method covers 4 steps: data processing, gene-level 
statistics, iMAS and a significance test. It could capture bio-
logical and clinical information in a sensible, valid and useful 
way for colorectal cancer and lung cancer [10]. We used iMAS 
to explore modules in OS samples in order to distinguish dif-
ferences from the control group.

In this study, we introduced a pipeline that identified modules 
from PPI network in individuals of OS. After narrowing down 
the number of correlated modules by Support Vector Machine 
(SVM), we used iMAS to distinguish differences in individuals. 
We hope that this will served as therapy-targeting markers and 
benefit individualized medical treatment of OS.

Material and Methods

Data preprocessing

The transcription profile was obtained from EMBI-EBI 
ArrayExpress [11]. Gene expression profiling of 99 tissues were 

collected from E-GEOD-33382 and E-GEOD-28974 to study the 
behavior of genes and their modules in individuals [5]. Samples 
were used from 15 controls and 84 OS patients. The platform 
used was Illumina human-6 v2.0 expression BeadChip (using 
nuIDs as identifier). Data of the gene chip was read in the ar-
ray [12]. The Linear Models for Microarray Data (LIMMA) [13] 
was then used to preprocess data. Background adjustment and 
quantile data normalization were performed by robust multi-
array average (RMA) [14]. To protect against outlier probes we 
used a robust procedure, median polish [15], to estimate mod-
el parameters. The average value of a gene symbol with mul-
tiple probes was calculated and 23 214 genes were obtained.

The human protein-protein interaction (PPI) map was collect-
ed from the Retrieval of Interacting Genes (STRING; v 9.0) [16], 
including 1 048 576 PPI sets. Filtering repeated ones, PPI sets 
were gathered in the condition of the combine score <0.8. 
Then we constructed a PPI subnet after getting intersection 
with 23214 genes and PPI network, which contained 37381 
PPI sets and 6665 nodes.

All analyses were performed in the bioinformatics platform 
from Honghui Biotech Co. Ltd. (Jinan, China).

Identifying modules from the PPI network

Using the human subnet as a backbone, we inferred a re-
weighted PPI network with expression and mutation profiles of 
normal and OS. Every side of the constructed PPI network was 
assigned with absolute value of Spearman correlation coeffi-
cient of every interaction according to gene expression data.

Based on clique-merging, a module-identification algorithm was 
used to identify modules from OS PPI networks [9,17,18]. We 
identified the set C of all maximal cliques of size at least k in 
the PPI network using a fast depth-first search with pruning-
based algorithm (CLIQUES) by Tomita et al. (2006). Next, we 
calculate its weighted interaction density score (C) as,

score (C)=score (C) = 
∑ �(�����������
|�|∙(|�|���  � (1)

We ranked these cliques in descending order of their score (C). 
A predefined overlap-threshold t0=0.5 was set to go through 
the list repeatedly. The modules were gathered by merging 
highly overlapping cliques.

Individualized analysis

The individualized module aberrance score (iMAS) for the per-
sonalized identification of modules was performed in OS, mak-
ing special use of accumulated normal samples (ANS). ANS 
was obtained from the gene expression omnibus (GEO) da-
tabase of NCBI (www.ncbi.nlm.nih.gov/geo/) [19]. Fifteen ANS 
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served with normal samples were collected for identifying ob-
tained modules.

The definition of expression level was developed with the mul-
tichip average [14]. For individual OS cases,

projdqk=

interaction according to gene expression data. 

Based on clique-merging, a module-identification algorithm was used to identify modules 
from OS PPI networks [9,17,18]. We identified the set C of all maximal cliques of size at 
least k in the PPI network using a fast depth-first search with pruning-based algorithm 
(CLIQUES) by Tomita et al (2006). Next, we calculate its weighted interaction density score 
(C) as,

{wzór 1 (1)

We ranked these cliques in descending order of their score (C). A predefined overlap-
threshold {t{0=0.5 was set to go through the list repeatedly. The modules were gathered by 
merging highly overlapping cliques. 

L2 Individualized analysis 

The individualized module aberrance score (iMAS) for the personalized identification of 
modules was performed in OS, making special use of accumulated normal samples (ANS). 
ANS was obtained from the gene expression omnibus (GEO) database of NCBI 
(www.ncbi.nlm.nih.gov/geo/) [19]. Fifteen ANS served with normal samples were collected 
for identifying obtained modules. 

The definition of expression level was developed with the multichip average [14]. For 
individual OS cases, 
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as quantile normalization was performed after combining the single OS data. Z= (z1, z2,..., zn)
represents the expression state of a module, where zi denotes the standardized expression 
value of i-th gene and the number of genes existing in the module is n. Module statistics of 
every module:  

iMAS = ∑ ����
�  (3) 

zi represents the standardized gene level statistics of 1-i gene and the number of genes 
existing in the module is n [10]. 

Module statistics from OS and normal sample tissues were tested in pairs with Wilcoxon test 
[20]. Since the test might induce false-positive results, we adjusted the raw P-values into false 
discovery rate (FDR) to circumvent the problem [21]. The FDR<0.05 and |log fold change 

� (2)

as quantile normalization was performed after combining the 
single OS data. Z= (z1, z2,…, zn) represents the expression state 
of a module, where zi denotes the standardized expression val-
ue of i-th gene and the number of genes existing in the mod-
ule is n. Module statistics of every module: 

iMAS=iMAS = ∑ ����
�  � (3)

zi represents the standardized gene level statistics of 1-i gene 
and the number of genes existing in the module is n [10].

Module statistics from OS and normal sample tissues were 
tested in pairs with Wilcoxon test [20]. Since the test might in-
duce false-positive results, we adjusted the raw P-values into 
false discovery rate (FDR) to circumvent the problem [21]. The 
FDR<0.05 and |log fold change (FC)|>1 were used as the cut-
off criteria. The adjusted P<0.01 was set to screen differen-
tially expressed modules.

Biological process analysis

Gene ontology (GO) analysis has been used frequently in func-
tional studies of large-scale genomic data [22,23]. To function-
ally classify modules, we performed biological process ontol-
ogy using Bingo of Cytoscape version 3.2.0 [24], which is able 
to reveal enriched GO terms. A P-value less than 0.01 was con-
sidered statistically significant.

Distribution outcomes in SVM

Support Vector Machine (SVM) was supervised computational 
methods used for classification and regression tasks that orig-
inated from statistical learning theory [25]. This measure is de-
fined as the total number of good classifications over the total 
number of available examples. SVM is widely used in compu-
tational biology due to its high accuracy, ability to deal with 
high-dimensional databases, and strong flexibility in model-
ing diverse sources of data [26]. We used C-classification to 
test the consistency of distribution results between OS mod-
ules and expression data. The expressing data of GeneChips 
were randomly grouped in experimental and test groups by 
the proportional 6: 4. SVM model was performed in 5 times 
fold cross-validation method. The classified test points can be 
divided into 4 categories: true-positives (TP), true-negatives 
(TN), false-positives (FP), and false-negatives (FN).

Accuracy=     TP+TN� (4)TP+FP+TN+FN

Sensitivity and specificity describe how well the classifier dis-
criminates the positive and the negative classes, respective-
ly [27].

Sensitivity=    TP� (5)   TP+FN

Sensitivity=    TN� (6)   FP+TN

Results

Modules identification and GO analysis

We identified 83 modules containing 2084 genes from PPI net-
work used clique-merging. Among them, 61 modules were sig-
nificantly different with Wilcoxon test (P<0.01). In the Go analy-
sis, 1568 biological processes were obtained from 61 modules. 
Their relation with p<1.0E-31 is shown in Figure 1.

Differentially expressed modules in individual

Cluster analysis of OS using the iMAS technology on Beer’s data 
distinguished 5 modules clusters (shown by 1–5 in Figure 2). 
Sample clusters represent histopathological differentiation sta-
tus. On the ordinate, 15 normal samples are clustered togeth-
er with red color, and blue color represents the differentiation 
status of OS. It claimed that impartial clustering-based iMAS 
was highly sensitive to gather crucial correlation with OS dis-
ease. From module clusters of Figure 2, M1, M2, and M5 are 
distinguished obviously with the control group. Module cluster 
M3 and M4 are relatively weak in distinguishing the differenc-
es between OS samples and ANS. Basically, in most OS sam-
ples, modules can detect differences from ANS. Therefore, iMAS 
is clinically useful in individualized medical treatment of OS.

Distribution outcomes in SVM

We used SVM to test distribution results of normal and OS 
group with screened modules. The classifier mainly judged the 
test set true-positive and true-negative exactly. Accuracy=100 
indicates the C-classification was precise enough to evaluate 
modules. Specificity=1.00 and Sensitivity=1.00 prove the dis-
tribution outcomes of screened modules were mainly consis-
tent with that of total data, which suggested the efficiency of 
61 modules. It proved modules could take the place of vast 
numbers of genes to distinguish differences in distribution re-
sults of OS patients and normal samples.
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Figure 1. �Relation network of modules in biology process with P<1.0E-31. Depths of color represents the value of P. The size of circles 
represents degree of the relation.
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Discussion

Dealing with clinical data can be problematic since the avail-
able data is usually high-dimensional and heterogeneous, 
which means vast numbers of features and different types of 
data [28]. The high accuracy and flexibility of SVM are suitable 
to the distribution problem proposed in this paper.

We used SVM to assess the efficiency of modules and found 
their distribution outcomes were mainly consistent with the orig-
inal data, with high accuracy of 100. This indicates the classifi-
cation analysis is helpful in precise diagnosis and prognosis of 
diseases. Therefore, screened modules could take the place of 
vast numbers of genes to perform individualize therapy in OS. 
However, the distribution outcomes of 61 modules have not been 
verified in abundance. We suggest that screened modules need 
to be checked in new studies and receive further modification.

Module analysis has become a common choice for extract-
ing and explaining the underlying biology for high-through-
put molecular measurements. Identification of differentially 
expressed modules in a single patient is significant to aid in 
personalized medicine, which may present fruitful strategies 
for OS therapy. Existing module analytical methods are unsuit-
ed to distinguish individual aberrance in pathways and mod-
ules. Therefore, we employed the iMAS to analyze the per-
sonalized identification of modules, taking advantage of vast 
amounts of normal data.

A key innovation of the method is the iMAS using ANS in OS. 
Ahn et al. [10] proved that the Average Z equation could effi-
ciently reveal noticeable aberrance in expression profiles and 
clinical significance, which sufficed to confirm the best aver-
aged validation rate and distinguish a known survival-relevant 
pathway statistically. Furthermore, ANS data is expected to be 

Figure 2. �Clustered iPAS of OS dataset. Modules (n=83) were clustered with the abscissa and samples (n=99) were clustered with the 
ordinate.
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available in more fields of medicine along with the rapid ad-
vances of high-throughput databases.

In this study, the iMAS was used to calculate module statis-
tics of every module and Average Z method was selected for 
modification of existing module analysis methods. There were 
61 modules with P<0.01 after adjustment of FDR, which were 
screened to be the most significant modules. The majority of 
them were clustered in M1, M2, and M5 (Figure 2). Therefore, 
these screened modules were efficient in distinguishing dif-
ferences in individual OS samples. It can provide broader car-
cinogenic insight in personalized medicine [29].

Conclusions

Based on our results, we present a novel pipeline that identi-
fied the dysregulated modules in individuals with OS. Modules 
can be markers in identification of OS. iMAS provides a sensi-
tive measure for clinical features of patients and can be use-
ful in analysis of individual medical treatment in OS. The con-
structed process is expected to aid in personalized health 
care, which may present fruitful strategies for medical therapy.
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