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+e purpose of this study is to utilize flexible curved noncontact active electrodes to develop a nonperception, long-term, and
wireless heart rate monitoring system. +is study also verified the functions and capabilities of the system and provided in-
formation on physiological parameters recorded during our tests. Our system was used in tandem with a commercially standard
measurement system; both systems were used to measure ECG signals on 10 healthy subjects under the simulated home and office
scenarios. We verified the R-peak measurement accuracy of our system and used T-tests to analyze the data collected by both
systems; our system reached an average sensitivity value of 0.983 and an average positive predictive value of 0.991 over several
different scenarios where R-peak measurements were also highly accurate. +e R-R time intervals of our system were highly
consistent with the standard system.+e correlation coefficient calculated reached almost one, and the differences between the two
systems mostly fell within the ±10ms range. Further study of the HRV time-domain parameters under four different scenarios
showed no significant differences in most HRV parameters compared to the measurements by the standard system. We also used
our system to record long-term heart rate signals.

1. Introduction

Adapting to lifestyle changes and the rapid pace of today’s
society can be stressful for our lives. Over a long period of
time, the stress may cause cardiovascular disorders. Addi-
tionally, the emergence of cancer and related illnesses are
also closely correlated with stress. We often do not notice
when we are under stress. +erefore, it is difficult for people
to determine whether or not they are suffering from too
much stress. Many people may not be aware that stress can
cause symptoms such as constipation, poor sleep, allergies,
fatigue, anxiety, and weight gain, all of which are harbingers
of serious physical disorders. Furthermore, excessive stress
can result in physical imbalances that affect the autonomic
nervous system (ANS) and the endocrine system. We hope
that continuous measurements of heart rate signals and
calculations of the heart rate variability (HRV) parameters
can help us assess the status of the sympathetic and the
parasympathetic nervous systems. +ose HRV parameters

can also serve as important indicators of the stress level.
HRV is correlated with physical and mental health and can
also reflect the state of balance between the autonomic and
nonautonomic nervous systems. However, the process of
taking physiological measurements can be easily impacted
by environmental factors, such as tangled wires and elec-
trode contacts, which may cause discomfort in patients.
Also, the “white coat effect” of hospitals has been well known
to affect the measurements of physiological signals in
patients.

Studies of skin-electrode interfaces in the literature re-
port that bioelectrical electrodes mostly fall into one of three
categories, depending on the type of contact medium used.
Wet electrodes are the ones most commonly seen in clinical
and experimental settings. +ese electrodes conduct elec-
tricity through electrolyte gels spread over the skin. +e gels
may cause skin irritation and patient discomfort. Possible
allergic reactions to the gel, inconvenience of use, and
shorter electrode lifespans are the main drawbacks of wet
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electrodes [1]. By contrast, dry electrodes, defined by Searle
et al. and Chi et al. as electrodes that come into direct contact
with human skin [2, 3], are placed on the stratum corneum
(SC), which has high resistivity. Dry electrodes rely on
conductive materials in the environment or on the body (for
example, sweat or water) to conduct electricity, and there-
fore, the electrical coupling abilities of dry electrodes may
change over time due to differences in available conductive
materials. Finally, the third type of electrode, the capacitive
electrode [4, 5], is one that does not come into direct contact
with the skin and contains an isolation layer made of
nonconductive material such as human hair, cloth, clothing,
or air. +e main feature of capacitive electrodes is that they
are nonconductive electrodes that do not come into elec-
trical contact with the human body. +ey do not rely on
liquid media to conduct electricity. However, unlike wet
electrodes, capacitive electrodes measure displacement
currents and not electric charges flowing through a skin-
electrode interface. Because of this, capacitive electrodes are
safer to use and require neither skin exfoliation nor the use
of conductive gels.+ey are ideal for use in long-term patient
monitoring, especially in situations where there are no
medical personnel available. In 1967, Richardson pioneered
the research of using capacitive electrodes to make physi-
ological measurements; he used capacitive electrodes coated
with a thin, nonconductive layer of aluminum oxide to
measure bioelectrical signals [6]. Noninvasive capacitive
electrodes use nonconductive materials to form a layer of
insulation between the electrode and the human body,
resulting in high impedance levels of several dozen pF in
capacitance and several hundredMΩ in resistance [7], which
makes them safer for users and prolongs their useful life-
span. However, an obvious drawback of capacitive elec-
trodes is that the signals captured tend to be weaker.

In the literature, many researchers have pointed out that
there are three types of interference that are present when
capacitive electrodes are used to capture ECG signals. +e
first type of interference comes from electromagnetic fields
in the measurement environment, the second type from
friction on the skin-electrode interface, and the third type,
from changes in capacitance coupling caused by vertical
movements on the interface when there is a direct current
running through the two ends of the coupled capacitor.
Earlier measurement systems utilized capacitive grounding
techniques to reduce common-mode noise in power lines or
other electronic devices. Although this reduced impedance
between the human body and the ground, levels of common-
mode noise were still high and often caused a saturation
effect when signals entered electrodes. Some researchers
used a driven-right-leg circuit for capacitive electrodes and
used common-mode feedback to reduce common-mode
interference [8, 9]. Electrode coupling capacitance levels are
dependent on the distance between the electrode surface and
the skin. Movement perpendicular to the skin-electrode
interface induces a change in coupling capacitance values,
which then produces low-frequency noise caused by voltage-
measured fluctuations. Researchers discovered that the
elasticity of soft electrodes stabilized contact between an
electrode and the human body and minimized motion noise

[10]. An alternative suggested solution was a wearable device
worn close to the skin, such as a belt or a skintight vest,
which can help to inhibit noise generated by vertical mo-
tions. Horizontal movements are another source of motion
noise. Many researchers have studied the phenomenon and
mechanism of noise made by motion friction and have used
highly elastic soft electrodes to minimize signal changes
caused by friction [11].

Additionally, the direct voltage running through the two
ends of the coupled capacitor come from different sources,
with one end being a bias current from an amplifier and the
other being electric charges generated by electrodes rubbing
against the skin. It is necessary to provide a biased pathway
for the direct currents, as flowing it through the high-re-
sistance back-end and high-gain circuits will create signal
saturation and make it impossible to capture physiological
signals. Biased pathways are commonly set up with a resistor
that has an impedance level higher than that of the amplifier
input impedance. +e resistor is connected to the input end
and the power ground of the amplifier. +e amplifier input
impedance is thus on a common node with the biasing
resistor. Past literature has proposed many methods to
provide the biased current with the necessary pathway
without affecting the high input impedance of the front-end
amplifier, for example, the use of bootstrapping, which uses
feedback to drive the voltage at the input terminals and
minimize signal leakage to the biased current [12, 13]. Al-
ternatively, utilization of internal amplifier bias may result in
low-frequency drift; more commonly, the amplifier output
terminal is connected to a circuit that filters out the direct
current [14–16]. Some researchers have pointed out that the
impedance level of the biased current pathway does not need
to be a precise value and that saturation of the front-end
circuit can be prevented as impedance levels meet threshold
values. +is impedance may cause an increase in measured
voltages signals, but it can be removed through back-end
filtering or negative feedback.

Furthermore, the coupling capacitance of the skin-
electrode interface is equivalent to the stray capacitance of
the electrode when noncontact electrodes are used to take
subject measurements, and this can cause signal attenuation.
To obtain high-quality signals, we must reduce this stray
capacitance and issues related to the biased current, as both
of these may reduce the input impedance of signals. For this
reason, guarding and neutralization techniques are often
applied to avoid the effects of stray input capacitance from
the amplifier and to minimize the input capacitance of the
circuit [13, 17]. Capacitive electrodes make it possible to
capture bioelectrical signals even when clothing is worn.
+ere have been a number of studies on the measurement
quality due to wearing different clothing [18–20] or using
different accessories such as beds [21], chairs [22], bathtubs
[23], wheelchairs [24], and on car seats [25, 26]. However,
many of these studies have only tested the feasibility of the
technology and not the long-term monitoring or recording
functions of these systems.

HRV is calculated by measuring changes in the intervals
between heartbeats, as well as increases and decreases in
heart rate, due to the effects of sympathetic mediators
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(adrenalin and norepinephrine) and parasympathetic me-
diators (acetylcholine) on the sinoatrial and atrioventricular
nodes [27]. HRV is an important indicator of cardiovascular
autonomy [28], as well as mental and physiological health.
Some researchers have suggested that HRV can be used to
reflect changes in emotional shifts [29]. Many researchers
have proposed some mathematical and statistical models for
HRV calculations. For example, in 1996, the European
Society of Cardiology and the North American Society of
Pacing and Electrophysiology published a paper listing in-
ternational standards for clinical application of HRV
measurements and physiological indications that can be
gleaned from HRV figures [28]. +ese international stan-
dards contain standardizedmethods for analyzing HRV.+e
two most common parameters used are the time-domain
parameter and the frequency-domain parameter. Addi-
tionally, it was proposed that two SDNN variables (the
SDNN index and SDANN index) are calculated by breaking
down 24-hour monitoring periods into 5-minute subin-
tervals. It is recommended that each continuous section of
recording time should be twice that of the minimum signal
period [30] for the calculations of frequency-domain pa-
rameters. Many researchers suggest a minimum duration of
5 minutes be used for short-term HRV measurements
[30–32].

+e purpose of this study is to develop a capacitive heart
rate measurement system that is noncontact, nonbinding, and
nonperception and can be used for long-term measurements
through the utilization of noncontact active electrodes. In our
system, the guarded circuits and biased-path pathways were
designed. +e curved noncontact active electrodes are placed
in the back of a commercially available adjustable chair
commonly used in the home and office.+e curved electrodes
and ergonomically designed chair back make it possible for
our system to adapt to different body shapes and different
types of chairs, bringing the electrodes as close as possible to
the skin of the subject, so the subject’s heart rate can be
measured. At this time, the subject does not perceive the
presence of these electrodes. Since the system does not come
into contact with the skin and the subject’s movements are
not limited by hardware or wires, there is no need for subjects
to cease their daily activities when measurements are being
taken. +is can obviate the mental and physiological effects
associated with more formal measurement settings. +ere-
fore, the system can be used for long-term monitoring.

2. Materials and Methods

2.1. System Structure. +is paper presents a capacitive
coupling-electrocardiogram (CC-ECG) measurement sys-
tem using noncontact active electrodes. In the system
structure, Figure 1(a) shows the microswitch in the chair
back for the activation of the system and the capacitive
coupling electrodes used to measure ECG signals. +ese
signals are sent to the CC-ECG measurement circuit (as
shown in Figure 1(b)) and digitally converted by a 24-bit
ADC converter before being sent to the MCU chip, a 32-bit
microcontroller manufactured by Microchip (serial number
PIC32M× 775 F512L), as shown in Figure 1(c). +e digital

signals were then filtered through an infinite impulse re-
sponse IIR Butterworth filter before R-peak detection be-
cause the Butterworth filter has better flat features. +e HRV
parameters are then calculated within the time intervals
between R waves. +ese parameter values are then trans-
mitted via the Wi-Fi interface provided by the Microchip
RN1723 module (Figure 1(d)). Our system also supports the
use of Bluetooth transmission of these parameter values to
the information consolidation platforms, which consist of
remote computers or smart devices. Once received, physi-
ological parameter values are stored, analyzed, and displayed
on the platform for future application.

2.2. Design of Capacitive Coupling Electrodes. +e front end
of the capacitive coupling electrodes consists of voltage
followers in which the amplifier used is an OPA121 chip
manufactured by Texas Instruments with an input imped-
ance of Zin� 1013Ω || 1 pF. As shown in Figure 2, the op-
erational amplifier is used as a voltage follower. Better circuit
performance can be obtained according to decreased cou-
pling capacitance (Cc) and parasitic capacitance (Cp), and
therefore, it is necessary to include an amplifier with high
input impedance. Apart from using the shielding effect to
reduce the effects of stray capacitance (Cshield), it is also
necessary to provide a pathway for the biased current using a
high-impedance biased RB resistor to increase thermal noise.
+e input impedance of the RB resistor and the input ca-
pacitor Cin needs to be much higher than that of Cc to avoid
weakening captured signals. Cc and Cin are capacitive di-
viders, so the input capacitance of Cin needs to be low to
avoid causing voltage division and weakening of inhibition
capabilities toward interference and motion noise. Overall,
biased currents with high impedance and low input ca-
pacitance are both keys to lowering noise.

To form the biased current pathway, a high-impedance
resistor is connected to the ground from the input terminal
of the electrode, thus forming a simple but stable direct
biased pathway. +e biased resistor used in our system has
an impedance of 150GΩ. +e internal capacitance of the
voltage follower is 1 pF; we only looked at R waves in in-
coming ECG signals when considering the frequency of
incoming signals (the frequency of R waves is around 10Hz),
making the equivalent impedance around 15GΩ. +us, the
impedance of the biased pathway is around ten times that of
the voltage follower, and the internal input capacitance of
the voltage follower becomes the dominant impedance. For
low-frequency noise from direct currents, our biased im-
pedance will dominate input impedance, and therefore,
increases in biased impedance would have helped inhibit
direct current noise. However, because our system is used to
measure heart rate variability, we considered the biased
impedance pathway provided by the 150GΩ impedance to
be suitable for our purposes.

To decrease the input capacitance, we use guarded
currents to enhance signal quality and to decrease the noise
caused by the high impedance of the voltage follower, other
currents, and environmental factors. +e input terminal is
wrapped in insulating metal (as shown in Figure 3(a)),
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causing the input terminal and the insulating metal to form
stray capacitance Cshield. In order to ensure that this stray
capacitance pathway Cshield would not cause noise within

our measurement space and affect our input terminal, we
equalized the electrical potential at both terminals and
connected the input terminal of the voltage follower to the
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insulating metal terminal to form a feedback driving circuit
that is equal to input signals. +is connection decreased the
effect of noise caused by stray capacitance and achieved the
objective of preventing electromagnetic interference.
Figure 3(a) shows a circuit with a feedback gain of 1, which
may cause the circuit to oscillate. To avoid oscillation, we set
the Af gain to 0.9, as shown in Figure 3(b), based on current
research by other scholars [33]. Because of this gain setting,
the best measurement results can be obtained.

2.3. Flexible Curved Electrodes and CC-ECG Measurement
Circuit. In this system, we use four stainless steel sheets with
flexible and curved surfaces as electrodes. +e length and
width of the electrode are 5 cm× 3 cm and the thickness is
0.3mm. An electrode with a flexible and curved surface can
achieve better adhesion to the body surface of the subject so
that the electrical signal of the subject can be more easily
captured. +e material used in stainless steel is mainly
considered to be less prone to oxidation over long-term use.
We placed two capacitive coupled electrodes (above) and
two reference electrodes (below) into a commercially
available adjustable chair back, as shown in Figure 4(a). +e
position of our reference electrode is different from that of
most other studies; researchers generally placed their ref-
erence electrodes at the bottom of chair cushions where it
would be close to the buttock area of subjects. However, it
was difficult for us to place an additional electrode at the
buttock area of our chair back as this would have required
additional wires and devices, so we chose to place our
reference electrode beneath the capacitive coupled elec-
trodes. +e noncontact reference electrode and the front-
end circuit are connected in a driven-right-leg manner, as
shown in Figure 4(b). A microswitch is also placed in the
chair back. When a user’s back slightly touches the chair
back, the change in the electrical potential of the micro-
switch is transmitted along the circuit to the MCU, and the
system is then activated. In the same way, the system is shut
down automatically when the user vacates the chair.

+e capacitive ECG measurement circuit serves as the
front-end circuit of the electrodes with the primary purpose
to inhibit noise so that physiological signals can be captured
and amplified without loss of quality. Figure 5 shows a
diagram of the capacitive ECG measurement circuit. Signals
captured by the capacitive coupled electrodes are passed
through an amplifier with a high common-mode rejection
ratio (CMRR), where the differential between the two
electrodes is obtained. +is is equivalent to the Lead I signal
in standard ECG measurements. +e signals are then run
through a circuit composed of a 0.5Hz high-pass filter
(HPF), a 100Hz low-pass filter (LPF), and a 60Hz band-stop
filter before they pass through a programmable gain-ad-
justed circuit. When the system detects that the signal is too
small (<50%) or too large (>75%), the system will perform
gain adjustment to increase or decrease the gain of the
analog circuit to obtain a better signal.+e output signals are
then run through a 24-bit ADC converter for digital con-
version, and the digital information is transmitted to the

MCU via an SPI interface. +e sampling frequency of the
ADC is set to 1 kHz.

We implement digital filters to obtain better-quality
signals and minimize noise effects. Appropriate use of digital
filters can effectively decrease the cost of analog circuits and
make future adjustments easier to manage. We also use
0.5Hz HPF and 100Hz LPF IIR Butterworth filters in this
study to install on MCUs. +e order number of two IIR
Butterworth filters are equal to 9.

+e MCU transmitted processed physiological param-
eter values and other information through an RN1723Wi-Fi
module and a server using a TCP/IP protocol. RN1723 is an
independent embeddable 802.11 b/g Wireless Local Area
Network (WLAN) module. +e system is set up using the
commands via UART. Low power consumption is one of the
main features of the RN1723 module, making it suitable for
use in applications that need to be connected via Wi-Fi for a
long period of time, such as in physical monitoring systems
using various types of sensors. After the connection between
our system and routers is established through our Wi-Fi
interface, our system is able to transfer data back to our
client server remotely.

2.4. R-Peak Detection and Calculations. In this study, our
algorithm is used to detect R-peaks [34]; the detection
processing is outlined in Figure 6. Once ECG signals are
captured, this algorithm calculates the slope of each sample
point preceding and following the ECG sampling point x(n)
for the time domain, as shown in equation (1). +is equation
carries a weighted value to highlight changes in slope. Before
we explain how the slope threshold is calculated, let us first
explain how the parameter for the maximum slope value
(maxi) is calculated. +e initial value of the maxi parameter
is the maximum value of slope (n) taken within one second
after sampling. Newly detected R-peak waves then update
this value. +e algorithm for calculating the slope threshold
(slope_threshold) is as shown in equation (2). Furthermore,
we found that when the slope (n) of two continuous points
both exceeded the dynamic slope threshold, those points
could then serve as the start of the QRS wave and be further
extended to find the maximum value, which is defined as the
peak of the R wave. After this, each detected wave peak is
used to update the maxi parameter and the slope_threshold
parameter, as shown in equations (2) and (3). +e first maxi
parameter is obtained via equation (4).

slope(n) � −2x(n − 2) − x(n − 1) + x(n + 1) + 2x(n + 2),

(1)

slope threshold �
maxi
2

, (2)

maxi �
first maxi − maxi

16
+ maxi, (3)

first maxi � heightn R point − heightn start QRS. (4)
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2.5. Heart Rate Variability. +e method used for analyzing
heart rate variability in this study is done by the HRV in-
ternational standards [35] published by the European Society
of Cardiology and the North American Society of Pacing and
Electrophysiology. Time-domain analysis is conducted on a
series of signals in continuous R-R time intervals. Mea-
surements are conducted on the average or relative average
heart rate in the R-R time interval, as shown in equation (5).
+e standard deviation of the R-R time interval (SDNN) is
defined as shown in equation (6), with RRj representing the
value of the jth R-R time interval and N being the total
number of continuous intervals. SDNN reflects the overall
change in the R-R time interval sequence, and the root means
square of the continuous R-R time interval difference
(RMSSD) is as shown in equation (7). +e coefficient of
variation (CV) of the R-R time interval is as shown in
equation (8), where the continuous R-R time interval dif-
ference is used to derive another indicator (NN50), namely,

the number of continuous time interval differences that ex-
ceed 50ms, as shown in equation (9). Time-domain analysis is
easier to implement in portable systems.

Our noncontact monitoring system does not interfere
with the daily lives of users while our back-end display
platform automatically captures and records data. Phys-
iological signals are transmitted to remote computers and
human-machine interfaces through the Wi-Fi interface.
+e human-machine interface used in this system is based
on the LabWindows software developed by US Company
NI. +e display interface mainly displays the HRV pa-
rameter values of users seated against the chair back;
parameters shown include HR, mean RR, SDNN, RMSSD,
CV, NN50, and pNN50. ECG waves captured by the
system in real time are also displayed.+is systemmakes it
possible to capture information and store them in per-
sonalized databases to facilitate continuous monitoring of
individuals over a long period of time.
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MeanRR �
􏽐

N
j�1 RRj

N
, (5)

SDNN �

�������������������

1
N − 1

􏽘

N

j�1
RRj − RR􏼐 􏼑

2

􏽶
􏽴

, (6)

RMSSD �

���������������������

1
N − 1

􏽘

N−1

j�1
RRj+1 − RRj􏼐 􏼑

2

􏽶
􏽴

, (7)

CV �
SDNN
meanRR

· 100%, (8)

pNN50 �
NN50
N − 1

· 100%. (9)

3. Experimental Procedures

3.1. Experiments under Different Scenarios and Tests over a
Long Period of Time. We conducted several experiments to
test our capacitive heart rate measurement system and its
performance in different daily life scenarios, as shown in the
process flow diagram of Figure 7. We conducted continuous
measurements lasting 40 minutes. In addition to peaceful
activities such as video-watching and music-listening, we
also included dynamic daily activities such as typing and
eating for a total of four scenarios. During our tests, we asked

ten subjects (age: 23.5± 5.2 years, height: 172.3± 10.2 cm,
weight: 69.2± 15.6 kg, male: 7 people, and female: 3 people)
to sit against our chair-back system and run through the
various scenarios while we simultaneously recorded their
CC-ECG and standard ECG. +ose subjects who did not
have any age limit and cardiovascular disease were chosen
for our tests, but in consideration of technical limitations
and daily usage scenarios, subjects dressed in overly bulky
clothing were asked to remove their clothing in order for the
test to run smoothly.

Another experiment was focused on measurements
taken over a long period of time. +is experiment was
conducted on graduate students who spent an extensive
amount of time on their computers. Measurements were
taken continuously from 9 am to 5 pm over 8 hours. +e
graduate student entered the lab at 9 am. Excluding the time
period when they left to purchase food, eat, or go to the
bathroom, they spent pretty much their whole day doing
work at their computers until they left the lab at 5 pm.

3.2. Verification of System Structure. We exercise a number
of experiments to assess the performance of our capacitive
heart rate system which can be used on computer chairs at
home or in office environments and to verify the heart rate
measured by the capacitive system using ECG signals
measured by standard measurement tools. We used the
AcqKnowledge software and the BioPAC MP150 multi-
channel physiological measurement system to form a
platform for data capture, analysis, and storage.+e BioPAC
MP150 measurement system is composed of an MP150
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Figure 6: +e flow diagram of detecting R-peak process.

Journal of Healthcare Engineering 7



device, a UIM100C universal interface module, and an
ECG100C ECG amplifier module. After careful consider-
ation of how our experiments should be structured, we
decided to use Ag-AgCl electrodes and directly stuck them
onto the chests and calves of our subjects instead of placing
them on the limbs. We used the ECG100C ECG amplifier
module to perform simultaneous Lead I contact measure-
ments, while our subjects leaned back against the noncontact
active-electrode chair back. One experiment lasted 40
minutes, and another one lasted 8 hours in order to test the
long-term measurement performance of our system. +e
ADC filter parameter of the ECG100C ECG amplifier
module was set to a high-pass cutoff frequency of 0.05Hz
and a low-pass cutoff frequency of 150Hz, while the band-
stop frequency was set to 60Hz. +e UIM100C universal
interface module was connected to the MP150 through an
external connection to provide 16 channels of digital input
(front panel) and 16 channels of analog input (back panel).
+e system connection structure is shown in Figure 8. We
used the touch function of the AcqKnowledge software to
verify different input signals and captured and conducted
simultaneous capture, collection, and analysis of signals.
Figure 9 shows the waves captured by our system.

3.3.DataAnalysis andVerification. We evaluated the quality
of our signal measurement through sensitivity (Se) and
positive predictive value (PPV) analyses. +e analyses were
divided into three parts: the first part was verification of
R-peak detection accuracy in determining the stability of the
system; the second part was verification of R-R time intervals
and analysis of correlation with signals measured by the
BioPAC MP150 (ECG100C); the third part was verification
of differences in HRV parameters, where we took R-R time
interval information captured from our 10 test subjects and
used our self-developed software to calculate HRV pa-
rameters for comparison.

To verify the accuracy of R-peak detection, we obtained
standard ECG waveform detection results by entering sig-
nals captured by the MP150 to the BIOPAC AcqKnowledge
software. +e R-peak detection is run under the Lab-
Windows environment to detect the R-peak. We first used
the software to compare the relative positions of R-peaks.
Researchers conducted additional interpretation when ab-
normalities were detected. Based on our detection analysis,
we divided R-peak detection results into four categories: true
positive (TP), where there was an actual R-peak, and our
system detected the R-peak; false positive (FP), where there
was no actual R-peak, but our system detected an R-peak;
false negative (FN), where there was an actual R-peak, but
the system did not detect an R-peak; and true negative (TN),
where there was no R-peak and the system did not detect an

R-peak. It is difficult to calculate TN in such a detection
scheme, so this is likely the reason TN is not used in the
performance metrics.

After we had categorized all our R-peak detection results,
we used Se and PPV parameters to assess the accuracy of
R-peak detection, as shown in equations (10) and (11). +e
Se parameter refers to the percentage of R-peaks detected by
our system as compared to the actual amount of R-peaks.
Higher sensitivity indicates higher R-peak detection accu-
racy. +e PPV parameter refers to the percentage of actual
R-peaks among the R-peaks detected by our system; this
parameter was used to measure the error rate of the system.
Higher PPVs indicate higher R-peak detection accuracy.

Sensitivity(Se) �
TP

TP + FN
, (10)

Positive predictive value(PPV) �
TP

TP + FP
. (11)

According to the range of the R-R time interval, if the
heart rhythm exceeds 1500mm·sec (40 bpm) and less than
400mm·sec (150 bpm), it will be regarded as an erroneous
heart rhythm signal that will be removed. In that case, we
referred to the standard ECG measurement waveform to get
the correct false and positive information. After removing
false positive and false negative, we analyzed disparities in
HRV values by entering R-R time interval information into
our parameter algorithms for comparative analysis. We also
used the algorithms to calculate respective HRV parameters
for HRVCC-ECG and HRVStandard under different scenarios.
Correlation and differential analysis were then conducted on
HRVCC-ECG and HRVStandard for the same scenario. All
analyses were conducted using the SPSS (version 20) soft-
ware developed by IBM, with confidence intervals set to 99%
and significance levels set as smaller than 0.01 (p< 0.01).

4. Results

4.1. Noncontact Chair-Back Capacitive Heart Rate Mea-
surement System. We used a noncontact measurement
technique that does not interfere with the daily lives of users
to establish a nonperception physiological measurement
system, as shown in Figures 10(a) and 10(b). We used a
commercially available adjustable chair back as the basis for
our system. An ergonomically designed chair back was
chosen to decrease the gap between the chair back and the
back of human users and also to make it possible to adjust
the chair back in accordance with user body shapes. Curved
capacitive coupled electrodes are suitable for adaption to
different body curvatures and make it easier for users to
press their backs against the back of the chair, thus

Start Rest
Watch
video

Listen
to music Type EatRest Rest Rest Stop

5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min

40 min

Figure 7: Scenario process diagram.

8 Journal of Healthcare Engineering



enhancing the signal-capturing ability of the system.+e use
of a chair back widens the field of application and makes it
more convenient to use as the system does not have to be
limited to a single office chair. As can be seen from
Figure 10(c), this chair-back device can be placed on any
household chair. +e integrated circuit box and power
supply (provided by a power bank) are placed inside the
chair back so that the chair could be moved freely. Figure 11
shows the circuit board of the integrated system circuit box.

+e circuit board is composed of a 32-bit microcontroller
paired with a Wi-Fi module (RN1723). +is circuit board
also utilizes separate digital and analog circuit modules
where the lower circuit board is used for control, trans-
mission, and power switch of digital information and the
upper circuit board is used to capture analog CC-ECG
signals that are digitally converted by a 24-bit, high-reso-
lution ADC, allowing for better tolerance of biased DC
voltages. A Wi-Fi interface is used for data transmission.
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Power is provided by a commercially available 5V power
bank, which is rechargeable and thus more convenient for
use. +e system also includes a self-developed user interface
that ran on the human-machine interface.

We simultaneously used our system and a commercially
available instrument to obtain ECG graphs, as shown in Fig-
ure 12. +e graphs show standard ECG charts captured by the
commercial instrument (BioPAC MP150) and the others cap-
tured by our capacitive coupled electrode system under resting,
video-watching, music-listening, typing, and eating scenarios.
We can see from Figures 12(d) (typing) and 12(e) (eating) that
low-intensity EMG signals can be captured by BioPAC MP150
under these scenarios. Additionally, in Figure 12(e) (eating), we
can see that there is some drift in the waves produced by the
capacitive coupled electrode system. +e system is common in
capacitive coupled electrode systems, mainly due to changes in
the distance between the body and the electrodes.

4.2. Accuracy of R-Peak. Our ten subjects underwent four
different scenarios in 40 minutes. +e results are shown in
Table 1. From left to right, the columns list the number

assigned to each subject, their actual heart rate, their de-
tected heart rate, and then their TP, FP, FN, Se, and PPV
results. Average sensitivity was 0.983, and average PPV was
0.991. Figure 13(a) shows the sensitivity under different
scenarios, and Figure 13(b) shows the PPV results. We can
see that more dynamic behaviors, such as typing and eating,
produced slightly lower Se and PPV results. Se values stayed
above 0.943 and PPVs stayed above 0.967. From this
analysis, we can see that the system has a fairly accurate
R-peak detection ability.

4.3. RR Time Interval Association. Following the R-peak
verification to detect false positives and false negatives,
according to the reasonable range of the R-R time interval,
we removed abnormal values and used the SPSS software to
conduct correlation analysis on R-R time intervals. We used
a scatter plot to observe the relationship between standard
measurements and the R-R time intervals captured by our
system. We can see from the figure that the two have a very
high positive correlation.+e Pearson correlation coefficient
r for the two sets of data was 1.00, and the coefficient of
determination (r2) was close to 1. We also conducted a
differential analysis of the two sets of data to determine the
differences between the two, as shown in Figure 14. We can
see that most time differences fell within the ±10ms range
and that when 85 beats/min was set as one cycle, the dif-
ference only fell within the ±1.4% range. +is indicates that
the R-R time intervals obtained by our system are highly
consistent with standard data captured by commercial
instruments.

4.4. HRV Differences. We analyzed the time domains of the
signals captured by our system (HRVCC-ECG) and the
standard signals captured by the commercial instrument
(HRVStandard) under different scenarios (resting, video-
watching, music-listening, typing, and eating) to obtain the
mean RR, SDNN, RMSSD, CV, NN50, and pNN50
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Figure 10: (a) Measurement system and office chair. (b) Chair-back device. (c) Actual measurement conditions.
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parameters, as well as the means and standard deviations of
the various HRVCC-ECG and HRVStandard parameters. We
then ran T-tests on the HRVCC-ECG and HRVStandard pa-
rameters to obtain p values and correlation coefficients for
different scenarios, as shown in Tables 2–6. From these
tables, we can see that the Pearson correlation coefficient (r)

between the HRVCC-ECG and HRVStandard data is close to 1.
+ere were no significant differences between HRVCC-ECG
and HRVStandard measurements during resting, video-
watching, music-listening, typing, or eating. Figure 15 is a
graph showing the different parameter values for the ten
subjects. Since eating tends to cause the heart rate to rise, the
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Table 1: Performance of R-peak detection.

Subject Actual total
heartbeat number

Detecting total
heartbeat number

True positive
(TP)

False
positive (FP)

False
negative (FN)

Sensitivity
(Se)

Positive predictive
value (PPV)

1 2727 2725 2723 2 4 0.999 0.999
2 2566 2524 2478 46 88 0.966 0.982
3 3355 3355 3355 0 0 1.000 1.000
4 2577 2569 2555 14 22 0.991 0.995
5 2534 2510 2494 16 40 0.984 0.994
6 3052 3048 3034 14 18 0.994 0.995
7 2248 2247 2246 1 2 0.999 1.000
8 2556 2470 2394 76 162 0.937 0.969
9 3272 3204 3153 51 119 0.964 0.984
10 3657 3646 3636 10 21 0.994 0.997
Average value 0.983 0.991

0.999
±0.002

0.994
±0.006

0.943
±0.115

0.974
±0.037
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Figure 13: (a) Sensitivity (Se) and (b) positive predictive values (PPV) for the ten subjects under different scenarios.
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Table 2: Mean, standard deviation, correlation coefficient, and p values of HRVCC-ECG and HRVStandard data under the resting scenario.

Parameter Unit
Average (STD)

T value p Correlation coefficient
HRVcc HRVStandard

Mean RR (ms) 691.44 (104.44) 691.35 (104.27) 1.753 0.114 1.000
SDNN (ms) 43.39 (26.36) 45.37 (26.31) 0.594 0.567 1.000
RMSSD (ms) 28.20 (18.52) 28.32 (18.52) −1.413 0.191 1.000
CV (%) 6.31 (3.15) 6.31 (3.14) 0.606 0.559 1.000
NN50 5.09 (8.58) 5.15 (8.68) −0.887 0.398 1.000
pNN50 (%) 6.76 (11.70) 6.84 (11.84) −0.893 0.395 1.000

12 Journal of Healthcare Engineering



standard deviation is smaller for mean RR time intervals in
the eating scenarios. +e mean SDNN changes for different
scenarios and the most significant change in standard de-
viation was found in the resting scenarios. +e same was
found for RMSSD, CV, and pNN50, although the standard
deviation was found to be the greatest for pNN50 in the
music-listening scenario. +is could be due to the short

intervals between heartbeats when different individuals
listened to music.

4.5. Long-Term Measurements. Our system is capable of
making long-term measurements, a task not easily achieved
by contact-type commercial instruments unless subjects

Table 3: Mean, standard deviation, correlation coefficient, and p values of HRVCC-ECG and HRVStandard data under the video-watching
scenario.

Parameter Unit
Average (STD)

T value p Correlation coefficient
HRVcc HRVStandard

Mean RR (ms) 694.42 (106.35) 694.33 (106.18) 1.849 0.098 1.000
SDNN (ms) 31.21 (18.02) 31.20 (18.02) 0.303 0.769 1.000
RMSSD (ms) 18.90 (12.85) 19.05 (12.87) −1.688 0.126 1.000
CV (%) 4.31 (2.05) 4.30 (2.05) 0.317 0.759 1.000
NN50 3.75 (6.15) 3.74 (6.07) 0.148 0.885 0.999
pNN50 (%) 4.99 (2.68) 4.97 (8.34) 0.226 0.826 1.000

Table 4: Mean, standard deviation, correlation coefficient, and p values of HRVCC-ECG and HRVStandard data under the music-listening
scenario.

Parameter Unit
Average (STD)

T value p Correlation coefficient
HRVcc HRVStandard

Mean RR (ms) 703.65 (119.47) 703.53 (119.28) 1.990 0.078 1.000
SDNN (ms) 30.09 (18.37) 30.09 (18.36) −0.268 0.795 1.000
RMSSD (ms) 19.48 (14.39) 19.63 (14.42) −2.464 0.036 1.000
CV (%) 4.03 (1.84) 4.03 (1.84) −0.257 0.803 1.000
NN50 4.21 (7.66) 4.36 (7.89) −1.964 0.081 1.000
pNN50 (%) 5.88 (10.99) 6.09 (11.32) −1.884 0.092 1.000

Table 5: Mean, standard deviation, correlation coefficient, and p values of HRVCC-ECG and HRVStandard data under the typing scenario.

Parameter Unit
Average (STD)

T value p Correlation coefficient
HRVcc HRVStandard

Mean RR (ms) 693.95 (107.97) 693.86 (107.81) 1.777 0.109 1.000
SDNN (ms) 27.69 (13.46) 27.71 (13.42) −0.510 0.623 1.000
RMSSD (ms) 18.38 (10.86) 18.64 (10.79) −1.873 0.094 0.999
CV (%) 3.82 (1.44) 3.82 (1.43) −0.733 0.482 1.000
NN50 3.01 (5.18) 3.06 (5.74) −0.208 0.840 0.995
pNN50 (%) 3.99 (7.13) 4.07 (7.92) −0.254 0.805 0.996

Table 6: Mean, standard deviation, correlation coefficient, and p values of HRVCC-ECG and HRVStandard data under the eating scenario.

Parameter Unit
Average(STD)

T value p Correlation coefficient
HRVcc HRVStandard

Mean RR (ms) 642.87 (87.50) 642.86 (87.36) 0.241 0.815 1.000
SDNN (ms) 30.66 (14.64) 30.65 (14.63) 0.132 0.898 1.000
RMSSD (ms) 16.27 (9.64) 16.53 (9.59) −1.723 0.119 0.999
CV (%) 4.64 (1.68) 4.64 (1.67) 0.034 0.974 1.000
NN50 2.30 (5.08) 2.27 (5.00) 1.000 0.343 0.996
pNN50 (%) 2.76 (6.28) 2.73 (6.18) 1.000 0.342 0.996
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carry and stay in contact with the device all the time.
Excluding the time period when they left to purchase food,
eat, or go to the bathroom, they spent pretty much the
whole day doing work at their computers until they left the
lab at 5 pm. Figure 16(a) shows the capacitive ECG signals
captured over 8 hours, while Figure 16(b) indicates the
switch signals. When the electrical potential is high, this
means that the subject is in his seat, whereas low electrical
potential indicates that the subject is not in his seat. For
example, the electrical potential was low from 11:30–12:04
when the subject left to purchase food. When looking at
Figure 16(b), we can reference Figure 17(a) and see that
when the subject was not in his seat, no signals were
captured. Figure 16(c) shows changes in ECG capturing
every time the subject sat down in his seat. In this instance,
the ECG signal only emerged 6 seconds after the subject
had sat down. Figure 16(d) shows the waves captured by the
system when the subject was not in his seat. We can see that
before the subject left his seat, there was a small period
where there were transient waveforms. Additionally, we
can see from Figure 16(a) that there was more motion noise
in the afternoon compared to the morning. Figure 17(a)
shows the R-R time interval curves measured during the 8

hours. Additionally, the SDNN and HR curves obtained
every five minutes are shown, respectively, in Figures 17(b)
and 17(c).

5. Discussion

Our results show that average R-peak detection accuracy Se
and PPV for the ten subjects were 0.983 and 0.991, re-
spectively. +e Se and PPV of all ten subjects are higher than
0.943 and 0.967, respectively. +ere were some subjects who
had few false positives and false negatives, which showed
that it is possible to bring Se and PPV close to 1 if system
electrodes have good contact. However, body shape is dif-
ferent for each. Since the same chair back cannot satisfy the
needs of all users, there are inevitably gaps between the
electrodes and the subject’s back, which can cause lower SNR
when signals are captured. +erefore, it is important that the
electrodes closely match the body curvature. +is was
particularly obvious in female subjects wearing brassieres.
Observation of different scenarios showed that there was
more motion noise in dynamic scenarios compared to
peaceful scenarios. +e accuracy of R-peak detection was
also lower.
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Friction noise is generated when any of the user’s limbs is
moved, and thus from the results of the R-R time interval
correlations, we found that the accuracy of R-peak detection
was lower in the typing and eating scenarios. Even so, er-
roneous results only made up around 0.5% of all results.
After removing erroneous results, a comparison of RR time
intervals captured by our system and the commercial in-
strument showed high consistency between the two sets of
data, with correlation coefficient r approaching 1 and co-
efficient of determination r2 approaching 0.999, which in-
dicates a very high positive correlation. +e erroneous
results were filtered out manually by researchers in this
study, but we hope to include more automated filters in the
future to increase the stability of the system.

We captured HRVCC-ECG and HRVStandard signals.
Differential analysis results for HRV showed that HRV
parameters captured by these two systems under resting,
video-watching, music-listening, typing, and eating sce-
narios all had p values exceeding 0.01, meaning that there
were no significant differences between the two methods.
Furthermore, correlation coefficients were all higher than
0.995. +e correlation of NN50 and pNN50 parameters was
lower in the typing and eating scenarios, mainly due to the
subject movement as the capacitive system capture signals
through contact between the skin and electrodes. +e filter
frequencies used for these two systems were also different,

which could have caused other differences during the
process of signal capture. Another factor that could have
caused a lower correlation was the gaps between the skin and
the electrodes due to clothing.+is could have affected signal
capture, particularly in dynamic scenarios where vertical
motions on the electrodes may have caused interference.
Past researchers [36] have suspected that noncontact signals
and standard ECG signals have the same cyclical signals, and
the waves captured are similar to that of ballistocardiogram
(BCG) signals with flatter wave peaks, which can also cause
errors when capturing R-peaks. +is phenomenon was
particularly apparent in dynamic scenarios.

In addition to using different scenarios to verify the
capabilities of our system compared to commercial systems,
we were also able to observe physiological changes in
subjects under different scenarios, for example, all subjects
showed increases in HR when eating, increasing SDNN
when resting, and decreasing SDNNwhen not resting.+ese
types of physiological phenomena are consistent with the
conclusions of past studies [35]. Finally, this study also tested
the long-term measurement capabilities of our system. Over
the course of 8 hours, we found that motion noise was more
prominent in the afternoon compared with the morning.We
speculate that the main reason is the noise caused by the tiny
movement of the contact surface between the subject and the
capacitive electrode and that this tiny movement may be
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affected by the subject’s concentration and emotional
fluctuations in the afternoon. +erefore, when monitoring
subjects over a long period of time, it is important to
consider the comfort of users and the stability of system
monitoring, as well as the reliability of signal capturing. To
ensure close contact between the electrodes and the body in
order to minimize motion noise, our noncontact hardware
may have caused discomfort for some subjects. We sought to
balance signal quality and subject comfort by using curved
electrodes and an ergonomic chair back, but there is still
room for improvement with this system. In the future, we
may use soft electrodes and curved chair backs for better
results. Currently, many wearable devices still cause dis-
comfort to users. Over a 24-hour day where the subject is
awake for 16 hours and asleep for 8 hours, the non-
perception of this long-term physiological signal measure-
ment system has the potential to be used during sleeping.
+is noncontact electrode technology can also be used in
many settings, for example, in office chairs, sofas, beds, car
seats, toilets, and so on. Overall, we hope to conduct health
monitoring at home and in the office on subjects dressed in
normal clothing, with no need for the system to come into
contact with the skin, and with no need for hardware wiring.
+is does not affect the daily activities of users and can help
them overcome physiological and mental stress. In sum-
mary, our noncontact, nonbinding, nonperception, and
wireless system can facilitate health monitoring over a long

period of time without affecting the daily activities of users.
During the use of the noncontact seat, each user’s sitting
posture is different, and the cushion touches themicroswitch
to start the system when the user is lying and sitting.
However, when the user is forward-leaning and sitting, the
system will not be activated. +erefore, the system does not
capture the heart rate information every time the user sits
down. However, as long as the user uses the system for a long
time, the system will automatically start the system to obtain
the user’s heartbeat information, the data will be transmitted
to the back-end server for big data collection and analysis,
and the system will provide users with long-term health
information.

6. Conclusions

+is study used noncontact active electrodes, along with a
home or office computer chair, to develop a “capacitive heart
rate monitoring system.” In the simulation study, daily home
and office scenarios were used to verify the capabilities of this
system as compared with commercial instruments. Our re-
sults showed high accuracy in R-peak detection, with mean Se
and PPV at 0.983 and 0.991, respectively. +e R-R time in-
tervals of both systems were highly consistent. With the
correlation coefficient r reaching almost 1.000 and differences
between the two systems falling within ±10ms range, the two
systems not only show a high positive correlation but also
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exhibit tiny differences in measurement results. Additionally,
the time-domain parameters HRVCC-ECG and HRVStandard
show no significant difference under the four different sce-
narios. Finally, our systemwas used to conductmeasurements
over 8 hours and data were transmitted wirelessly to the server
in real time. It was demonstrated that the system can achieve
the goal of nonperception and is therefore useful for appli-
cation of heart rate monitoring in daily life.
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